Top-K Subgraph Matching Query in A Large Graph

Lei Zou1 * Lei Chen2 Yansheng Lu1
1Huazhong Univ.of Sci. & Tech., Wuhan, China, \{zoulei,lys\}@mail.hust.edu.cn
2Hong Kong Univ.of Sci. & Tech., Hong Kong, China, leichen@cse.ust.hk

Abstract

Recently, due to its wide applications, subgraph search has attracted a lot of attention from database and data mining community. Sub-graph search is defined as follows: given a query graph \(Q \), we report all data graphs containing \(Q \) in the database. However, there is little work about sub-graph search in a single large graph, which has been used in many applications, such as biological network and social network.

In this paper, we address top-k sub-graph matching query problem, which is defined as follows: given a query graph \(Q \), we locate top-k matchings of \(Q \) in a large data graph \(G \) according to a score function. The score function is defined as the sum of the pairwise similarity between a vertex in \(Q \) and its matching vertex in \(G \). Specifically, we first design a balanced tree (that is \(G \)-Tree) to index the large data graph. Then, based on \(G \)-Tree, we propose an efficient query algorithm (that is Ranked Matching algorithm). Our extensive experiment results show that, due to efficiency of pruning strategy, given a query with up to 20 vertices, we can locate the top-100 matchings in less than 10 seconds in a large data graph with 100K vertices. Furthermore, our approach outperforms the alternative method by orders of magnitude.

1. Introduction

Graph is an important data structure in computer science, which can model objects as vertices and their pairwise relationships as edges. Graph database finds many applications in chem-informatics [22], or pattern recognition [4] and complex network [24]. Basically, graph databases can be divided into two categories [13]:

First, graph-transaction setting. There is a large set of relatively small graphs (<300 vertices) called transactions in the database, such as compound structures and graph patterns. Recently, a lot of important work about sub-graph search has been conducted in the graph-transaction database [19, 23, 11, 25, 9, 6, 3].

The work was done when the first author visited Hong Kong University of Science and Technology as a visiting scholar.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.

Copyright 200X ACM X-XXXXXX-XX-X/XX/XX ...$5.00.

Second, single-graph setting. Different from the first category, there is only one graph in the database, however, the size of graph is very large (>10K vertices), such as biological network [14], social network [21] and WWW [1]. There are many interesting problems in this category, such as protein-protein interaction [2] and frequent sub-graph mining [13] and connectivity [20]. Among of these graph-based problems, (sub)graph matching [8] is one of fundamental problems with many practical applications, such as compound search [10] [22], pattern recognition [4]. On the other hand, as we know, sub-graph isomorphism is NP-complete [8]. In fact, it is exact the intrinsical hardness and popular applications that motivate people to design practical algorithms for graph matching problems, such as [19, 23, 11, 25, 9, 6, 3]

1.1 Motivation

In this paper, we propose a novel sub-graph matching query in single-graph database, called Top-K Subgraph Matching Query. Given a query graph \(Q \), we report the top-k matching positions in the large graph \(G \) with the k largest “scores”. Before the formal definition in Section 1.2, let us consider some motivating examples as follows.

Recently, in life science, due to rapid advances in experimental designs, biologists can obtain a large amount of data describing biological interactions at a genome scale. We can model these interactions networks as large graphs, such as protein-protein interaction networks (PPI) [17], metabolic networks [14] and so on. Vertices and edges are used to represent biological entities and interactions between them. As a motivation example for our problem, let us consider the following scenario: A scientist working on an unwell-studied species has constructed a small portion of a protein pathway complex \(Q \) based on analysis of various experimental data. The scientist is interested in predicting more biological activity about the unwell-studied species. This task can be expressed as locating some “similar” matchings of \(Q \) in a large PPI network \(G \) about a well-studied species. For each matching, we can compute its scores. We only report top-k matchings. The score of a matching is defined as the sum of the pairwise similarity between a vertex (this is a protein) in \(Q \) and its matching vertex in \(G \). We can evaluate the similarity between two vertices in terms of the protein sequence similarity [18]. Most existing approaches always assume that the query pathway complex is a path or tree, or relax matching definitions (not sub-graph isomorphism, only considering pairwise vertex distances)[24]. Furthermore, it is difficult for these methods to work on a very large data graph.

Actually, top-k sub-graph matching query problem has many other applications, such as social network. Assume that an official
security department has built a large social network. Each vertex corresponds to a dangerous individual, and each edge denotes the interaction between two corresponding individuals, as shown in Figure 1. Some personal characters about a danger individual are recorded, such as appearance, accent and so on. In order to find a terrorist group, through a long time detection, polices have obtained some personal characters about 4 terrorists (such as appearance and so on), and the interactions among them. Then, they draw a query graph \(Q \) in Figure 1. \(Q \) is not always a complete graph, since the interactions among members in the terrorist group are always well-pre-defined. Some members have no interaction with others, even though they are in the same terrorist group. In Figure 1, the vertex color is used to denote the personal character. Similarity between personal characters is denoted by the similarity between the vertex colors. In order to locate the terrorist group in the network, we want to find 4 matching vertices (individuals) in \(G \), which are similar with vertices in \(Q \) respectively. Furthermore, the interaction among them are the same with that in \(Q \). Though vertex 1 in Figure 1 is similar with one query vertex, it is eliminated due to no interactions with other suspects. The vertices (5, 9, 12, 14) is a matching of \(Q \) in \(G \). There may exist many matchings of \(Q \) in the network. Polices should pay more attention to top-k “good” matchings.

Table 1. Meanings of Symbols Used

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Diam}(Q))</td>
<td>The Diameter of Query (Q)</td>
</tr>
<tr>
<td>(\text{Sim}(u, v))</td>
<td>The similarity between (u) and (v)</td>
</tr>
<tr>
<td>(\text{Score}(X))</td>
<td>The matching score of (X)</td>
</tr>
<tr>
<td>(</td>
<td>N(u)</td>
</tr>
<tr>
<td>(</td>
<td>E\text{-}S(N, d))</td>
</tr>
</tbody>
</table>

As mentioned above, a vertex in a graph corresponds to an object. For a vertex \(u \) in query \(Q \) and a vertex \(v \) in data graph \(G \), we use \(\text{Sim}(u, v) \) to evaluate the similarity between two objects associated with vertices \(u \) and \(v \). \(\text{Sim}(u, v) \) depends on different applications. In the PPI example of Section 1.1, \(\text{Sim}(u, v) \) is defined as the similarity between two corresponding proteins. In terrorist network example, \(\text{Sim}(u, v) \) is defined as the similarity between two corresponding individual characters.

How to evaluate \(\text{Sim}(u, v) \) is not focus of this paper, which depends on different applications. In our problem, \(\text{Sim}(u, v) \) for any pair \((u, v) \) is also the input of the algorithm, where \(u \) and \(v \) are two vertices in query \(Q \) and data graph \(G \) respectively. Given a vertex \(u \) in query \(Q \), a vertex \(v \) in the graph \(G \) can be a matching vertex to \(u \) iff \(\text{Sim}(u, v) \geq \gamma \), where \(\gamma \) is user specified parameter. Therefore, we have the following definition.

Definition 1.4. Sub-Graph Matching

Assume that we have two graphs \(Q < V_1, E_1 > \) and \(G < V_2, E_2 > \). \(Q \) is isomorphism to \(G \) under some bijective function \(f \), where \(X \) is a sub-graph of \(G \). We call \(X \) a sub-graph matching (matching for short) of \(Q \) in \(G \) iff, for any vertex \(u \) in \(Q \), \(\text{Sim}(u, f(u)) \geq \gamma \). Furthermore, the vertex \(f(u) \) in \(G \) is called the matching vertex \(u \) w.r.t. a vertex in query \(Q \).

It is clear that, given a query graph \(Q \), there may exist many matchings of \(Q \) in the large data graph. For each matching \(X \), we define the matching score \(\text{Score}(X) \) as follows:

Definition 1.5. Matching Score

Given a query graph \(Q \) and a large data graph \(G \), \(X \) is a matching of \(Q \) in graph \(G \). The score of \(X \) is defined as

\[
\text{Score}(X) = \sum_{i=1}^{|V(Q)|} \text{Sim}(v_i, f(v_i))
\]

, where \(|V(Q)| \) is the number of vertices in \(Q \).

We would like to point out that matching score function also depends on different applications. In fact, our algorithm proposed in this paper holds for any monotone aggregate matching score function. For the clear presentation, we use sum function as \(\text{Score}(X) \) in this paper. Our top-k subgraph matching query is defined as follows:

Definition 1.6. (Problem Definition) Top-K Subgraph Matching Query

Given a query graph \(Q \), a large data graph \(G \) and \(\text{Sim}(u, v) \), \(Q \) is a matching of \(G \). The \(k \)-largest matching of \(Q \) in \(G \), \(X \), is defined as follows:

Furthermore, in our problem, \(|V(Q)| < \log |V(G)| \), namely, query \(Q \) is a small graph compared with the data graph \(G \).

Example 1 (Running Example)

Given a query graph \(Q \) and a large data graph \(G \) in Figure 2, we want to locate Top-2 matchings. The vertex similarity threshold is \(\gamma = 0.1 \). In Figure 2, we only report all vertex pairs whose similarities are no less than \(\gamma \).

\(\text{iff} \) if and only if

\(\gamma \) w.r.t. with regard to
Notice that, each vertex in query \(Q \) and data graph \(G \) corresponds to one object. ‘A’ and ‘1’ in Figure 2 are vertex ID, not vertex labels.

1.3 Our Approaches

In this problem, we have to face sub-graph isomorphism during query processing, known to be NP-complete. Obviously, for any matching \(X \) of \(Q \) in the data graph \(G \), \(X \) is located into a local area with diameter \(\leq \text{Dia}(Q) \) in \(G \), where \(\text{Dia}(Q) \) is the diameter of query \(Q \). We can check the local area around each vertex in \(G \) by sub-graph isomorphism until we find all matchings of \(Q \) in \(G \). In order to reduce the number of sub-graph isomorphism checking, we can apply feature-based pruning strategy. If a feature (that is sub-structure) of a query \(Q \) does not exist in some local area of \(G \), the local area cannot contain any matching of \(Q \), namely, the local area can be pruned safely. Feature-based pruning is a popular method in sub-graph search problem [19, 23, 25, 3]. However, in our problem, given a query \(Q \), the matchings of \(Q \) exist in most local areas of the data graph \(G \), especially when \(|Q| \) is small. It means that we can prune few local areas in \(G \). The underlying reason is that all vertices in our problem are non-labeled. Therefore, feature-based pruning cannot work well in the problem.

In this paper, we adopt another kind of pruning strategy, that is score-upper bound pruning: for a local area in the data graph \(G \), if there exist no matching whose score can be in top-\(k \) matching scores, the local area can be filtered out safely. The efficiency of score-upper bound pruning is derived from clusters in the large graph. In many graph clusters, matching scores are small. Since, in these clusters, there exist few vertices having similar characters to that in query \(Q \). In summary, we made the following contributions in this paper:

1. We propose a novel sub-graph search problem in a single large graph, which locates and reports top-\(k \) matchings.
2. We design a height-balanced tree, \(G\text{-Tree} \), to index a large graph.
3. Based on \(G\text{-Tree} \) index, to answer top-\(k \) matching query, we propose **Ranked Matching** algorithm.
4. Extensive experiments on two real data sets evaluate the efficiency of our methods.

The remainder of the paper is organized as follows: Related work is discussed in Section 2. We design \(G\text{-Tree} \) index and propose novel **Ranked Matching** algorithms in Section 3. We evaluate our method in the extensive experiments in Section 4. Finally, We conclude the paper in Section 5.

2. Related Work

Recently, there is increasing research interest in graph databases. Here, we make a brief review of the related work, which can be categorized into three groups: 1) sub-graph search in graph-transaction database; 2) path-way search in the biological network; 3) graph cluster and community detection.

Sub-graph search in graph-transaction database. Given a query graph \(Q \), we need to report all data graphs containing \(Q \) in the database [19, 23, 11, 25, 9, 6, 3]. The popular pruning strategy in sub-graph search problem is feature-based pruning: If a feature (that is sub-structure) of query \(Q \) does not exist in some data graph \(G_i \), \(G_i \) can be filtered out safely. The straightforward method of extending the strategy to our problem is that, if a local area of the large graph \(G \) does not consist a feature of query, the local area can be pruned. However, it has no good pruning power. The underlying reason is that all vertices in our problem has no categorical labels.

Pathway search in the biological network. Given a pathway complex \(Q \), we want to find a sub-structure \(X \) in the biological network that is most similar to \(Q \). In the recent work [24], authors propose \(\text{GraphMatch} \) algorithm. The matching definition in [24] replaces sub-graph isomorphism by pair-wise vertex distance, which is different from ours. In experiments, we choose \(\text{GraphMatch} \) as an alternative method for comparison. \(\text{GraphMatch} \) can work well in biological network (about 5K vertices), but it cannot work on a very large graph (100K vertices).

Graph cluster and community detection
The goal of community detection is to cluster the vertices in the large graph into groups that share common characteristics. Many graph partition and clustering algorithms have been proposed in the literature, such as spectral clustering [15], METIS [12] and so on. In fact, the pruning effect of our method benefits from "community" and "graph clusters", which is discussed in Section 3.2.

3. Ranked Matching Algorithm

In this section, we design \(G\text{-Tree} \) to index a large data graph in Section 3.1. Then, based on \(G\text{-Tree} \), we propose \(\text{RM} \) algorithm for top-k matching query problem in Section 3.2. **Advanced RM** algorithm is proposed in Section 3.3.

3.1 \(G\text{-Tree} \) Structure

Many real large graphs alway display the hierarchical topology [16], such as PPI, social network and WWW. In these large graphs, there exist many clusters. The vertices in a cluster are highly connected, and they have only a few or no neighbors outside this cluster. In PPI, these clusters always correspond to different functional groups. In friendship network, they denote the communities with shared interests. Iteratively, small clusters are also densely interconnected, which form larger clusters. Inspired by the hierarchical topology in the real large graphs, we propose a \(G\text{-Tree} \) index as follows.

Definition 3.1. \(G\text{-Tree} \). Given a large data graph \(G \), \(G\text{-Tree} \) index is a height balanced tree, where:

1. Each node \(N \) in \(G\text{-Tree} \) corresponds to a set of vertices in graph \(G \). The set of vertices is called **Node Area** w.r.t node \(N \), denoted as \(S(N) \). In the same level of \(G\text{-Tree} \), all node areas form a graph \(G \)'s partition.
2. Given an intermediate node N and one of its children M in G-Tree, $S(M)$ is a subset of $S(N)$.
3. Each node has at least m children unless it is root, $m > 2$. Each node has at most M children and $\frac{(M+1)}{2} \geq m$.

In this paper, for presentation convenience, we preserve node for G-Tree and vertex for the data graph and query graph. The G-tree index for the running example is illustrated in Figure 3. **Tree Construction** The straightforward approach to build G-Tree is to perform insertion sequentially. Here, we discuss G-Tree construction in up-bottom fashion. We can use graph partition algorithm, such as METIS [12], on the data graph to obtain nodes in the first level. Iteratively, for each node, we obtain its child nodes by graph partition. We terminate the above process when each leaf node area can be stored in a disk page.

Figure 3. G-Tree

Insertion and Split To insert a vertex v, an insertion operation begins at the root of G-Tree and iteratively chooses a child node until it reaches a leaf node. The main challenge of insertion is the criterion for choosing a child node. In order to handle the problem, we propose the Cluster Coefficient in Definition 3.2. We always finds a child node N_i that maximizes the cluster coefficient $C_{cluster}(v \cup N_i)$ among all N_i.

Definition 3.2. Cluster Coefficient.

$$C_{cluster}(N) = \frac{|AllEdges(N)| - |OutEdges(N)|}{|AllEdges(N)|},$$

where $|OutEdges(N)|$ is the number of out edges linking vertices in $S(N)$ to vertices out of $S(N)$. $|AllEdges(N)|$ is the number of all edges adjacent to vertices in $S(N)$.

Analogous to other balanced tree, such as R-tree, for a node N, we need to split N into two nodes if the number of children is larger than M, where M is maximal fanout. We perform graph partition on N in order to obtain new nodes N_1 and N_2. Splitting may cause the parent node to split as well and this procedure may repeat all the way up to the root.

Deletion and Merge To delete a vertex v from the graph G, we find the leaf node in G-Tree where v is stored. For any node N along the path, we delete v from node area $S(N)$. After deletion, if node N has less than m children, where m is minimal fanout of G-Tree, we merge N into another N_i in the same level. The criterion for choosing N_i is to maximize $C_{cluster}(N_1 \cup N)$ among all N_i. The procedure may propagate up to the root.

3.2 RM Algorithm

The large search space is the challenge to the top-k matching query problem. According to analysis in Section 1.3, we adopt the score upper-bound pruning strategy in this paper. First, we discuss the topological relationships between a matching and a node area (defined in Definition 3.1) in G-Tree as follows.

Definition 3.3. Contain, Overlap and Outside. Given a query Q and a large graph G, a subgraph X of G is a matching of Q if X is a node of G-Tree. We use $S(X)$ to denote the set of vertices in X. The topological relationship between the matching X and the node area $S(N)$ are:

1. **Contain**. $S(X) \subseteq S(N)$;
2. **Overlap**. $S(X) \cap S(N) \neq \phi$ AND $S(X) \subseteq S(N)$;
3. **Outside**. $S(X) \cap S(N) = \phi$.

![Figure 4. The Relationship Between a Node Area and a Matching](image)

Figure 4 shows the examples about contain, overlap and outside.

Definition 3.4. Boundary Vertex. Given a large graph G and a node N in G-Tree for graph G, for a vertex v in node area $S(N)$, if there exists at least one neighbor vertex that is not in $S(N)$, v is a Boundary Vertex w.r.t $S(N)$.

Definition 3.5. d-Extension Node Area. Given a node N in G-Tree, a vertex v is a boundary vertex w.r.t $S(N)$. $N(v,d) = \cup \{v_j[\text{the distance between } v_j \text{ and } v \text{ is not larger than } d]\}$. We assume that there are m boundary vertices v_i in $S(N)$. The d-Extension Node Area is denoted as $ES(N,d) = (\bigcup_{i=1}^{m} N(v_i,d)) \cup S(N)$.

![Figure 5. d-Extension Node Area](image)

Figure 5 shows 1-Extension N_3 (that is $ES(N_3, 1)$) in the running example.

Theorem 3.1. Given a query graph Q and a large graph G, X is a matching of Q in G. For a node area $S(N)$, if X is contained in $S(N)$ or overlapped with $S(N)$, X must be contained in $ES(N, Dia(Q))$, where $Dia(Q)$ is the Q’s diameter.

Given a query graph Q with n vertices and Extension node area $ES(N, Dia(Q))$, X is a matching contained in $ES(N, Dia(Q))$. To evaluate the upper bound of $Score(X)$, we work as follows. For each vertex u_j in query graph Q, we find all candidate matching vertices v_{ij} in $ES(N)$, where $j = 1...m$. Then we define $Sim(u_i, ES(N, Dia(Q))) = Max(Sim(u_i, v_{ij}))$. According to Definition 1.4, if $Sim(u_i, ES(N, Dia(Q))) < \gamma$, it is clear to know that there exists no matching X contained in $ES(N, Dia(Q))$. It means that the node N in G-Tree can be pruned safely. Otherwise, we use the following theorem to evaluate the upper bound of $Score(X)$.
Theorem 3.2. Given a query graph Q with n vertices u_i, X is a matching of Q contained in or overlapped with node area $S(N)$. We define $UpScore(Q, N) = \sum_{i=n} UpSim(u_i, ES(N, |Dia(Q)|))$. $UpScore(Q, N)$ is the upper bound of Score(X).

Given a query Q in Figure 2 and a node N_3 of G-Tree in Figure 3, $UpScore(Q, N_3) = Sim(A, ES(N_3, Dia(Q))) + Sim(B, ES(N_3, Dia(Q))) = 0.1 + 0.6 + 0.3 = 1.0$.

The pseudo-code for RM algorithm is given in Algorithm 1. All child nodes N_i of root are inserted into the max-heap in non-descending order of $UpScore(Q, N_i)$ (Line 1). Initially, we set $\beta = -\infty$ (Line 2). If the heap head N is a leaf node, we remove N from the heap and perform sub-graph isomorphism to find all matchings of Q in $ES(N, Dia(Q))$. They are inserted into the max-heap H in non-ascending order of $UpScore(N, Dia(Q))$. We update β to be the k-th largest matching score in H (Lines 7-10). If the heap head N is not a leaf node, we remove N from the heap and insert all its child nodes C_i into the heap in non-ascending order of $UpScore(Q, C_i)$ (Lines 12-13). RM algorithm terminates when β is not larger than $UpScore(Q, N)$, where N is the heap H’s head. (Line 5)

<table>
<thead>
<tr>
<th>Action</th>
<th>Heap contents</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access root</td>
<td>$<N_0, 2.4>$, $<N_1, 2.2>$</td>
<td>\emptyset</td>
</tr>
<tr>
<td>Expand N_2</td>
<td>$<N_0, 2.4>$, $<N_1, 2.2>$, $<N_2, 1.9>$</td>
<td>\emptyset</td>
</tr>
<tr>
<td>Check N_3</td>
<td>$<N_0, 2.2>$, $<N_1, 2.2>$, $<N_3, 1.9>$</td>
<td>$<\text{matching 1}, 2.0>$</td>
</tr>
<tr>
<td>Expand N_4</td>
<td>$<N_0, 2.2>$, $<N_1, 2.2>$, $<N_3, 1.9>$, $<N_4, 1.0>$</td>
<td>$<\text{matching 2}, 2.2>$, $<\text{matching 1}, 2.0>$, $<\text{matching 3}, 0.5>$</td>
</tr>
<tr>
<td>Check N_5</td>
<td>$<N_0, 1.9>$, $<N_1, 1.0>$, $<N_3, 1.9>$, $<N_4, 1.0>$</td>
<td>$<\text{matching 1}, 2.0>$, $<\text{matching 2}, 2.2>$, $<\text{matching 3}, 0.5>$</td>
</tr>
</tbody>
</table>

Figure 6. Heap Content

In the running example, we first access the root and insert all its child nodes into the max-heap H, as shown in Figure 6. Since $UpScore(Q, N_2) = 2.4 > UpScore(Q, N_1) = 2.2$, N_2 is before N_1 in the heap. N_2 is heap head, therefore, we “expand” N_2. N_0 and N_4 are children of N_2, which are inserted into the heap. N_0 is the next expanded node. Since N_0 is a leaf node, we remove N_0 from the heap and perform sub-graph isomorphism to find all matchings of Q in $ES(N_0, Dia(Q))$. We find matching 1 in $ES(N_0, Dia(Q))$ with score 2.0, which is inserted into the result set R. Now, N_1 is heap head. N_1’s children, that are N_3 and N_4, are inserted into the heap. Next, since N_1 is a leaf node, we remove N_1 from the heap and perform sub-graph isomorphism to find all matchings in $ES(N_4, Dia(Q))$, that are matching 2 and matching 3. We keep the threshold β to be the k-th largest matching score by now (k=2 in the running example). Now, $\beta = 2.0 > UpScore(Q, N_2) = 1.9$, where N_2 is the heap head. It indicates that all left nodes can be pruned safely. We report top-2 matchings in the heap R (that are matching 2 and 1) and the algorithm terminates.

Theorem 3.3. (Algorithm Correctness) RM algorithm can report the correct top-K matchings.

Algorithm 1 Ranked Matching (RM for short)

Require: Input: query Q, a large graph G and G-Tree index T.

Output: Top-k matchings of Q in G

1: Insert all child nodes N_i of T’s root into the max-heap H according to $UpScore(Q, ES(N_i, Dia(Q)))$.
2: Set $\beta = -\infty$.
3: While $|H| > 0$
 4: the head of heap H is node N.
 5: if $\beta > UpScore(Q, N)$ then
 6: Break
 7: if N is a leaf node then
 8: Remove N from the heap H
 9: else
 10: Update β to be the k-th largest matching score.
 11: end
12: Remove N from the heap H
13: For all child nodes C_i of N, they are inserted into max-heap H in descending order of $UpScore(C_i)$.
14: Report the top-k matchings in C.

Proof. (sketch) It is straightforward to know that, if we assess every leaf node by sub-graph isomorphism, we can find the correct top-k matchings. If the algorithm terminates when $|H| = 0$ (Line 3), it means that each leaf node has been checked. Therefore, the algorithm can report the correct top-k answers. If the algorithm terminates when $\beta > UpScore(Q, N)$ (Line 6), it means that, for un-assessed leaf nodes, there exits no matching whose score is larger than β (β is the k-th largest matching score by far). It indicates that we have found the correct top-k matchings. Therefore we prove the correctness of RM algorithm. \qed

Theorem 3.4. Given a top-k query Q, for any leaf node L, the sufficient and necessary condition for performing sub-graph isomorphism between Q and $ES(L, Dia(Q))$ is that $UpScore(Q, L) \geq \beta^*$, where β^* is the k-th largest matching score in the final results.

Proof. (sketch) 1) **sufficient condition.** If there exists a leaf node L that has not been checked by sub-graph isomorphism so far, where $UpScore(Q, L) \geq \beta^*$, there must exist L or its ancestor in the heap H according to RM algorithm. It is clear to know $\beta^* \geq \beta$ (the k-th largest matching score by far). Since $UpScore(Q, L) \geq \beta^*$, $UpScore(Q, L) \geq \beta$. It means that the algorithm cannot terminate, according to Line 5. Therefore, for any leaf node L, if $UpScore(Q, L) \geq \beta^*$, it must be checked by sub-graph isomorphism before algorithm termination. 2) **necessary condition.** Assume that there exists a leaf node L', where $UpScore(Q, L') < \beta^*$, and L' needs to be checked by sub-graph isomorphism before algorithm termination. Since L' needs to be checked, it means that L' is the recent heap head and $UpScore(Q, L') > \beta$. Since $UpScore(Q, L') < \beta^*$ and L' is the recent heap head, it means that we cannot find any matching with score $\geq \beta^*$ in un-assessed leaf nodes. It also indicates that the final k-th largest matching score $< \beta^*$, which leads to contradiction (β^* is the final k-th largest matching score). Therefore, there exists no leaf node L', where $UpScore(Q, L') < \beta^*$, and L' needs to be checked by sub-graph isomorphism.

In conclusion, we prove the correctness of Theorem 3.4. \qed

Pruning Effect Discussion. To evaluate the pruning effect of RM algorithm, we define the assess ratio to be the ratio of the
number of assessed leaf nodes to the total number of leaf nodes in G-Tree. Theorem 3.4 shows the underlying reason that RM algorithm can obtain good pruning power. In fact, each leaf node corresponds to a cluster in the large data graph. Different clusters (leaf nodes) have different characteristics. For example, in PPI network, these clusters correspond to different functional groups. Therefore, given a query \(Q \), for most leaf nodes \(L \), \(\text{UpScore}(Q, L) \) is small, since \(Q \) and \(L \) have no common characteristics. According to Theorem 3.4, these leaf nodes will not be assessed due to small \(\text{UpScore}(Q, L) \). In experiments, we will evaluate our method by two important real Datasets: S.cerevisiae and DBLP dataset. Extensive results confirm our intuition about pruning effect.

However, when \(\text{Dia}(Q) \) is large, we always obtain a large extension node area \(E\!(S(N, \text{Dia}(Q))) \) during query processing. It means that we will spend more time to perform sub-graph isomorphism. In order to handle the problem, we propose the advanced RM algorithm in the following section.

3.3 Advanced RM algorithm

The pseudo-code of Advanced RM algorithm is shown in Algorithm 3.3. We partition the query \(Q \) into \(m \) parts \(Q_i \) (Line 1), and \(\max |\!\!\text{Dia}(Q_i)\!\!| < \theta \) (we discuss setting \(\theta \) later). For each query part \(Q_i \), we maintain a max-heap \(R_i \) to store all matchings of \(Q_i \) that has been founded by now. The algorithm is iterated from \(n=1 \) (Line 7–12). In each iteration step, for each \(Q_i \), we call function \(\text{Sub-RM}(Q_i, n, H_i, R_i) \) to return the correct top-\(n \) matchings of \(Q_i \) in the max-heap \(R_i \) (Line 9–10). \(\text{Sub-RM} \) function is analogous to RM algorithm. Then, for the first \(n \) matchings of \(Q_i \) in each \(R_i \), we check whether there exist some matchings that can be assembled into a matching of \(Q \). These assembled matchings of \(Q \) are inserted into a max-heap \(R \) (Line 11). We set \(\beta \) to be the \(k \)-th largest matching score of \(Q \) in \(R \) by now, and set \(\beta_i \) to be the \(n \)-th largest matching score of \(Q_i \), in \(R_i \) by now (Line 12). If \(\beta > \sum_{i=1}^{m} \beta_i \), the iteration terminates (Line 7). The algorithm report the top-\(k \) matchings in \(R \) (Line 13). The algorithm correctness can derive from the correctness of RM and TA algorithm [7]. Due to space limited, we omit the proof. Notice that re-calling function \(\text{Sub-RM} \) at the \(n \)th iteration only needs to compute the \(n \)th largest matching of \(Q \), and it does not re-compute the first \((n-1)\) largest matchings of \(Q \).

Algorithm 2 Advanced Ranked Matching (ARM for short)

{[code]
1: Partition \(Q \) into \(m \) parts \(Q_1...Q_m \), and each \(\text{Dia}(Q_i) < \theta \).
2: set \(n=0 \)
3: Set \(\beta \) and all \(\beta_i \) to be \(-\infty \).
4: Set max-heaps \(R \) and \(R_i \) to be \(\varnothing \).
5: for each \(Q_i \) do
6: Insert all child nodes \(N_i \) of \(T \)'s root into the max-heap \(H_i \) according to \(\text{UpScore}(Q_i, ES(N_i, \text{Dia}(Q_i))) \).
7: while \(\beta < \sum_{i=1}^{m} \beta_i \) do
8: set \(n=n+1 \)
9: for each \(Q_i \) do
10: Call \(\text{Sub-RM}(Q_i, n, H_i, R_i) \).
11: For the first \(n \) matchings in each \(R_i \), check whether there exist some matchings that can be assembled into a matching of \(Q \). These matchings of \(Q \) are inserted into a max-heap \(R \).
12: set \(\beta \) to be the \(k \)-th largest matching score of \(Q \) in \(R \) by now, set \(\beta_i \) to be the \(n \)-th largest matching score of \(Q_i \) in \(R_i \) by now.
13: Report top-\(k \) matchings of \(Q \) in the max-heap \(R \).

Discussion about \(\theta \). Sub-graph isomorphism in Line 7 of function \(\text{sub-RM} \) in Algorithm 3.3 dominates the algorithm performance. It is straightforward to know \(\|ES(N, \text{Dia}(Q_i))\| \approx O(\text{degree}(\text{Dia}(Q_i))) \), where \(N \) is an arbitrary leaf node and \(\text{degree} \) is the average vertex degree in the data graph. In the worst case, the time complexity of sub-graph isomorphism algorithm in Line 7 in function \(\text{Sub-RM} \) is \(O(|\!\!\text{Dia}(Q_i)\!\!|*\|ES(N, \text{Dia}(Q_i))\|) \) [5]. Therefore, according to Line 7 of function \(\text{Sub-RM} \), we should make \(\theta = \max(|\!\!\text{Dia}(Q_i)\!\!|) \) as small as possible. However, on the other hand, less \(\theta \) means more query parts \(Q_i \), which leads to more cost in Line 11 of Algorithm 3.3. It is difficult to quantify the trade-off about \(\theta \) from theoretical analysis. Nonetheless, we still have some guidelines about \(\theta \). Since, for any state art of sub-graph isomorphism algorithm, it cannot work well when \(|\!\!\text{Dia}(Q_i)\!\!| > 1000 \) [5]. Our experiment study also confirms that, therefore, we maximize \(\theta \) when \(\max(|\!\!\text{Dia}(Q_i)\!\!|) < 1000 \).

Assembling matchings of \(Q_i \). Assume that a query \(Q \) is partitioned into \(m \) parts \(Q_i \), \(i=1...m \). The edges connecting these \(Q_i \) are called “cut” edges. In Line 11 of Advanced RM algorithm, if 1) for each max-heap \(R_i \), there is a matching \(X_i \) of \(Q_i \), and 2) for each cut edge in \(Q \), there exists a edge connecting corresponding \(X_i \) in the data graph \(G \), and 3) \(X_i \cap X_j = \varnothing, i \neq j \), then these matching \(X_i \) can be assembled into a matching \(X \) of \(Q \).

4. Experiments

In this section, we report our experiment results to evaluate our methods in two real data sets. All experiments are implemented by standard C++ with STL library support and compiled by Visual Studio 2003 in a P4 1.7GHz machine of 1G RAM running Windows XP. To our best knowledge, there is no existing algorithm on top-k matching problem proposed in this paper. The most related and recent work is GraphMatch [24]. In fact, there are some differences between each other. First, GraphMatch relaxes sub-graph isomorphism matching by only considering pair-wise vertex distance. Second, GraphMatch allows existing un-matching vertices in query \(Q \) and indel vertices in the matching of \(Q \) in the data graph. In experiments, to enable performance comparison, we set parameter \(indel=0 \) (not allowing indel vertices) and set a big penalty value for each un-matching vertex in \(Q \) (not allowing un-matching vertices in \(Q \) in top-k matchings). We download GraphMatch from http://faculty.cs.tsu.edu.hk/shzie/graphmatch.

Furthermore, we design a TA variation algorithm for top-k matching query problem, called TA-matching. Given a query \(Q \), for each vertex \(u \) in \(Q \), we rank the vertices \(v_j \) in data graph \(G \) in non-
ascending order of $\text{Sim}(u, v_j)$ to form the list L. Similar with TA-algorithm [7], we scan all lists L, in parallel. For each encountered vertex v_j, we perform sub-graph isomorphism between Q and the local area around v_j in the data graph G. The algorithm continues until all left vertices cannot form a top-k matching (analogy to TA algorithm). TA-matching has a significant limitation: estimation about the upper bound of the left matching scores is not tight.

Datasets We use two real datasets, that are DBLP and protein interaction network of S.cerevisiae.

1) **DBLP Dataset**: We construct a co-author network G: every author is denoted as a vertex in G; and the edge is introduced when the corresponding two authors have at least one co-authored paper. We consider about 100 important conferences in different areas to construct G. On the whole, there are about 100K vertices and about 400K edges in G. We describe each vertex (a author) by a paper title string title, combining the titles of all papers that he or she published. To generate a query Q, we randomly extract a sub-graph from G with the pre-defined vertex number. To evaluate the vertex similarity $\text{Sim}(m, n)$ in Definition 1.5, we define it by the similarity between paper title strings of two corresponding authors. To be specific, for two vertices n and m in query Q and the co-author network G respectively, we define $\text{Sim}(n, m) = \frac{|\text{n.title} \cap \text{m.title}|}{|\text{n.title} \cup \text{m.title}|}$, where $|\text{n.title}|$ and $|\text{m.title}|$ is the number of common words in n.title and m.title. Obviously, $0 \leq \text{Sim}(n, m) \leq 1$.

2) **S.cerevisiae Dataset**: We download it from DIP [3] and represent it by an undirected graph G in which each vertex represents a protein and each edge represents interactions between two proteins. There are about 4934 vertices and 17346 edges in G. Similar with [24], for two vertices n and m in query Q and the data graph G, we define $\text{Sim}(n, m)$ to be as the minus-log E-value between two corresponding protein sequence. To generate a synthetic query, we randomly extract a sub-graph from G with the pre-defined vertex number. Then, each vertex in the sub-graph is perturbed by pre-specified amount of point mutations in its corresponding protein sequences.

All experiment results in this section are the average results of 100 queries.

Figure 7. Scalability Test

Scalability Study We test scalability of our methods in Figure 7 on both datasets, and compare them with GraphMatch. It is difficult for GraphMatch to work when the data graph has more than 60K vertices. Our methods have good scalability.

Performance Study Since there are only about 5,000 vertices in S.cerevisiae network, in order to test the performance of RM algorithm in a large graph, we only report the experiment results in DBLP dataset as follows. The default vertex cardinality of the data graph G is 100K in the following experiments. We only evaluate RM algorithm and TA-matching algorithm proposed in the paper, since it is difficult for GraphMatch to work on the large graph with 100K vertices.

Iteratively, we build the G-Tree by running graph partition algorithm METIS [12] on the data graph G. We set the fanout of G-tree to be 50. First, we fix the diameter of query Q to be 5 and threshold $\gamma=0.5$ (γ is defined in Definition 1.5), and vary the size of Q (that is number of vertices in Q) from 10 to 25. Total response time about top-100 queries is shown in Figure 8(a). We also evaluate the pruning effects of G-Tree in Figure 8(b) by assess ratio in RM algorithm. Assess ratio is defined as the ratio of the number of assessed leaf nodes in RM algorithm to the total number of leaf nodes in G-Tree. RM algorithm only performs expensive sub-graph isomorphism when it assesses the leaf nodes. Therefore, less assess ratio indicates faster response time. RM algorithm outperforms TA-matching algorithm in Figure 8(a). Observed from Figure 8(a), we find that the query response time in RM algorithm decreases with increasing query size. The underlying reason is that, when the query graph is large, G-tree provides more efficient pruning effect, as shown in Figure 8(b). Notice that, the trend of response time for RM algorithm in Figure 8 happens when we fix $\text{Dia}(Q)$. If the query diameter increases with the query size, the response time will increase. We evaluate RM performance with regard to the query diameter as follows.

Figure 8. Varying Query Size

We fix the query size to be 20 and $\gamma=0.5$ and vary the diameter of query from 2 to 10. Figure 9(a) reports the response time and pruning effect of G-tree. The clear trend is that the response time increases with increasing query diameter. When RM algorithm assesses a leaf node N, it is clear to know that we obtain a large extend node area $ES(N, \text{Dia}(Q))$ when $\text{Dia}(Q)$ is large. It means that we will spend more time to perform sub-graph isomorphism between Q and $ES(N, \text{Dia}(Q))$. There is the similar problem in TA-matching algorithm.

To address large query diameter problem, we propose the Advanced RM algorithm in Section 3.3. We evaluate the Advanced RM algorithm in Figure 10. We fix the query size to be 20 and vary the query diameter from 6 to 14. Results are reported in Figure 10. Though, assess ratio of Advanced RM is larger than that in RM, Advanced RM algorithm improves the query performance (response time). The underlying reason is that we need less time to perform sub-graph isomorphism in Advanced RM algorithm, since $ES(N, \text{Dia}(Q_i))$ is small. We partition the query Q into different parts and $\text{Max}(\text{Dia}(Q_i)) < \theta = 5$.
Usually, when k is small, decreasing performed sub-graph isomorphism is discussed in Theorem 3.4. The sufficient and necessary condition that a leaf node needs to be assessed ratio of RM only depends on the final top-k answers. Therefore, assess ratio keeps invariable. Figure 11(a) shows that total response time increases with decreasing γ when $|Q| = 20$ and $\gamma = 0.1, 0.2, 0.3, 0.4, 0.5$. Therefore, Figure 5 shows that total response time increases with decreasing γ. The assess ratio of RM only depends on the final top-k answers. The sufficient and necessary condition that a leaf node needs to be performed sub-graph isomorphism is discussed in Theorem 3.4. Usually, when k is small, decreasing γ does not affect the final top-k answers. Therefore, assess ratio keeps invariable.

5. Conclusions

In this paper, we propose a novel sub-graph matching query problem in a very large data graph. It finds many applications in biological network and social network. To address the problem, we design a balanced tree G-Tree to index the large graph. Adopting score-upper bound pruning strategy, based on G-Tree, we propose the RM algorithm to locate the top-k matchings of query Q in the large data graph. Extensive experiments show that our algorithm has good scalability and fast response time, which outperforms the alternative method by orders of magnitude.

6. References