
2018 IEEE Fourth International Conference on Multimedia Big Data (BigMM)

Graph-based Point Cloud Denoising
1st Xiang Gao, 2nd Wei Hu, 3rd Zongming Guo

Institute of Computer Science & Technology, Peking University, Beijing, China
gyshgx868@gmail.com {forhuwei, guozongming}@pku.edu.cn

Abstract—3D Point cloud data has attracted attention in
various applications such as free-view rendering, heritage re-
construction and navigation. However, point clouds often suffer
from noise, either from hardware or software causes. We propose
an efficient point cloud denoising approach, where the geometry
of the point cloud is naturally represented on graphs. We first
divide noise in the point cloud into two categories: outlier and
surface noise according to the distribution, and then remove
them separately. Outliers are firstly removed based on the
sparsity of the neighborhood. Next, we formulate the surface
noise removal as an optimization problem regularized by graph-
signal smoothness prior, which essentially tries to reconstruct
the underlying geometry of the point cloud. Experimental results
show that our approach significantly outperforms five competing
methods.

Index Terms—Point cloud, denoising, graph-signal smoothness
prior, geometry, polynomial models

I. INTRODUCTION

The maturity of depth sensing and 3D laser scanning
techniques has enabled convenient acquisition of 3D point
clouds, a natural representation for arbitrarily-shaped objects.
Point clouds consist of a set of points, each of which has
3D coordinates and possibly attribute information such as
color and normal. Because of the efficient representation, point
clouds have been widely deployed in various fields, such as 3D
immersive tele-presence, navigation for unmanned vehicles,
and heritage reconstruction [1].

However, point clouds are often perturbed by noise, which
comes from hardware, software or environmental causes.
Hardware wise, noise occurs due to the inherent limitations of
depth sensors or 3D laser scanners. Software wise, in the case
of generating point clouds from algorithms, points may locate
somewhere completely wrong due to imprecise triangulation
(e.g., a false epipolar match). Environmentally, outliers may
appear due to the surrounding contamination, such as dust in
the air.

Many approaches are thus proposed for point cloud de-
noising. At present, the denoising method can be divided
into two main categories: noise removal methods and surface
smoothing methods. The main idea of the former is to detect
the noise in point clouds via some characteristics and then
delete them; the latter moves wrong points to correct positions.
These methods usually perform filtering on the point cloud or
move/project noisy points to a local approximate surface.

This work was supported by National Natural Science Foundation of
China under contract No. U1636206 and MSRA Collaborative Research under
project ID FY18-Research-Sponsorship-029.

Fig. 1. Fountain in MVS dataset with outliers and surface noise.

The most widely adopted noise removal methods are model-
based methods and statistical methods. Model-based methods
measure the distance from each point to a model (e.g., plane)
that approximates the geometry of each region of the object,
and detect whether a point is noise according to the distance
[2], [3]. Statistical methods compute the number of neighbors
at each point, and detect noisy points based on the sparsity [4].
However, they have two limitations: a) Model-based methods
are unable to address point clouds with complex structure,
because it is difficult to describe regions of complicated
geometry with simple geometries. b) Statistical methods often
destroy the sharp boundaries of point clouds.

Surface smoothing approaches mainly include the moving
least squares (MLS) based methods and locally optimal projec-
tion (LOP) based methods. The idea of MLS-based methods is
to project points onto an approximated smooth surface; LOP-
based methods aim to produce a set of points that represent the
underlying surface while enforcing a uniform distribution over
the point cloud. Nevertheless, these methods are unsuitable for
point clouds with large outliers.

In order to address the above problems, we first categorize
noise in point clouds into two types based on the distribution
of the noise (see Fig. 1, Fountain in MVS dataset1): a)
outlier noise, which exhibits as points with completely wrong
location, i.e., far away from the 3D surface and often with
sparse neighborhood. b) surface noise, which appears close to
the underlying surface and can be modelled as white Gaussian
noise. We deal with the two types of noise separately, taking
advantage of their unique characteristics.

1https://lts2.epfl.ch/research/reproducible-research/graph-based-point-
cloud-denoising/

978-1-5386-5321-0/18/$31.00 ©2018 IEEE

In particular, we first remove outlier noise based on the
sparsity of the neighborhood, and then deal with surface noise.
In order to efficiently represent the point cloud, we treat each
point as a vertex in a graph, and define the point-to-surface
distance of each point as the signal on the graph, i.e., graph
signal [5]. Specifically, we first segment the input point cloud
into patches by octree division [6] and normalized cuts [7] seg-
mentation, so as to reduce the computation complexity, as well
as to acquire homogeneous geometry within each patch, which
enables efficient subsequent surface fitting. Next, for each
patch, we attenuate the surface noise further, by casting the
denoising problem as a point-to-surface distance optimization
problem, which is regularized by a graph-signal smoothness
prior [5]. The idea is to approximate the underlying surface
by high-order polynomial surface fitting, and remove points
whose distance is away from the approximated surface to some
extent while enforcing the smoothness of the surface. Experi-
mental results show that our scheme significantly outperforms
previous competing methods.

The outline of this paper is as follows. We first review
previous point cloud denoising methods in Section II. Then
we introduce basic concepts in spectral graph theory and
graph-signal smoothness prior in Section III, which will be
deployed later. In Section IV, we elaborate on our algorithm,
including outlier removal and surface noise removal. Finally,
experimental results and conclusion are presented in Section V
and VI, respectively.

II. RELATED WORK

Most previous point cloud denoising methods can be clas-
sified into two categories: noise removal methods and surface
smoothing methods.

There are two major approaches in noise removal methods:
model-based methods and statistical methods.

Model-based methods. These methods utilize the fact that
noise is away from the surface of the object. As the underlying
surface is unknown, the common idea is to approximate with
some model (e.g. plane, sphere, etc.), and compute the distance
of each point from the model surface. Points with large
distance will be detected as noise and removed. A progressive
plane algorithm is designed in [2], which proposes a theorem
to describe the characteristics of a point set on a plane.
Then the plane is acquired by averaging the three-dimensional
coordinates and normal of a given point set using this theorem.
Based on [2], a hybrid algorithm is proposed in [3], which
constructs a progressive plane using least squares plane fitting
algorithm and computes the distance from each point to the
plane. The common problem of these methods is that details
will lose in regions with complicated geometry, because it is
difficult to approximate complex regions with simple models.

Statistical methods. These methods are often based on the
number of neighbors or the distance distribution of each point
to its neighbors in the input dataset. [4] proposes a statistical
outlier removal (SOR) approach that computes the mean
distance from each point to all its neighbors. By assuming
that the resulting distribution is Gaussian, all points whose

mean distances are outside an interval defined by the mean and
standard deviation of global distances are considered as noise
and removed from the dataset. Another widely used method is
to compute the number of neighbors at each point in a radius,
and define a global threshold. All points whose number of
neighbors are less than the threshold will be considered as
noise. This approach is called Radius Outlier Removal (ROR),
and implemented in Point Cloud Library (PCL)2.

Surface smoothing methods mainly include MLS-based
methods and LOP-based methods.

MLS-based methods. MLS-based methods usually deploy
a smooth surface to fit the point cloud and then project
the points of the point cloud onto the fitted surface. [8]
uses the MLS projection operator proposed by Levin [9] to
calculate the optimal MLS surface of the point cloud, and
moved the points around the surface to the MLS surface.
[10] proposes a MLS-based spherical fitting denoising method
(APSS). Compared with the aforementioned MLS projection-
based algorithm, this method improves the stability at low
sampling rate and high curvature. [11] proposes an algorithm
based on improved MLS and local kernel regression to smooth
the point cloud surface (RIMLS). However, these MLS-based
methods are very sensitive to outliers.

LOP-based methods. The widely known locally optimal
projection (LOP) [12] aims to produce a set of points to
represent the underlying surface while enforcing a uniform
distribution over the input point cloud. Weighted LOP (WLOP)
[13] provides a more uniformly distributed output than LOP
by adapting a repulse term to the local density. Further,
anisotropic WLOP (AWLOP) [14] modifies WLOP with an
anisotropic weighting function so as to preserve sharp features
better. Nevertheless, LOP-based methods often suffer from
over-smoothing.

Besides, another efficient algorithm is MRPCA [15]. The
idea is to solve a minimization problem, and the positions of
each point will be updated. Sharp features are well preserved
via a weighted l1 minimization. It is sensitive to outliers
though. Note that, this approach does not exactly fall within
either of the two above categories.

The proposed method belongs to the first category—the
noise removal methods. Similar to the statistical methods,
we also use ROR approach to remove the outliers. However,
unlike the statistical methods, we further represent the point
cloud on graphs and deploy a graph-signal smoothness prior
for optimization.

III. SPECTRAL GRAPH THEORY

We first provide a review on basic concepts in spectral graph
theory [16] that will be utilized in our denoising approach,
including graph, graph Laplacian and graph-signal smoothness
prior.

A. Graph and Graph Laplacian

We consider an undirected graph G = {V, E ,W} composed
of a vertex set V of cardinality |V| = n, an edge set E

2https://github.com/PointCloudLibrary/pcl

Fig. 2. A k-NN graph constructed when k = 3. The connections of boundary
vertices are omitted.

connecting vertices, and a weighted adjacency matrix W. W
is a real symmetric n × n matrix, where wi,j is the weight
assigned to the edge (i, j) connecting vertices i and j. We
assume non-negative weights, i.e., wi,j ≥ 0.

The Laplacian matrix, defined from the adjacency matrix,
can be used to uncover many useful properties of a graph.
Among different variants of Laplacian matrices, the com-
binatorial graph Laplacian used in [17]–[19] is defined as
L := D −W, where D is the degree matrix—a diagonal
matrix where di,i =

∑n
j=1 wi,j .

B. Graph-Signal Smoothness Prior

Graph signal refers to data that resides on the vertices of
a graph, such as social, transportation, sensor, and neuronal
networks. For example, if we construct a k-NN graph on the
point cloud, then the coordinates of each point can be treated
as graph signal defined on the k-NN graph, as shown in Fig. 2.

A graph signal z defined on a graph G is smooth with respect
to the topology of G if∑

i∼j
wi,j(zi − zj)2 < ε, ∀i, j (1)

where ε is a small positive scalar, and i ∼ j denotes two
vertices i and j are one-hop neighbors in the graph. In order
to satisfy (1), zi and zj have to be similar for a large edge
weight wi,j , and could be quite different for a small wi,j .
Hence, (1) enforces z to adapt to the topology of G, which is
thus coined graph-signal smoothness prior.

As zTLz =
∑
i∼j

wi,j(zi− zj)2 [20], (1) is concisely written

as zTLz < ε in the sequel. This prior will be deployed in our
problem formulation of surface noise removal, as discussed in
Section IV.

IV. THE PROPOSED ALGORITHM

Having introduced some basic spectral graph concepts, we
now elaborate on the proposed point cloud denoising approach.
As shown in Fig. 3, the input is a noisy point cloud denoted
by P = {p1,p2, ...,pn} with pi ∈ R3 meaning the coordinates
of the i-th point. The input then goes through two main steps:
outlier removal and surface noise removal.

Outliers are firstly removed depending on the sparsity of the
neighborhood. Next, we remove the surface noise as follows:
we first divide the point cloud into voxels using octree, and

apply normalized cuts to split each voxel into a number of
patches. Then we fit each patch to a surface with polynomial
models, and formulate surface noise removal as a convex
optimization problem so as to smooth the surface. Finally,
each processed patch is collected to form the reconstructed
point cloud.

Note that detailed parameter settings in our experiments will
be presented in Section V.

A. Noise Distribution Assumption

The noise distribution is not easy to assume due to the
variant equipments to acquire point clouds. At present, many
researchers have shown through statistical experiments that the
point cloud noise generated from the relevant 3D scanning
equipment follows Gaussian distribution, such as Microsoft
Kinect [21], 3D laser scanner [22], etc. Hence, in our experi-
ments we assume that the noise distribution follows Gaussian
distribution.

B. Outlier Removal

We first perform outlier removal on the entire point cloud.
As shown in Fig. 1, outliers have the unique characteristics that
the neighborhood of each outlier is sparse, i.e, the density of
outliers is much smaller than the actual point cloud. Hence, we
detect a point as an outlier if its density is below a threshold.

Specifically, for each point pi in P, we select a radius r,
and form a sphere centering at pi with radius r. Assuming
the density of P is ρ, we empirically set r to mρ, where
m is a scaling parameter. Then we calculate the number of
points in this sphere, denoted by ui. After computing ui for
each point pi, we compute the average size of all the spheres
ū(ū =

∑n
i=1 ui

n). As outliers have lower density, a point pj
with uj < ū will be detected as an outlier and thus removed.

C. Surface Noise Removal

Having removed outliers, we now attenuate surface noise,
which generally float on the surface of the object. Because
these points are quite close to the object, the denoising method
in the previous step has no effect. Instead, we propose to ap-
proximate the underlying surface of the object with high-order
polynomial surface, optimize the distance from each point to
the approximated surface based on graph-signal smoothness
prior, and then remove points with significant changes in the
point-to-surface distance after optimization, as they are very
likely to be surface noise.

1) Surface Approximation: For the efficiency of surface ap-
proximation, we first split the point cloud P into voxels using
the octree structure, i.e., P = {V1,V2, ...,Vl}. Then we
further segment each voxel Vi into 3D patches via normalized
cuts, i.e., Vi = {s1, s2, ..., sn}. On one hand, this significantly
reduces the computation complexity to perform denoising
within each voxel. On the other hand, the segments resulting
from normalized cuts mostly exhibit homogeneous geometry,
which facilitates the subsequent surface approximation and
optimization.

Fig. 3. The flowchart of the proposed point cloud denoising algorithm.

Secondly, we fit each segment si with high-order polynomial
surface denoted by ŝi, which approximates the underlying
geometry of the point cloud. We use the least squares method
to fit the surface with a high-order polynomial surface:

z =

k∑
p=0

k∑
q=p

cp,qx
pyq−p, (2)

where k is the highest order of this polynomial, and cp,q is
the coefficient for each term we need to solve. The surface
equation has 1

2 (k + 1)(k + 2) unknown numbers.
In order to get the high-order polynomial surface, we need

to bring the point coordinates into (2) to solve the equation
set. If we have n points in a patch, the equation set can be
solved only when 1

2 (k + 1)(k + 2) ≤ n. Hence, we use the
number of points n to decide the highest order. Finally, we
get the surface ŝi.

2) Problem Formulation: Next, we cast the denoising prob-
lem as the problem of smoothing point-to-surface distance.
Here, the point-to-surface distance means the distance between
each point and the corresponding approximate surface. Instead
of taking the coordinates of each point as the signal, we
consider the distance from each point pi to the previously
approximated surface ˆssj as the signal fi, i.e., fi = e(pi, ŝj),
where e denotes the Euclidean distance. As the surface noise
can be modelled as white Gaussian noise, the distance signal
fi also follows Gaussian distribution.

Since we fit with a high-order polynomial surface, the
computation complexity is too high if the point-to-surface
distance is accurately solved via partial differential equations,
especially when the size of the point cloud is large. Hence,
we develop an efficient approach to approximate the point-to-
surface distances instead.

First, we compute the projection point p
′

i from pi(xi, yi, zi)
to the surface ŝj . For each patch, we calculate the variance
of the coordinates of all points in the patch on the three
axes {x, y, z}, and select a coordinate axis with the smallest
variance as the projection direction. Assuming we project
along the z-axis, the coordinates of p

′

i is (xi, yi, z
′

i). Then we

compute the distance d between pi and p
′

i, and further choose
d
l (l ∈ Z

+) as a step to generate some points around p
′

i on ŝj :

p(xi + α1
d

l
, yi + α2

d

l
, ŝj(xi + α1

d

l
, yi + α2

d

l
)),

l ∈ Z+, α1, α2 ∈ R
(3)

where α1 and α2 are two parameters. The minimum distance
from pi to these points is selected as the approximation to fi.

Having computed the point-to-surface distance fi for each
point pi, we construct a k-NN graph on the distance signal f ,
where each vertex is connected to its k nearest neighbors with
an associated weight on the connecting edge. We define the
edge weight between fi and fj using the thresholded Gaussian
kernel:

wi,j =

{
exp(−β‖fi − fj‖2), pi ∼ pj
0 otherwise (4)

where β is a scalar parameter.
Once the graph is constructed over a patch, we compute the

corresponding Laplacian matrix L and enforce the distance
signal to be smooth with respect to this graph via a graph-
signal smoothness prior, as introduced in Section III. In
particular, this problem is formulated as

min
z
‖z− f‖22 + τ1z

TLz + τ2‖z‖22, (5)

where z is the desired distance signal, τ1 and τ2 are two
parameters. The first term in (5) is a fidelity term, which
constrains the denoised signal to be close to the observation.
The second term is the graph-signal smoothness prior, which
enforces the distance signal to be smooth, assuming that
the underlying geometry in each segment is homogeneous.
Further, we introduce the third term to minimize the distance
from the point to the approximated surface, since a point
belonging to the underlying surface should be quite close to
the approximated one, i.e., the distance is close to 0.

Taking derivative of (5) with respect to z, we have the
closed-form solution:

ẑ = ((1 + τ2)I + τ1L)−1f , (6)

where I is an identity matrix. (5) is thus solved optimally and
efficiently.

3) Noise Removal: Finally, we remove points which have
large changes in the point-to-surface distance after optimiza-
tion. This is because the point-to-surface distance of surface
noise varies significantly after optimization due to the second
and third priors, while that of an original point almost remains
the same. Mathematically, for a point pi, if |ẑi−fi| > h, where
h is a threshold, pi is treated as surface noise and removed.

How to choose the threshold h remains a question. Ac-
cording to our assumption, fi follows Gaussian distribu-
tion. Then |ẑi − fi| also follows Gaussian distribution, i.e.,
|ẑi−fi| ∼ N (µ, σ), where µ and σ are the mean and variance
respectively. Hence, h is assigned according to the mean and
variance as follows:

h = µ+ σ. (7)

4) Spectral Domain Analysis: We shed light on the solution
in (6) in the spectral domain. Since the graph Laplacian L is
a real symmetric matrix, it admits a set of real eigenvalues
{λl}l=0,1,...,n−1, λ0 = 0 ≤ λ1 ≤ ...λn−1, with a complete
set of orthonormal eigenvectors {ψl}l=0,1,...,n−1, i.e., Lψl =
λlψl, for l = 0, 1, ..., n−1. Note that the eigenvalues {λl} are
known as the spectrum of the graph. Then the filtering kernel
in (6) can be written in the spectral domain as

λ̂l =
1

1 + τ2 + τ1λl
. (8)

As λ0 = 0, λ̂0 = 1
1+τ2

. As λl increases, λ̂l decreases,
which corresponds to stronger filtering strength. Since larger
λl corresponds to higher frequency, stronger filtering is per-
formed on higher frequency, thus attenuating noise more as
noise generally lies in the subband of higher frequency.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

We evaluate the proposed algorithm by testing on several
point cloud datasets, including Andrew and David from
Microsoft Voxelized Dataset3, Alex and Dimitris from
Visual Computing Lab4 and Boy5. To test the limitation of
our algorithm, Additive White Gaussian Noise is added to the
point cloud data with SNR= {10, 15, 20, 25, 30, 35}. Further,
we compare the proposed approach with five competing al-
gorithms, including two noise removal methods: SOR [4] and
ROR, and three smoothing methods: MRPCA [15], APSS [10]
and RIMLS [11].

B. Implementation Details

Outlier removal. In this step, we compute ρ as the average
distance between two points, and set m = 3.

Surface noise removal. We first use octree to split the point
cloud into small voxels. In our experiments, the number of
partitions is not fixed, while the size of each dimension of

3https://jpeg.org/plenodb/pc/microsoft/
4http://vcl.iti.gr/dataset/reconstruction/
5http://www.kscan3d.com/gallery/

TABLE I
EXPERIMENTAL COMPARISON FOR SNR= 25 (IN GPSNR)

ROR SOR APSS RIMLS MRPCA Ours
Alex 23.35 20.67 9.17 13.27 16.14 23.41

Andrew 27.29 23.41 -3.98 8.68 9.34 31.32
Boy 21.67 19.42 4.49 4.40 5.29 24.03

David 27.61 27.26 -12.28 10.80 11.47 27.09
Dimitris 22.59 24.73 21.33 13.80 16.44 26.92

TABLE II
EXPERIMENTAL COMPARISON FOR SNR= 30 (IN GPSNR)

ROR SOR APSS RIMLS MRPCA Ours
Alex 23.28 21.01 4.01 18.13 22.52 23.19

Andrew 26.60 21.31 14.54 13.79 15.03 30.28
Boy 21.25 14.97 5.12 9.14 10.64 23.29

David 27.53 23.28 -8.26 15.96 17.10 26.95
Dimitris 22.89 23.09 12.47 18.59 24.43 25.91

a voxel is set as max(xmax − xmin, ymax − ymin, zmax −
zmin)/k, where k is a command-line parameter that is adjusted
according to the memory of the computer, and xmax...zmin
represents the maximum/minimum coordinates of points. In
the next step, we set the number of patches for normalized
cuts to 32. In (3), we set l = 5, then we choose α1, α2 from
the set {1, 2, 3, 4, 5}. In (5), we simply set the optimization
parameters τ1 = τ2 = 1.

C. Experimental Results

It is nontrivial to measure the geometry distortion of point
clouds objectively. We apply the geometric distortion metrics
GPSNR in [23]. Note that GPSNR could be negative, depending
on the assignment of the peak value [23].

Table I, Table II and Table III list the GPSNR value when the
SNR of the input noisy point cloud is {25, 30, 35} respectively.
We see that when the SNR level is high, i.e., when the noise
variance is small, our method has competitive results with
MRPCA. When the SNR level is low, we mostly outperform
all the other methods. This is because smoothing methods
are more sensitive to outliers and large noise variance. In
comparison, our method still produces satisfactory results at
high noise levels.

Fig. 4 and Fig. 5 show the visual results of comparing our
method with ROR, SOR and MRPCA at noise level SNR =
35. We see that our results are cleaner than the results of these
methods, even for noise with large variance.

VI. CONCLUSION

We propose an efficient point cloud denoising approach,
leveraging on graph signal processing. We classify noise into

TABLE III
EXPERIMENTAL COMPARISON FOR SNR= 35 (IN GPSNR)

ROR SOR APSS RIMLS MRPCA Ours
Alex 23.49 22.17 18.66 13.77 28.25 23.34

Andrew 26.66 24.31 20.79 20.36 20.84 29.71
Boy 21.09 16.75 17.15 16.06 16.19 24.49

David 27.61 25.82 23.21 22.46 22.88 32.36
Dimitris 24.50 24.61 30.55 30.62 32.08 28.20

(a) (b) (c) (d) (e)

Fig. 4. Comparison results with SNR= 35 for David: (a) The ground truth; (b) The denoised point cloud by ROR; (c) The denoised result by SOR; (d)
The denoised result by MRPCA; (e) The denoised result by our algorithm.

(a) (b) (c) (d) (e)

Fig. 5. Comparison results with SNR= 35 for Andrew: (a) The ground truth; (b) The denoised point cloud by ROR; (c) The denoised result by SOR; (d)
The denoised result by MRPCA; (e) The denoised result by our algorithm.

outliers and surface noise based on the distribution, and then
remove them separately. Firstly, points are detected as outliers
and removed if the neighborhood is sparse to some extent.
Secondly, the point cloud is segmented into patches, each of
which is approximated with a polynomial surface. The distance
of each point to the approximated surface is then treated
as graph signal and go through convex optimization with a
graph-signal smoothness prior. Points with large changes in
the point-to-surface distance after optimization are detected as
surface noise and removed. Experimental results show that our
algorithm outperforms five competing methods significantly.
Future work includes extending the proposed denoising for
static point clouds to denoising for dynamic point clouds.

REFERENCES

[1] C. Tulvan, R. Mekuria, and Z. Li, “Use cases for point cloud
compression (pcc),” in ISO/IEC JTC1/SC29/WG11 (MPEG) output
document N16331, June 2016.

[2] W. Huang, Y. Li, P. Wen, and X. Wu, “Algorithm for 3d point cloud
denoising,” in International Conference on Genetic and Evolutionary
Computing, 2009, pp. 574–577.

[3] Y. Fu and J. Zhai, “Research on scattered points cloud denoising
algorithm,” in IEEE International Conference on Signal Processing,
Communications and Computing, 2015, pp. 1–5.

[4] R. B. Rusu, Z. C. Marton, N. Blodow, M. Dolha, and M. Beetz, “To-
wards 3d point cloud based object maps for household environments,”
in Robotics and Autonomous Systems, 2008, pp. 927–941.

[5] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Van-
dergheynst, “The emerging field of signal processing on graphs,” in
IEEE Signal Processing Magazine, May 2013, pp. 83–98.

[6] R. Schnabel and R. Klein, “Octree-based point-cloud compression,” in
Eurographics Symposium on Point-Based Graphics, 2006, p. 111120.

[7] J. Shi and J. Malik, “Normalized cuts and image segmentation,” in IEEE
Transactions on Pattern Analysis and Machine Intelligence, August
2000, vol. 22, no.8.

[8] M. Alexa, J. Behr, D. Cohenor, S. Fleishman, D. Levin, and C. T. Silva,
“Point set surfaces,” in Surface Reconstruction, 2001.

[9] D. Levin, “Mesh-independent surface interpolation,” in Geometric
Modeling for Scientific Visualization, 2004, pp. 37–49.

[10] G. Guennebaud and M. Gross, “Algebraic point set surfaces,” 2007,
vol. 26, p. 23.

[11] A. C. Oztireli, G. Guennebaud, and M. Gross, “Feature preserving point
set surfaces based on nonlinear kernel regression,” 2010, vol. 28, pp.
493–501.

[12] Y. Lipman, D. Cohen-or, D. Levin, and H. Tal-Ezer, “Parameterization-
free projection for geometry reconstruction,” in ACM Transactions on
Graphics (TOG), 2007, p. 22.

[13] H. Huang, D. Li, H. Zhang, U. Ascher, and D. Cohen-or, “Consolidation
of unorganized point clouds for surface reconstruction,” in ACM
transactions on graphics (TOG), 2009, p. 176.

[14] H. Huang, S. Wu, M. Gong, D. Cohen-or, U. Ascher, and H. R. Zhang,
“Edge-aware point set resampling,” in ACM transactions on graphics
(TOG), 2013, p. 9.

[15] E. Mattei and A. Castrodad, “Point cloud denoising via moving rpca,”
in Computer Graphics Forum.

[16] F. K. Chung, “Spectral graph theory,” in American Mathematical
Society, 1997.

[17] G. Shen, W.-S. Kim, S.K. Narang, A. Ortega, J. Lee, and H. Wey, “Edge-
adaptive transforms for efficient depth map coding,” in IEEE Picture
Coding Symposium, Nagoya, Japan, December 2010.

[18] W. Hu, G. Cheung, X. Li, and O. Au, “Depth map compression
using multi-resolution graph-based transform for depth-image-based
rendering,” in IEEE International Conference on Image Processing,
Orlando, FL, September 2012.

[19] W. Hu, G. Cheung, A. Ortega, and O. C. Au, “Multi-resolution graph
Fourier transform for compression of piecewise smooth images,” in
IEEE Transactions on Image Processing, January 2015, vol. 24, NO. 1,
pp. 419–433.

[20] D. A. Spielman, “Lecture 2 of spectral graph theory and its applications,”
September 2004.

[21] C. V. Nguyen, S. Izadi, and D. Lovell, “Modeling kinect sensor noise
for improved 3d reconstruction and tracking,” in 3D Imaging, Modeling,
Processing, Visualization and Transmission (3DIMPVT), 2012 Second
International Conference, Oct 2012, pp. 524–530.

[22] X. Sun, P. L. Rosin, R. R. Martin, and F. C. Langbein, “Noise in 3d
laser range scanner data,” in Shape Modeling and Applications, 2008.
SMI 2008. IEEE International Conference, 2008, pp. 37–45.

[23] D. Tian, H. Ochimizu, C. Feng, R. Cohen, and A. Vetro, “Geometric
distortion metrics for point cloud compression,” in IEEE International
Conference on Image Processing, Beijing, China, September 2017.

