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Abstract—Plenoptic cameras enable a variety of novel post-
processing applications, including refocusing and single-shot 3D
imaging. To achieve high accuracy, such applications typically
require knowledge of intrinsic camera parameters. One such
parameter is the location of the main lens’ optical center relative
to the sensor, which is required for modeling radially symmetric
optical effects. We show that estimating this parameter can be
achieved to an accuracy of less than half a pixel by utilising the
symmetry inherent in each micro-image. Further, we show that
estimating this parameter separately allows all other intrinsic
camera parameters to be estimated with higher accuracy than
can be achieved using a single optimization scheme, and leads
to better vignetting correction than with an inaccurate optical
center.

I. INTRODUCTION

Plenoptic cameras capture spatio-angular information of the
light field [1], enabling post-processing applications such as
refocusing [1], depth estimation [2] and 3D imaging from a
single shot [3]. This is achieved by placing a microlens array
between the main lens and the imaging sensor. Each microlens
focuses bundles of light with different angles of incidence onto
different pixels, creating a micro-image on the sensor.

This technology, while still relatively immature today, is
gaining importance as time goes. Early indications are the
arrival of the Lytro cinema1, movements in standardization
bodies such as H.264/MPEG-4 AVC [4], the MPEG call for
light field test materials [5], and JPEG Pleno2, as well as
ever increasing pixel resolutions in display devices that will
eventually lead to glasses-free 3D. With maturing light field
technologies, enhancing the accuracy of acquisition systems
is an important area of research. In particular, post-processing
applications often require fundamental image formation mod-
eling that describes the light transport within a camera [6].
Such models require knowledge of intrinsic camera parame-
ters, including the focal length of the main lens and that of the
microlenses. One parameter is the point at which the optical
axis of the main lens intersects the sensor plane, known as
the optical center. It determines the characteristics of several
radially symmetric image properties, such as vignetting [7],

1https://www.lytro.com/cinema
2https://jpeg.org/jpegpleno/
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radial lens distortion and field curvature. An accurate estimate
of the optical center would help any techniques aimed at
correcting for these effects. In addition, the optical center
could play a role in novel light field applications such as light
field stitching. Here, camera rotations around the optical center
would be used to increase the size of the acquired light field
[8].

Further, the estimation of intrinsic camera parameters is
normally achieved through optimization schemes. Their ac-
curacy and speed of convergence depend on the number of
parameters to be optimized. We show that their accuracy may
be improved by separately calculating the optical center using
our proposed technique, leaving an optimization problem with
fewer parameters.

The optical center is rarely specified by camera manufac-
turers, and may vary between cameras (even of the same
brand and type). While it is not studied for plenoptic cameras,
the deviation of the optical center from the center of the
sensor in conventional cameras may reach as many as 40
pixels [9]. Further, the optical center may also vary with
respect to focal length and zoom settings. Hence, optical
center estimation would be necessary under different camera
parameter settings. Such characterization can be used both as
a tool in the design process of plenoptic cameras, as well as
a tool for the characterization of existing systems to make the
aforementioned light-field processing and editing tasks more
accurate.

For conventional cameras, optical center estimation typi-
cally follows one of two approaches. The first directly cal-
ibrates the optical center via a general camera calibration
procedure [10], [11], [12]. The second estimates the optical
center by measuring vignetting [9] or radial lens distortion
[13]. However, due to the presence of a microlens array, image
formation in plenoptic cameras does not admit a similar anal-
ysis, making the second catergory of techniques inappropriate
for plenoptic camera calibration. To the best of our knowledge,
there is currently no other work on optical center estimation
tailored for plenoptic cameras.

To address this problem, we propose an accurate and robust
approach to estimate the optical center of plenoptic cameras,
based on the observation that when a uniform surface is
imaged by a plenoptic camera, each micro-image exhibits
relatively strong vignetting which is reflection symmetric



Fig. 1. A micro-image in a raw white image (left), and the same micro-image
after demosaicking (right).

relative to an axis that intersects the optical center. As an
example, Fig. 1 shows a micro-image of a white surface (i.e.
a white image) before (left) and after demosaicking (right). As
can be seen, a white surface imaged through a single microlens
forms an approximately elliptical shape with its luminance
attenuated due to vignetting of the main lens (a.k.a. cat’s eye
vignetting) [6]. The minor axis of the ellipse intersects the
optical center of the main lens.

There exist several symmetry detection algorithms that can
in principle be applied to the pixels of each micro-image. A
requirement of a suitable symmetry detection algorithm is to
maintain sufficient accuracy, despite the small size of typical
micro-images. Note, for instance, that the first generation Lytro
camera contains micro-images that are no larger than 10×10
pixels. The presence of noise means that using such a small
number of pixels to detect symmetry can lead to limited
reliability.

Existing symmetry detection algorithms are based on his-
togram of gradient orientations [14], on multi-resolution mor-
phological operators [15], or on learning based techniques
[16]. Although the first two approaches perform well in the
general case, micro-images are typically too small to allow
reliable results, while learning-based techniques tend to be
computationally expensive.

To improve robustness, we have found that rather than
analysing pixels individually (or in pairs) to determine sym-
metry, there is advantage in analysing pairs of small patches
of pixels. In particular, the dominant gradient directions of
patches may be analysed, and these can be conveniently
represented by structure tensors [17].

The analysis of each micro-image leads to a separate inde-
pendent estimation of a line that intersects with the camera’s
optical center. The optical center can therefore be estimated
as the intersection point of all these lines, which in presence
of noise is estimated as the point that is the closest to all of
these lines.

Our approach yields an accuracy one to two orders of
magnitude higher than what can currently be achieved for con-
ventional cameras, which we attribute in part to our algorithm
design and in part to better information available in plenoptic
imagery. We evaluate two brands of plenoptic cameras, and
show that their optical centers have statistically significant
deviation from the center of the sensor. Finally, we show that
separating the optical center estimation from the calculation
of the remaining intrinsic camera parameters improves the
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Fig. 2. Light transport in a general microlens-based plenoptic camera. Only
the top-half is shown. The masking functions for modeling main lens and
microlens aperture occlusions are marked in red.

accuracy of all parameters, and leads to better vignetting
correction than initializing with an inaccurate optical center.

II. MICRO-IMAGE SYMMETRY

Reflection symmetry in micro-images originates from light
transport within the optical system of a plenoptic camera.
When bundles of light rays propagate through a microlens-
based plenoptic camera, some are occluded by the aperture of
the main lens, while others are refracted by the main lens and
propagate to the microlens array, as shown in Fig. 2. These ray
bundles are then either occluded or refracted by microlenses.
Ray bundles that arrive at the sensor will be integrated and
sampled to form pixels.

While micro-images are reflection symmetric by observa-
tion, we can also analyze the nature of the micro-image
symmetry from an appropriate computational model of such
light transport [6]. According to [6], the pixel intensity is
nonzero only if light passes through two circular masks,
which are normally spatially offset w.r.t. each other. Fig. 2
demonstrates two such cases: the lower pixel shows a full
overlap of the two disks, i.e., its intensity is the integral over
ray bundles that pass through the main lens and the entire
corresponding microlens. The upper pixel shows a partial
overlap, so that some rays are occluded by the main lens.
This partial overlap leads to a phenomenon known as cat’s
eyes, which increases with distance to the optical center. This
is the cause for reflection symmetry in micro-images, which
is oriented along the line connecting the centers of the two
disks [18].

As the centers of the two circular masks are the projected
centers of the main lens and the corresponding microlens on
the sensor [6], we derive that in a uniform image captured by
a plenoptic camera, each micro-image is reflection symmetric
in terms of pixel intensity w.r.t. a line that passes through the
optical center and the corresponding microlens center. This
motivates us to determine the optical center by estimating
the intersection point of the symmetry axes, which will be
discussed in the next section.
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Fig. 3. Overview of our optical center estimation algorithm.

III. ALGORITHM

An overview of the proposed optical center estimation
algorithm is shown in Fig. 3. The input consists of a raw
image taken with a plenoptic camera of a white scene (the
white image), which is subsequently demosaicked [19].

The symmetry axis â of each micro-image I is estimated
as the one that maximizes the number of symmetric point
pairs in that micro-image. We consider two points symmetric
w.r.t. a line when their predominant gradient orientations are
symmetric. Here the predominant gradient orientation of a
point is computed from the structure tensor [17] of a patch
centered at that point. We have chosen this particular approach
as it is more robust to noise than either comparing intensities
directly, or analyzing finite differences. Note that each micro-
image could be analyzed independently and in parallel. Details
of this step are given in Section III-A.

For each micro-image an axis of symmetry is estimated.
We then estimate the optical center as the point that has
the smallest total distance to all the detected symmetry axes.
Section III-B describes this step in detail.

A. Symmetry Detection

We first define the symmetry axis a = (a1, a2, a3) of a
micro-image I as the line a · (x, y, 1)T = 0 that maximizes
the number of symmetric point pairs in I, and additionally has
a valid orientation. Validity is established by requiring that the
distance of the line a to the center of the sensor cs remains
below a given threshold t. This requirement is based on the
observation that in good optical designs, the optical center is
not arbitrarily far removed from the center of the sensor.

To estimate a symmetry axis, an optimization scheme may
be employed, whereby for each candidate axis the level of
symmetry is evaluated. Such evaluation proceeds by taking for
each pixel p = (p1, p2) in the micro-image its corresponding
reflection symmetric point q, which can be calculated as
follows:

q = p− 2a · (p1, p2, 1)T

a21 + a22

[
a1
a2

]
. (1)

This makes a the perpendicular bisector of the line segment
connecting p and q. We refer to p and q as corresponding
points hereafter. If certain features of pixels p and q are
similar, then this point pair can be thought of as contributing
a vote toward establishing candidate axis a as a good estimate
of the reflection symmetry in micro-image I.

We introduce the function g() to calculate robust features
of pixels p and q. It determines which attribute of a point we
require to be symmetric. For instance, we could define g(p)
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q
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Fig. 4. Symmetry detection for a point pair (p,q) by comparing the
angles between a candidate line a (marked in blue) and predominant gradient
directions (marked in green) of the corresponding pixel patches (marked in
red).

to be the pixel intensity according to Property 1. However,
this feature would not lead to robust results in the presence
of noise. A similar argument could be made for directly using
pixel gradients.

Instead, we propose to determine the symmetry of each
point pair (p,q) w.r.t. a by comparing the predominant
gradient directions of two pixel patches of size m×m (m ∈ N)
centered at p and q, respectively. We set m = 3 in our
experiments. The predominant gradient directions of a pixel
can be robustly estimated by its structure tensor. It is a positive
semi-definite second-moment matrix of the image gradient,
and is defined as:

T =

[
Ī2x ĪxĪy
Īy Īx Ī2y

]
, (2)

where Īx and Īy are the partial derivatives of a pixel patch Ī in
the horizontal and vertical directions, respectively. The partial
derivatives Īx and Īy are calculated using Gaussian derivative
filters [17].

Eigen decomposition is then applied to T to acquire eigen-
values {α1, α2} (sorted such that α1 ≥ α2) and the corre-
sponding orthonormal eigenvectors {v1,v2}. If α1 > α2, then
v1 gives the predominant gradient direction. If α1 = α2, then
Ī is isotropic (e.g., constant) and thus there is no predominant
gradient. With structure tensors we acquire robust estimation
of gradient orientations in the presence of noise, mainly due
to the Gaussian filtering of gradients.

With reference to Fig. 4, we define g(p,a) as the angle
θp,a ∈ [0π] between the predominant gradient orientation vp1
of p and a candidate line a. Denoting the normalized direction
of a as va, we have

g(p,a) = θp,a = cos−1 < vp1,va > . (3)

For point q, the feature g(q,a) is computed analogously.
Similarity between g(p,a) and g(q,a) is measured by a

boxcar function δτ (|g(p,a)−g(q,a)|), allowing us to exclude
point pairs that are not close to being symmetric. It is 1 if its
argument is less than τ , and 0 otherwise. The threshold τ > 0
is introduced to improve tolerance to noise. We found that



τ = 0.1 is a reasonable trade off between resistance to noise
and not excluding too many points for accurate estimation.

The above similarity measure may be applied to all pixels
in a micro-image, leading to the following objective function
to estimate the axis of symmetry â over all possible candidate
lines a:

â =arg max
a

∑
{p}

δτ (|g(p,a)− g(q,a)|) (4)

s.t. d(cs,a) ≤ t,
where {p} is the set of pixels in the micro-image. We
empirically set t = 10 for a good balance between the accurate
estimation and tolerance to noise.

Optimizing the objective function of (4) can be time con-
suming. To significantly reduce the computational complexity,
two refinements are applied to the above optimization. First,
we sample N candidate lines {an}Nn=1 to be considered in
the maximization objective for each micro-image (N = 5 in
our experiments). Candidates are selected based on the fact
that the optical center lies on a line that passes through the
micro-image center and the brightest point in the micro-image.
In the absence of noise and the attenuation by vignetting, the
latter would be the image of the main lens center through the
corresponding microlens. This point is likely located at sub-
pixel coordinates. Hence, we sample several candidate lines
that go through the micro-image center and points around the
brightest pixel in the micro-image. The lines are chosen such
that they satisfy the constraint d(cs,a) ≤ t.

For each candidate an, we then estimate the number of
symmetric corresponding point pairs. These pairs are chosen
in an efficient manner as follows. For each pixel p on the
one side of an, we compute the corresponding point q on
the other side. If q is at a sub-pixel location, we interpolate
the intensity at q and the pixel patch around it by bilinear
interpolation, a simple yet effective method which exploits the
local smoothness of the white image. Finally, we select the line
that leads to the maximum number of symmetric point pairs
as the solution to (4).

B. Optical Center Estimation
The second step of the algorithm estimates the optical center

co = (co,1, co,2) by computing the intersection of the K
detected symmetry axes. Collecting all axes into a K × 3
matrix A with elements âk,i and rows âk. Due to the presence
of both pixel quantization and noise, detected symmetry axes
are unlikely to have one common intersection point. Instead,
we determine the optical center by minimizing the sum of
distances C between co and each symmetry axis âk:

C =
∑
k

|âk · (co,1, co,2, 1)T |
||âk||2

. (5)

In practice, it is difficult to minimize C due to the presence of
absolute values. Instead, we minimize the following sum of
squared distances:

C∗ =
∑
k

(
âk · (co,1, co,2, 1)T

||âk||2

)2

. (6)

z.s. 982 860 360
f 6 7 8 9 24 25
e 1.53 1.64 1.28 1.39 0.29 0.34

TABLE I
ERROR e OF ESTIMATED OPTICAL CENTER (IN PIXELS) FOR THE LYTRO

CAMERA. THE ERROR IS MEASURED AS FUNCTION OF ZOOM STEP Z.S. AS
WELL AS FOCAL LENGTH f (IN MM).

F 2.8 3.4 4 4.8 5.6 6.8 8
e 2.68 3.07 3.27 4.20 4.68 4.84 5.48

TABLE II
ERROR e OF THE ESTIMATED OPTICAL CENTER (IN PIXELS) FOR THE
RAYTRIX CAMERA. THE ERROR IS MEASURED AS FUNCTION OF THE

f -NUMBER.

This is achieved by setting the partial derivatives of C∗ w.r.t.
co,1 and co,2 to 0, which results in the following estimation
of the optical center ĉo:

ĉo =


∑
k

â2k,1
wk

∑
k

âk,1 âk,2
wk∑

k

âk,2 âk,1
wk

∑
k

â2k,2
wk


−1
−
∑
k

âk,1 âk,3
wk

−
∑
k

âk,2 âk,3
wk


(7)

where wk = ||âk||22. The estimated optical center ĉo can then
be used for image modeling and post-processing applications.

IV. RESULTS

We first validate the accuracy of the proposed optical center
estimation on simulated plenoptic images and then apply the
algorithm to real data.

A. Simulated Data

The intrinsic accuracy of our algorithm is asserted with the
aid of synthetic data, giving us access to the ground truth.
We synthesize white images from the light field model in [6],
and using a range of focal lengths of f ∈ {3, 5, 7, 9} mm,
assuming a Lytro lens system. The synthesized white images
are 820 × 820 in pixels, with the ground truth optical center
set as (410, 410). For each white image, we normalize pixel
intensities to [0, 1], and add white Gaussian noise with varying
noise levels (standard deviations σn ∈ {0.02, 0.1, 0.5, 1}) to
simulate sensor noise, as illustrated in Fig. 5. For each noise
level 16 realizations are generated for each focal length to
measure the statistics of the estimation error.

The estimation error is shown in Fig. 6. Gaussian noise
with σn = 0.02 is close to most sensor noise observed from
captured plenoptic data. For such noise level, the average
estimation error is 0.26 pixels for f = 3 mm, 0.32 pixels
for f = 5 mm, 0.37 pixels for f = 7 mm and 0.38 pixels
for f = 9 mm. Higher values of simulated sensor noise
yield larger estimation errors, but Fig. 6 shows that even for
extreme noise levels, the estimation error mostly remains less
than half a pixel, validating the accuracy and robustness of
our algorithm. Further, we observe that the estimation error



Fig. 5. One micro-image in the synthesized white image with f = 8 mm
and added Gaussian noise with σn = 0.1 (left), and one micro-image in a
white image captured by Lytro after demosaicking (right).

increases for longer focal lengths, due to less pronouced
vignetting.

We observe that the nature of the vignetting in plenoptic
cameras enables us to design a calibration algorithm that is
one to two orders of magnitude more accurate than what can
currently be obtained for conventional cameras. Compare, for
instance, the accuracy range of 1 to 15 pixels obtained for
conventional images [9]. Note that this method cannot be
applied to plenoptic data for direct comparison, as that method
is designed for conventional images lacking the micro-image
patterns in raw data.

Finally, the results of the optical center estimation are
obtained from synthetic data, where the (possibly imperfect)
estimation of the microlens centers is performed according to
[20], [21]. These results are then compared with the ground
truth data. Our optical center estimation has shown to perform
well despite the fact that the micro-center image estimation by
[20], [21] might be biased.

B. Real Data

We apply our algorithm to the analysis of the first generation
Lytro camera and the Raytrix camera. The dimensions of the
stored white images for the Lytro are 3280× 3280 pixels. For
Raytrix we capture white images of 2046×2046 pixels placing
a white diffuser in front of the main lens. Each individual
micro-image is extracted by estimating its center [20], [21],
accounting for micro-lens array misalignment [20], and then
taking an r × r patch centered at the corresponding micro-
image center (r = 10 for Lytro and r = 17 for Raytrix
according to the camera parameters).

Tables I and II show the Euclidean distances e between the
estimated optical centers and the center of the sensor plane
for Lytro and Raytrix respectively. For the Lytro camera, both
zoom step (an indication of the amount of the applied optical
zoom) and focal length were varied. For the raytrix camera,
the F -number was varied. All the other parameters remained
fixed.

With the camera settings mentioned in Tables I and II,
the deviation of the estimated optical center from the sensor
center was found to be on average 1.08 pixels, with the
standard deviation of 0.6 pixels and the maximum of 1.64
pixels for Lytro cameras. The optical center displacement
from the sensor center had an average of 4.03 pixels, a

standard deviation of 1.04 pixels and the maximum of 5.48
pixels for Raytrix cameras, dependent on camera settings. This
indicates that the manufacturing precision of optical systems is
amenable to improvement. At the same time, as the deviation
of the optical center affects image formation, it should be taken
into consideration for post-processing applications.

V. APPLICATIONS

In the following, we show two applications which can
benefit from the use of our work, namely plenoptic camera
calibration, and the correction of vignetting.

A. Plenoptic Camera Calibration

To demonstrate the impact of an accurate optical center es-
timation, we optimize the two most uncertain parameters—the
focal length f and the angular sensitivity parameter σ in the
remaining intrinsic camera parameters in [6] by minimizing
the squared error between a captured white image and its
modeled counterpart.

We first generate 820 × 820 pixel input white images,
varying the optical center and focal length for evaluation. The
set of the main-lens focal lengths f is {3, 5, 7, 9} mm, and the
optical center is shifted both horizontally and vertically from
the image center by δx,y ∈ {5, 25, 50, 100} pixels. As the
shift of the optical center is experimentally varied over a large
range, we set the threshold t in (4) to 1.5 δx,y accordingly. The
white images are synthesized using an angular sensitivity σ set
to 13 [6]. Further, Gaussian noise with a standard deviation of
0.02 is added to mimic sensor noise.

We estimate f and σ by fitting the model in [6]
to these synthesized white images. This is achieved by ap-

plying non-linear least-squares curve fitting. For comparison,
we use two types of initialization: 1) with the image center as
the optical center; 2) with our estimated optical center.

Fig. 7 shows the percentage of the estimation error for f
and σ respectively. The error grows more or less linearly if
the center of the sensor is assumed to be equal to the optical
center. It is clear that with our estimated optical center as
initialization, the error percentage effectively remains constant,
independent of how far the optical center deviates from the
center of the sensor.

B. Vignetting Correction

As an example of the practical benefit of our method, we
use the model in [6], with and without our estimated optical
center, to correct for vignetting. To this end, we use our
estimated optical center to aid in the synthesis of white images
using the model in [6]. We then divide an input white image
with vignetting by these synthesized white images, obtaining
a corrected image. Fig. 8 shows the results on a single
representative micro-image for clear illustration. Note that the
improved accuracy of the optical center leads to a significantly
better correction, effectively eliminating vignetting entirely.
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Fig. 8. The synthesized input white image (left), its corrected version. For
the middle image, the vignetting model was optimized by setting the optical
center to the image center. The right image was created by estimating the
optical center using our algorithm.

VI. CONCLUSIONS

We propose a robust and accurate optical center estimation
for plenoptic cameras. The key idea is to exploit the reflection
symmetry of micro-images captured from a uniform scene,
knowing that the symmetry axes of each micro-image should
intersect at the optical center. The accuracy of our algorithm
is verified first on a realistic number of experiments using
synthetic data showing an estimation error of less than half
a pixel on average at various noise levels. We have also
demonstrated the utility of this method in the context of
camera calibration and vignetting correction. In the future,
there may be value in expanding the method to work with
captured images of other stimuli than monochrome signal.
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estimation for plenoptic images,” in European Conference on Computer
Vision, Zurich, 2014, pp. 548–560.

[21] M. Hog, N. Sabater, B. Vandame, and V. Drazic, “An image rendering
pipeline for focused plenoptic cameras,” hal-01401501, 2016.


