
POINT CLOUD ATTRIBUTE INPAINTING IN GRAPH SPECTRAL DOMAIN

Ju He, Zeqing Fu, Wei Hu ∗, Zongming Guo

Institute of Computer Science & Technology, Peking University

a

ABSTRACT
With the prevalence of depth sensors and 3D scanning de-
vices, point clouds have attracted increasing attention as a
format for 3D object representation, with applications in var-
ious fields such as tele-presence, navigation for autonomous
driving and heritage reconstruction. However, point clouds
usually exhibit holes of missing data, mainly due to the lim-
itation of acquisition techniques and complicated structure.
Hence, we propose an efficient inpainting method for the at-
tribute (e.g., color) of point clouds, exploiting non-local self-
similarity in graph spectral domain. Specifically, we represent
irregular point clouds naturally on graphs, and split a point
cloud into fixed-sized cubes as the processing unit. We then
globally search for the most similar cubes to the target cube
with holes inside, and compute the graph Fourier transform
(GFT) basis from the similar cubes, which will be leveraged
for the GFT representation of the target patch. We then for-
mulate attribute inpainting as a sparse coding problem, im-
posing sparsity on the GFT representation of the attribute for
hole filling. Experimental results demonstrate the superiority
of our method.

Index Terms— Graph signal processing, point cloud, at-
tribute inpainting, self-similarity, sparse coding

1. INTRODUCTION
Point clouds have received increasing attention as a basic
form of 3D formats. A 3D point cloud consists of a set
of points in 3D space, often with attributes such as color.
The development of depth sensing and 3D laser scanning
techniques enables convenient acquisition of point clouds,
which leads to the application in a variety of fields such as
autonomous driving, 3D telepresence, augmented reality, her-
itage reconstruction and so on [1]. However, scanned point
clouds often suffer from missing data due to occlusion, low
reflectance of the scanned surface, limited number of scans
from different viewing directions, etc. Hence, point cloud
inpainting is necessary prior to the subsequent applications.

Geometry inpainting has been extensively studied in re-
cent years. Various approaches have been proposed, which

This work was supported in part by Beijing Natural Science Foundation
(4194080) and in part by National R&D project of China under contract No.
2018YFB1003504.

mainly include two classes according to the cause of holes:
1) restore holes in the object itself such as heritage and sculp-
tures [2–5], and 2) inpaint holes caused by the limitation of
scanning devices [6–8]. For the first class of methods, the
main hole-filling data source is online database, as the holes
are often large. For example, Sahay et al. [2] attempt to fill big
holes using the neighbourhood surface and geometric prior
derived from registered similar examples in a library. The
other class of methods focus on holes generated due to the
limitations of scanning devices. This kind of holes are rather
smaller than the aforementioned ones in general, thus the in-
formation of the data itself is often enough for inpainting. For
example, Fu et al. [8] and Hu et al. [9] exploit the non-local
self-similarity in point clouds, and inpaint holes from similar
patches, which is regularized by a graph-signal smoothness
prior to enforce geometric consistency.

However, few inpainting methods focus on the attributes
of point clouds such as color, which is important for appli-
cations like 3D telepresence and heritage reconstruction. As
far as we know, only Lozes et al. [10] propose point cloud in-
painting on color, where they refer to the neighborhood of the
hole to compute the geometric structure and color informa-
tion and deploy partial difference operators to optimize the
inpainting result. Consequently, the inpainted point clouds
tend to be planar than the ground truth in both geometry and
color. Besides, artifacts are likely to occur around the bound-
ary when the structure is complicated.

In order to address the above problems, we propose to
inpaint the attributes in point clouds in graph spectral do-
main. Taking color as an example, the key idea is to exploit
the sparsity in graph spectral domain, where the dictionary
for the sparse representation of the target region with missing
color information resorts to non-locally similar regions. Due
to the irregularity of point clouds, we represent point clouds
on graphs naturally. Specifically, we first segment the input
point cloud into cubes of the same size. Then we define the
similarity metric between two cubes based on the difference
of known color information at corresponding positions in two
cubes. Based on the similarity metric, we obtain the most sim-
ilar cube to the target as the final source cube. Next, we for-
mulate color inpainting as a sparse coding problem in graph
spectral domain, where the dictionary is the basis of Graph
Fourier Transform (GFT) [11] computed from the most sim-
ilar cube. Finally, we acquire the closed-form solution of the



optimization problem, leading to the inpainted color informa-
tion.

The outline of the paper is as follows. We first review
graph signal processing tools in Section 2. We then elaborate
on the proposed method, including problem formulation, cube
matching and optimization In Section 3. Experimental results
and conclusion are presented in Section 4 and 5, respectively.

2. BACKGROUND
2.1. Graph Laplacian and Graph Fourier Transform

We consider an undirected graph G = {V, E ,W} composed
of a vertex set V of cardinality |V| = N , an edge set E con-
necting vertices, and a weighted adjacency matrix W. W
is a real symmetric N × N matrix, where wi,j is the weight
assigned to the edge (i, j) connecting vertices i and j. We
assume non-negative weights, i.e., wi,j ≥ 0.

The Laplacian matrix, defined from the adjacency ma-
trix, is a fundamental algebraic representation of a graph [12].
Among different variants of Laplacian matrices, the combi-
natorial graph Laplacian used in [13–15] is defined as L :=
D −W, where D is the degree matrix—a diagonal matrix
where di,i =

∑N
j=1 wi,j .

Graph signal refers to data residing on the vertices of a
graph. For example, if we construct a K-nearest-neighbor
(K-NN) graph on the point cloud, then the color of each point
can be treated as graph signal defined on the K-NN graph.
This will be discussed further in the proposed problem for-
mulation in Section 3.1.

Since the graph Laplacian is a real symmetric matrix, it
admits a set of real eigenvalues {λl}l=0,1,...,N−1 with a com-
plete set of orthonormal eigenvectors U = {ul}l=0,1,...,N−1,
i.e., Lul = λlul, for l = 0, 1, ..., N − 1. The eigenvectors
then define the basis of GFT.

Formally, for any signal x ∈ RN residing on the vertices
of G, its GFT η ∈ RN is defined in [11] as

η = UTx, (1)

and the inverse GFT follows as

x = Uη =
∑
i

ηiui. (2)

2.2. Sparse Coding

Sparse coding [16] assumes that a patch y can be represented
by a weighted combination of only a few atoms out of a
learned dictionary U. In other words, it means finding a
dictionary U and a weight vector η for patch y such that: 1)
each patch y is well approximated by Uη, and 2) the sparsity
of η, approximated by ||η||1, is minimized. Mathematically,

min
U,η

||y −Uη||2 + β||η||1 (3)

where β is a Lagrange multiplier trading off the approxima-
tion error and sparsity. The l1 norm regularizer approximates
the sparsity of the weight vector ||η||0.

3. PROPOSED METHOD
We first discuss the proposed problem formulation, leveraging
sparse coding and spectral graph theory in Section 2, and then
elaborate on the developed algorithm.

3.1. Problem Formulation

We formulate point cloud attribute inpainting as sparse cod-
ing of a given observation with missing data. In particular,
for a target region with holes, we construct a dictionary from
its most similar region, and inpaint the target region by find-
ing a sparse representation of the signal given the constructed
dictionary. Note that, sparse coding is mainly deployed over
patches in 2D images on regular grids, while point clouds are
irregular 3D data. In order to address this, we split the en-
tire point cloud into overlapping cubes of the same size, and
employ cubes instead of patches as the processing unit.

The dictionary construction is the key to attribute inpaint-
ing. We propose to deploy the GFT basis U of the most sim-
ilar region as the dictionary, because the basis characterizes
the underlying structure of a region. Hence, we formulate
point cloud attribute inpainting as

min
cr,η

||Ωcr − Ωct||22 + α||cr −Uη||22 + β||η||21, (4)

where cr ∈ RM3×3 is the desired cube. Ω is a M3 ×M3

diagonal matrix with Ωi,i ∈ {0, 1}, i = 1, ...,M3, extracting
the known region in cr and ct. α and β are two weighting
parameters (empirically α = 0.5 and β = 0.5 in our experi-
ments). η is the weight vector in sparse coding, and U is GFT
basis of cs separately.

The first term in (4) is a data fidelity term, which ensures
the desired cube to be close to ct in the known region. The
second and third terms are the approximation error and spar-
sity respectively, as in the formulation of sparse coding intro-
duced in Section 2.2.

3.2. Algorithm Development

Having formulated the attribute inpainting problem, we de-
velop an iterative algorithm to solve it. As shown in Fig. 1, the
input data is a point cloud denoted by P = {p1,p2, ...,pn}
with pi ∈ R6 consisting of the coordinates and the color of
the i-th point in the point cloud. Firstly, we split it into fixed-
sized cubes as the processing unit in the subsequent steps.
Secondly, we choose the target cube and inpaint the geometry
using the method in [8]. Thirdly, we search the most simi-
lar cube to the target cube based on the proposed similarity
metric. Finally, we address the formulated optimization prob-
lem via the closed-form solution iteratively, which leads to
the inpainting result. The details of each step are discussed as
follows.

Preprocessing We first split the input point cloud into
overlapping cubes {c1, c2, ...} with ci ∈ RM3×6 (M is the
dimension of the cube) as the processing unit. M is empir-
ically set according to the coordinate range of P (M = 20
in our experiments). Then the overlapping step is empirically



OutputOptimizationSearch for the
most similar cube

Choose
the target cube

Input Split into cubes Geometric
inpainting

GFT coefficient 𝜼𝜼

𝒄𝒄𝑡𝑡′ 𝒄𝒄𝑡𝑡 𝒄𝒄𝑠𝑠

𝒄𝒄𝑟𝑟

Fig. 1. The framework of the proposed point cloud attribute inpainting method.

set as M
4 . This is a trade-off between the computational com-

plexity and ensuring enough information available to search
for the most similar cube.

Having obtained cubes, we choose the cube with miss-
ing data as the target cube c

′

t. Then we adopt the method
proposed in [8] to inpaint the geometry, resulting in the
geometry-inpainted cube ct. Besides, in order to save the
computation complexity and increase the accuracy of the
subsequent cube matching, we choose candidate cubes cc by
filtering out cubes with the number of points less than 80% of
that of ct, which will be used in the next step as follows.

Cube Matching In order to search for the most sim-
ilar cube to the target, we define the color similarity metric
δ(ct, cc) between the target cube ct and candidate cubes cc
as

δ(ct, cc) = δ(R) + δ(G) + δ(B), (5)

δ(R) =

M3∑
j=1

[(ct,j)R − (cc,j′)R]2, (6)

where ct,j is the jth point in ct and cc,j′ is the j′th point in
the candidate cube cc. {j, j′} denotes a corresponding pair of
points in ct and cc. We find this correspondence by searching
the nearest point of ct,j in cc in terms of Euclidean distance of
the relevant position. (ct,j)R and (cc,j′)R represent the color
information in channel R of ct,j and cc,j′ , separately. δ(G)
and δ(B) are defined in the same way as in (6).

Having computed the similarity metric in (5) between the
target cube and candidate cubes, we choose the candidate
cube with the largest similarity as the source cube cs.

Graph Construction With the source cube cs chosen,
we construct a K-NN graph over cs based on the affinity of
geometric distance among points in cs, from which we com-
pute the GFT basis U as the dictionary in the final formula-
tion. The number of nearest neighbors K is considered to be
related to the number of existing points in the cube. Specifi-
cally, we build unweighted graphs for simplicity. Hence, wk,l

is assigned as

wk,l =

{
1, k ∼ l
0, otherwise (7)

Optimization Considering the computational complex-
ity of optimizing l1 norm, we further relax the l1 regularizer
in (4) as l2 norm, leading to the final formulation

min
cr,η

||Ωcr − Ωct||22 + α||cr −Uη||22 + β||η||22. (8)

This is a quadratic programming problem. Taking derivative
of the objective with respect to cr and η separately, we have
the closed-form solution:

ĉr = (ΩT Ω + I)−1(ΩT Ωct + αUη), (9)
η̂ = (α+ β)−1(UT cr). (10)

As ΩT Ω = Ω, the first multiplier in (9) is a diagonal ma-
trix with diagonal element 0.5 for known regions and 1 for
unknown regions. The second multiplier combines the infor-
mation from known regions and the dictionary representation.
In (10), α and β adjust the GFT representation of cr.

We first initialize cr as ct and compute η according to
(10). Then we alternately fix one variable and update the other
until the difference of the objective between iterations is small
enough. Finally, we replace the target cube with the resulting
cube, which serves as the output.

4. EXPERIMENTAL RESULTS
4.1. Experimental Setup

We evaluate the proposed method by testing on several point
cloud datasets from Microsoft, including Andrew, David,
Phili, Ricardo, Sarah and Soldier [17]. We test on two types
of holes: 1) real holes generated during the capturing pro-
cess, which have no ground truth; 2) synthetic holes on point
clouds so as to compare with the ground truth.

Further, we compare our method with the PDE method
[10] and Meshlab [18]. Note that Meshlab performs inpaint-
ing based on meshes. So we convert point clouds to meshes
first, perform the algorithm, and then convert the inpainted
meshes back to point clouds as the final output.

4.2. Experimental Results

It is nontrivial to measure the color difference of point clouds
objectively due to the irregularity. We apply the color distor-
tion metric MSE as the metric for evaluation. Note that tra-
ditional MSE [19] computes the difference of two data with
one-to-one correspondence between each other, while the cor-
respondence is nontrivial in point clouds. We propose to find
the nearest point in inpainting results for each point in the
ground truth to establish the correspondence. Then the MSE
values of R, G, B channels are averaged to acquire the final
MSE.

Table 1 shows the objective results for synthetic holes.
We see that our scheme outperforms all the competing meth-
ods in MSE significantly. Specifically, we reduce 82.71% in



original

(a)

meshlab

(b)

pde

(c)

proposed

(d)

Fig. 2. Inpainting for Phili with a real hole marked in red and magnified. (a) Original point cloud with holes. (b) Results
obtained by Meshlab. (c) Results obtained by PDE. (d) Results obtained by the proposed method.

original

(a)

meshlab

(b)

pde

(c)

proposed

(d)

ground

(e)

Fig. 3. Inpainting for Andrew with a synthetic hole marked in red and magnified. (a) Point cloud with holes. (b) Results
obtained by Meshlab. (c) Results obtained by PDE. (d) Results obtained by the proposed method. (e) The ground truth.

MSE on average compared with Meshlab and reduce 67.97%
in MSE compared with the PDE method.

Table 1. Performance Comparison in MSE

Meshlab PDE [10] Proposed
Andrew 1045.08 751.15 205.98
David 254.51 31.59 8.18

Ricardo 44.15 8.01 2.33
Sarah 1544.93 1018.28 283.64

Soldier 1026.07 303.83 176.62

Further, Fig. 2 and Fig. 3 demonstrate subjective inpaint-
ing results for real holes and synthetic holes respectively.
The results of Meshlab tend to be planar and blurry, because
Meshlab attempts to fill the hole by connecting the boundary
of the hole region via a simple plane. The results of the PDE
method exhibit artificial inward and gradual change in color.
This is because this method leverages the local neighborhood
information to inpaint the missing areas from outside towards
inside, which accumulates the inpainting error and leads to
distortion in the results. Our results shown in Fig. 2 (d) and
Fig. 3 (d) demonstrate that our method is able to inpaint
holes with appropriate color information, even for holes with
complicated color structure such as streaks and checker.

Besides, we validate the sparsity of the acquired weight
vector in our formulation. Taking the green channel as an
example, Fig. 4 presents how the weight vector η (essentially
GFT coefficients in our formulation) varies with respect to
eigenvalues. We see that η distributes almost evenly over all
the frequencies prior to optimization. It then becomes quite

compact in the low frequencies after optimization, which
gives credits to the relaxation of sparse coding.

𝜆𝜆

𝜂𝜂

0 20 40 60 80 100

10
8
6
4
2
0
−2

(a)

𝜆𝜆

𝜂𝜂

0 20 40 60 80 100

10
8
6
4
2
0
−2

(b)

Fig. 4. Demonstration of the sparsity of the weight vector η
with respect to eigenvalues for the green channel. (a) prior to
our optimization; (b) after our optimization.

5. CONCLUSION

We propose an efficient 3D point cloud attribute inpainting
approach in graph spectral domain. The key observation is
that point clouds exhibit non-local self-similarity in the at-
tributes and exhibit sparsity in the GFT domain. We thus
propose to fill each hole in a point cloud from a cube with
similar attribute information. We then cast point cloud at-
tribute inpainting as a sparse coding problem, based on the
selected most similar cube and regularized by sparsity in the
GFT domain. Experimental results show that our algorithm
outperforms existing competing methods significantly.



6. REFERENCES

[1] C. Tulvan, R. Mekuria, and Z. Li, “Use cases
for point cloud compression (pcc),” in ISO/IEC
JTC1/SC29/WG11 (MPEG) output document N16331,
June 2016.

[2] P. Sahay and A. N. Rajagopalan, “Harnessing self-
similarity for reconstruction of large missing regions in
3D models,” in International Conference on Pattern
Recognition, 2012, pp. 101–104.

[3] P. Sahay and A. N. Rajagopalan, “Geometric inpaint-
ing of 3D structures,” in Computer Vision and Pattern
Recognition Workshops, 2015, pp. 1–7.

[4] S. Shankar, S. A. Ganihar, and U. Mudenagudi, “Frame-
work for 3D object hole filling,” in Fifth National Con-
ference on Computer Vision, Pattern Recognition, Image
Processing and Graphics, 2015, pp. 1–4.

[5] C. Dinesh, I. V. Bajic, and G. Cheung, “Exemplar-based
framework for 3D point cloud hole filling,” in IEEE In-
ternational Conference on Visual Communications and
Image Processing, May 2017.

[6] J. Wang, M. M. Oliveira, M. Garr, and M. Levoy, “Fill-
ing holes on locally smooth surfaces reconstructed from
point clouds,” Image & Vision Computing, vol. 25, no.
1, pp. 103–113, 2007.

[7] H. Lin and W. Wang, “Feature preserving holes filling of
scattered point cloud based on tensor voting,” in IEEE
International Conference on Signal and Image Process-
ing, 2017, pp. 402–406.

[8] Z. Fu, W. Hu, and Z. Guo, “Point cloud inpainting
on graphs from non-local self-similarity,” in IEEE In-
ternational Conference on Image Processing, Athens,
Greece, 2018.

[9] W. Hu, Z. Fu, and Z. Guo, “Local frequency interpre-
tation and non-local self-similarity on graph for point
cloud inpainting,” accepted to IEEE Transactions on
Image Processing, 2019.

[10] F. Lozes, A. Elmoataz, and O. Lzoray, “Pde-based graph
signal processing for 3-d color point clouds : Oppor-
tunities for cultural heritage,” IEEE Signal Processing
Magazine, vol. 32, no. 4, pp. 103–111, 2015.

[11] D. K. Hammond, P. Vandergheynst, and R. Gribonval,
“Wavelets on graphs via spectral graph theory,” Applied
& Computational Harmonic Analysis, vol. 30, no. 2, pp.
129–150, 2009.

[12] F. K. Chung, “Spectral graph theory,” vol. 92, no. 6, pp.
212, 1996.

[13] G. Shen, W.-S. Kim, S. K. Narang, A. Ortega, J. Lee,
and H. Wey, “Edge-adaptive transforms for efficient
depth map coding,” in IEEE Picture Coding Sympo-
sium, Nagoya, Japan, December 2010, pp. 566–569.

[14] W. Hu, G. Cheung, X. Li, and O. C. Au, “Depth map
compression using multi-resolution graph-based trans-
form for depth-image-based rendering,” in IEEE Inter-
national Conference on Image Processing, Orlando, FL,
September 2012, pp. 1297–1300.

[15] W. Hu, G. Cheung, A. Ortega, and O. C. Au, “Multi-
resolution graph fourier transform for compression of
piecewise smooth images,” in IEEE Transactions on Im-
age Processing, January 2015, vol. 24, pp. 419–33.

[16] Z. Jiang, L. Zhe, and L. S. Davis, “Learning a discrim-
inative dictionary for sparse coding via label consistent
k-svd,” in IEEE Conference on Computer Vision & Pat-
tern Recognition, 2011.

[17] Q. Cai and P. A. Chou, “Microsoft voxelized up-
per bodies a voxelized point cloud dataset,” in
ISO/IEC JTC1/SC29 WG11 ISO/IEC JTC1/SC29/WG1
input document m38673/M72012, May 2016.

[18] P. Cignoni, M. Callieri, M. Corsini, M. Dellepiane,
F. Ganovelli, and G. Ranzuglia, “Meshlab: an open-
source mesh processing tool,” in Eurographics Ital-
ian Chapter Conference, S. Vittorio, D. C. Rosario, and
F. Ugo, Eds. 2008, The Eurographics Association.

[19] Z. Wang and A. C. Bovik, “Mean squared error: Love
it or leave it? a new look at signal fidelity measures,”
IEEE Signal Processing Magazine, vol. 26, no. 1, pp.
98–117, 2008.


