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Abstract—We present a novel edge adaptive depth map
coding based on lifting on graphs. The transform is localized,
of low complexity, and guarantees perfect reconstruction as
long as a proper predict-update split is defined. During the
transform process, data in the prediction set are predicted by
data in the update set; the prediction errors are then stored
for encoding. In order to reduce the energy of the prediction
residue, we propose to use optimized sampling on graphs to
select the update set. Experiments show that the optimized
sampling approach achieves better results than the conventional
maximum cut based splitting in terms of transform efficiency
and reconstruction quality. In addition, performance using the
lifting transform is comparable to the state-of-the-art graph
based depth map encoder using graph Fourier transform (GFT),
which requires high complexity for signal projection.

Index Terms – Lifting, Graphs, Transform Coding, Depth
Map, Sampling Theory

I. INTRODUCTION

The separable discrete cosine transform (DCT) is a popular
transform used in image and video codecs such as JPEG,
H.264, and HEVC. This transform has been shown to be
equivalent to the optimal Karhunen-Loeve transform (KLT)
for stationary Markov-1 signals for which the correlation
between adjacent data points is close to 1. However, DCT
does not exploit the fact that most images contain strong
edge structures, which are especially significant in piece-wise
smooth images such as depth maps. Clearly, the correlation
between pixels across edges is lower than the correlation of
pixels in the smooth areas. Thus, while on average correlation
between pixels may approach 1, it can be useful to identify the
location of these discontinuities and use a different model to
represent them and code them. Moreover, note that separable
DCT favors signals that have vertical and horizontal edges, and
is not as efficient for blocks with diagonal edges or corners,
and thus non-separable transforms may be advantageous in
some situations.

In order to represent edges with more complicated ori-
entations, in [9] an edge adaptive transform based on the
graph Fourier transform (GFT) [4] is proposed for depth map
compression, where discontinuities are signaled as low weight
links in a graph representation of the image. The signals are
projected onto the basis formed by the eigenvectors of the cor-
responding graph Laplacian. The computation of eigenvalue

decomposition, while costly, can usually be performed off-
line for typical graph structures. However, the signal projection
needs to be done in real time. In GFT, the transform matrix is
dense and usually does not have symmetries that could lead to
a fast implementation. Therefore, the computation complexity
is still high, which may limit the practical use of GFT.

In this work, we propose a fast depth map coding algorithm
that can incorporate the edge information. We make two
contributions: First, we introduce a lifting transform for the
block-based encoder, in order to reduce the complexity of
signal projection as compared to using the GFT. The transform
can be applied for any irregular graph, and thus can achieve
edge-adaptivity, similar to what is possible with the GFT.
Besides, the transform is highly localized. Unlike GFT, which
is a global transform, the computation of one transform
coefficient requires information only from neighboring ver-
tices on the graph. Furthermore, the lifting coefficients are
rational rather than real as in the GFT. This leads to lower
complexity implementations than the GFT. Experiments show
that the compression using the lifting transform has similar
performance to GFT in terms of rate distortion and perceptual
quality.

The second contribution is a new predict-update assign-
ment in the lifting transform based on optimized sampling
on graphs. In the lifting based video encoder proposed in
[8][7][6], the predict-update assignment is done using the
maximum cut method (MaxCut). Since the link weights in the
graph capture the similarity between nodes, maximizing the
total weight means that the similarity between nodes across
sets is maximized, which can reduce the prediction residual
energy. The problem of selecting a good predictor has been ad-
dressed in the contexts of graph sampling and active learning.
In this work, we take the optimized sampling proposed in [1]
and [3] as a starting point. The greedy sampling optimization
aims to minimize the number of samples that guarantee perfect
recovery of signals with bandwidths lower than a given cut-off
frequency. By using the same concept on the lifting transform,
better PSNR performance can be achieved for depth map
coding, as compared to the MaxCut approach. Moreover, the
sampling process in optimized sampling is more efficient in
that the prediction error saturates faster than MaxCut as the
sample number increases. As a result, the computation cost
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is lower in optimized sampling since the size of update set
is smaller at each level, reducing the number of lifting levels
needed for a target size of the lowest frequency band.

The rest of the paper is organized as follows. In Section II,
we briefly review lifting transforms and the graph construction.
In Section III we describe the optimized sampling approach for
predict-update assignment. The encoding system is described
in Section IV. In Section V, we compare the complexity of
our algorithm with that of a GFT based encoder. Experiments
on depth images and conclusions are presented in sections VI
and VII, respectively.

II. EDGE-ADAPTIVE TRANSFORM

A weighted graph G = (V,E) consists of a set of nodes
V with |V | = N , and a set of links e(m,n,wmn) ∈ E
connecting nodes m and n. wij ∈ [0, 1] is the link weight
modeling the similarity between two nodes. The N × N
adjacency matrix W has its element W (m,n) = wmn. The
degree degm of node m is equal to

∑
k wmk. A degree

matrix D is a diagonal matrix with D(m,m) = degm. The
combinatorial Laplacian L = D −W . To prevent confusion,
we use links to denote the connections in the graph, and edges
to denote the intensity discontinuities within an image.

A. Lifting transform on graphs

The lifting transform is a multi-level filtering process, where
at each level i, nodes are divided into a prediction set (Pi) and
an update set (Ui). The transform coefficients in the update
set at level i are taken as the input nodes for level i+ 1. For
filtering on pixels in Pi, only the information of pixels in Ui

is used, and vice versa. This is equivalent to approximating
the original graph by a bipartite graph, since the connections
within Pi or within Ui are not used. The resulting detail
coefficients, di ∈ Pi, and smooth coefficients, si ∈ Ui, are
computed as follows:

dim = si−1m +
∑
k∈Ui

pi(m, k)si−1k

sin = si−1n +
∑
r∈Pi

ui(n, r)dir
(1)

where pi(m, k) is the filtering weight on node m ∈ Pi using
the information from node k, and ui(n, r) is the filtering
weight on node n ∈ Ui with the information from node r.

For the filter design, i.e., selecting pi(m, k) and ui(n, r),
we adopt the method proposed in [10], which is an extension
of CDF 5/3 to arbitrary graphs with orthogonalization. For a
1-D line graph, CDF 5/3 filterbanks can be implemented via
lifting by choosing the filters p(m, k) and u(n, r) as:

p(m, k) = − W (m, k)∑
j W (m, j)

,

u(n, r) =
W (n, r)

2
∑

j W (n, j)
.

(2)

These filterbanks are nearly orthogonal. However, once these
operators are applied on irregular graphs, where path merges

exist, the inner product between two different filters is in-
creased [10]. Therefore, we apply the technique of [10] to
make the update filters orthogonal to the prediction filters.

B. Multi-level graph construction

In the first level of lifting (i.e., the original image), a graph
is constructed for each block that links pixels to their 4-
connected neighbors, with weights decided based on the signal
geometry. In the experiments, we consider two different graph
design: the first one, proposed in [9], uses only weights 0
and 1. The links across image discontinuities are disconnected
(weight 0). The other design is based on [5]. Besides fully
disconnected links corresponding to sharp edges, weak links
with nonzero weights less than 1 are also included. The weight
values are optimized based on a Gauss-Markov model. The
detailed derivation is provided in [5].

For higher levels of decomposition i > 1, we keep the 1-
hop links that are not utilized in level i−1 and combine them
with 2-hop links from level i− 1 in order to create the direct
links at level i. The link weights in level i corresponding to the
2-hop links in the previous level are computed as W i(m,n) =
W i−1(m, k)×W i−1(k, n). If two nodes have multiple links
connecting them, the average is used as the weight for the
resulting combined link.

III. PREDICT/UPDATE ASSIGNMENT BASED ON OPTIMIZED
SAMPLING

In image coding, a transform resulting in sparse representa-
tion in the transform domain is always desired. Therefore, in
the lifting transform, we look for a predict-update assignment
that can provide lower residual energy in the prediction set
with fewer update samples. In [6] and [7], the assignment is
made so that the sum of total link weights between Ui and Pi

is maximized. Therefore, high correlation between the two sets
is expected, which intuitively leads to lower residual energy
after prediction. However, for each lifting level, around half of
the nodes are needed to ensure low prediction error. Therefore,
in order to reduce the number of smooth coefficients, which
usually have large magnitude, a higher level lifting transform
has to be used, making the transform computation costly.

In order to achieve sampling efficiency, we apply the opti-
mized graph sampling developed in [1] for lifting bipartition.
This optimized sampling defines a problem where the goal is
to optimize the set of points to be sampled in an arbitrary graph
in order to maximize the cut-off frequency, i.e., maximize the
bandwidth of a signal that can be reconstructed exactly from
those samples. More specifically, if we have a graph with N
vertices, and given k < N , we look for the best subset of size
k to maximize the bandwidth of a signal that can be perfectly
reconstructed from those k samples. Equivalently, given a cut-
off frequency, the objective is to find the subset of minimum
size needed. Our main observation is that such a subset of
k vertices would also be efficient in terms of minimizing
the prediction error, when those k samples are used as the
predictors for the remaining nodes.

61



Given that the problem of finding the optimal set of size
k is in general combinatorial, we make use of a greedy
heuristic that was initially developed in [1] and has been
applied to active learning [3]. For predict-update assignment,
the algorithm starts from an empty update set, and a prediction
set containing all the nodes. The sample to be picked for the
update set is decided as follows. First, a submatrix L̃s of
the normalized Laplacian Ln = D−1/2LD−1/2 is extracted
by selecting the rows and columns that correspond to nodes
in the prediction set. Then, the eigenvector of the smallest
eigenvalue of matrix L̃s to a specified power r is computed.
The sample with the largest magnitude in the eigenvector
is added to the update set. The process is repeated until a
specified criterion is reached. In the toy example in Fig. 1, we
see that as compared to the MaxCut approach, the samples
are almost evenly distributed within each object. The mean
squared error of the level 1 prediction for the toy example
using CDF 5/3 as a function of the size of the update set, is
shown in Fig. 2. As an example, for graph size |V | = 2576,
the MaxCut based algorithm requires more than 1200 nodes
selected to achieve low prediction error, while for optimized
sampling (OptSamp), only around 900 nodes are needed. Since
the size of the update set at each level is reduced, the number
of lifting levels required to achieve a target size for the lowest
frequency band is smaller than that of the MaxCut.

(a) Optimized Sampling(b) MaxCut

Fig. 1: First 60 samples selected from MaxCut, and the
optimized sampling

IV. DEPTH MAP ENCODER

The encoding system used in our experiment is shown
in Fig. 3. The input depth maps are first divided into non-
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Fig. 2: Mean squared error of the prediction for different
update set sizes

overlapped 8 × 8 blocks, and intra-prediction is applied on
each block using its causal neighbors. For the design of intra-
predictor, we adopt the 9 mode 4 × 4 predictor used in
H.264/AV C [11]. Therefore, each 8×8 block is decomposed
into 4 small blocks before prediction. For the upper left small
block, reconstructed pixels from the causal neighbors are used
as the predictor; for other 4×4 blocks, both the reconstructed
and predicted pixels are used. The optimal prediction mode
is decided based on the mean squared error. Such quad-tree
division is solely for prediction purpose. For the transform and
transform mode selection, 8× 8 block is applied.

Once the intra-prediction residual blocks are computed, a
graph structure is formed in each block based on the edge
characteristics. Graph bipartition is done using the optimized
sampling described in Sec. III, which determines the update
and prediction transforms. The RD costs for DCT and lifting
are compared by computing the sum of squared errors (SSE)
and bit rate (R). For graph based lifting, both the bits for
coefficient encoding and the edge information overhead are
considered. DCT is chosen if there is no edge component in
the current block or if its RD cost RDdct = SSEdct + λRdct

is smaller than the RD cost from the lifting transform, which is
computed as RDlifting = SSElifting+λ(R

coeff
lifting+R

edge
lifting).

Dead-zone uniform quantization is applied on the trans-
form coefficients before scanning. The coefficients of lifting
transform are ordered according to the frequency of the cor-
responding subband as in [7]. For piece-wise smooth images
such as depth maps, pixels are highly correlated with neigh-
boring pixels except for the pixels separated by edges. Such
characteristics are embedded in the graph structure. Therefore,
one pixel only considers the neighbors with similar intensities
during the filtering, which makes most of the coefficients zero
within the high frequency subbands. The coefficients of i level
lifting are then arranged in the order: [si, di, di−1, . . . , d2, d1].
Coefficients in the smooth subband, which contains most of
the signal energy, are scanned first, followed by the detail
coefficients with less energy in lower level. Such ordering
increases the probability that zeros are scanned together,
making the entropy coding more efficient.

V. COMPLEXITY ANALYSIS

In general, there are two main sources of complexities in
the encoder. One is due to determining the transform for
the given graph, i.e., the transform matrix in GFT and the
filter coefficients in the lifting transform. The other is due to
applying the transform on the input signal.

Computing the transform operation in GFT and the lifting
transform based on optimized sampling requires the eigenvalue
decomposition. In the former the eigenvectors of the combi-
natorial Laplacian form the transform basis. In the latter one,
the smallest eigenvector for the normalized Laplacian corre-
sponding to the prediction set is needed. The complexities are
both significant, making an online computation impractical.
Therefore, in the real coding system, the transforms are usually
computed and stored in advance by limiting the number of
graph structures used. In [5], a pre-determined number of
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Fig. 3: Depth map encoder

transforms most frequently used in the training images are
precomputed off-line for simple lookup. In this paper, we make
the assumption that transforms are computed off-line, and
focus on the complexity of online application of the resulting
transforms

In GFT, the transform requires multiplying the input signal
(denoted as a vector) with a dense matrix, which leads to
O(N2) complexity. For lifiting, on the other hand, the trans-
form is highly localized. If for each lifting level, half of the
nodes are sampled into the update set, which is usually the
upper bound of sampling, at most logN transform levels will
be required. For the computation of each coefficient in level i,
the number of operations equals to the degree degm of node
m. degm is usually a constant number, and will not be scaled
as the graph size increases. As a result, only O(N logN)
complexity is needed for lifting application. Besides, the GFT
coefficients are real valued, while in lifting the coefficients are
rational, which leads to additional reduction in implementation
cost. In our experiments, we next show that with the lifting
transform, the quality of depth map reconstruction after com-
pression is comparable to GFT, so that we pay no penalty for
these significant reductions in complexity.

VI. EXPERIMENTAL RESULTS

As a first comparison, we use the graph-based lifting and
the baseline methods on several depth images. The quan-
tized transformed coefficients and the index of optimal intra-
prediction mode are coded with an arithmetic encoder. Besides
the coefficients, for graph based method, 2 overheads are
included in the entropy coder: The overhead of edge infor-
mation, and the index of the optimal transform. The first one
is encoded using the method proposed in [2], and the second
one is computed using arithmetic coding.

The graphs are built under two settings: In the first case,
graph is constructed based on the edge geometry of the intra-
prediction residual using the same method as in [9]. The results
in Fig. 4 show the PSNR comparison between DCT, GFT, and
the lifting transform with optimized sampling (OptSamp) on
image Teddy. In table I, we show the RD curve difference of
lifting from GFT on different depth maps using Bjontegaard
metric. The square of the normalized Laplacian is used for
sampling set selection [1]. For optimized sampling, samples
are selected greedily in each lifting level until every node in

the prediction set has at least one neighbor in the update set.
As a result, only 3 lifting levels are needed on average. It
can be seen that the proposed method outperforms DCT and
has similar performance to GFT. In Fig. 5, we compare the
results of different level’s lifting based on optimized sampling
and MaxCut [7]. In order to get comparable performance
as optimized sampling, MaxCut requires 5 lifting levels on
average, making the computation costly. Table II shows the
average RD curve difference of optimized sampling from
MaxCut. In most of the cases, optimized sampling outperforms
MaxCut in both PSNR gain and bitrate savings. Fig. 6 shows
the reconstructed images for the various methods. It can be
seen that the lifting method also achieves edge adaptivity
similar to GFT, while in DCT method the edge structure
contains lots of artifacts.
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Fig. 4: RD performance comparison between DCT, GFT, and
3 level lifting based on optimized sampling (OptSamp)

Bjontegaard metric
∆PSNR(dB) ∆rate(%)

Teddy 0.10 -0.55
Cones -0.04 0.35
Champagne Tower -0.01 0.22
Tsukuba -0.01 0.11
Ballet 0.02 -0.39

TABLE I: Average RD curve difference between 3 level lifting
with optimized sampling (OptSamp) and GFT

As a second comparison we use the graph training proposed
in [5]. The training set consisits of 10 depth images. 124
trained graph structures mostly used by the training blocks
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Fig. 5: RD performance comparison between different level’s
lifting based on MaxCut and optimized sampling (OptSamp)

Bjontegaard metric
∆PSNR(dB) ∆rate(%)

Teddy 0.11 -1.03
Cones -0.12 0.66
Champagne Tower 0.06 -0.10
Tsukuba 0.03 -0.50
Ballet 0.11 -1.23

TABLE II: Average RD curve difference between optimized
sampling (OptSamp) and MaxCut

are stored. Fig. 7 shows the PSNR comparison, where the
performance of the lifting transform is very close to GFT (less
than 0.5 dB difference), and both have above 4 dB gain over
DCT based method.

VII. CONCLUSION

In this paper, we present a fast graph-based lifting transform
approach for depth map coding. Experiments show that lifting
transform achieves similar reconstruction quality as graph
Fourier transform (GFT), with the reduction in computation
complexity. Further, a new predict-update assignment is pro-

Fig. 6: Original image, and the reconstructed images from
DCT, GFT, and the graph based lifting using the optimized
sampling
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Fig. 7: RD performance comparison for Teddy using the multi-
resolution GFT proposed in [5]

posed based on optimized sampling on graphs, which has
lower transform complexity and better reconstruction quality
than the conventional maximum cut approach. A design of an
approximation to optimized sampling on graphs, which can
be applied in real time, and a more rigorous way to decide
the number of samples in the update set are left as the future
works.
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