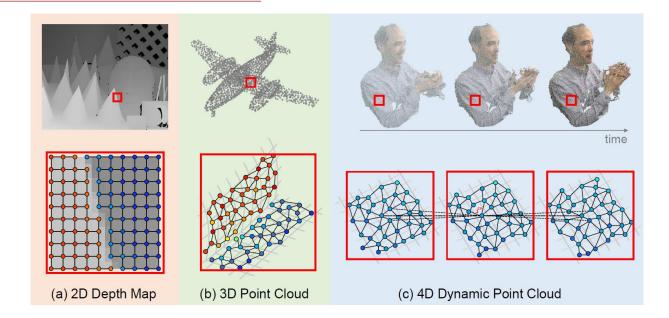


Interpretable Graph Spectral Processing and Analysis for Geometric Data and Beyond

Wei HU Assistant Professor Peking University

August, 2022



Outline

Data & Tasks Geometric data

- Processing
- Analysis

Challenges

- Irregularity
- Robustness
- Interpretability

Representative Works

Feature graph learning [TSP'20, TPAMI'21] Unsupervised graph representation learning [TKDE'21]

Interpretable graph neural networks [TPAMI'22]

Graph Signal Processing (GSP)

Interpretability

Graph Neural Network (GNN)

Framework

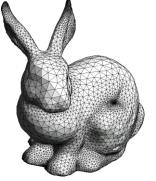
Introduction to geometric data processing and analysis

Geometric Data

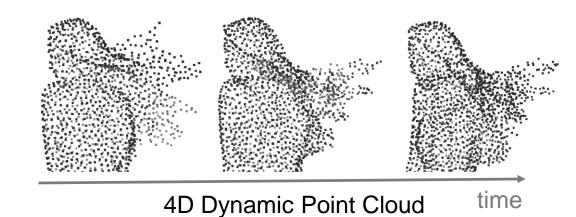
• Describe the geometry of the 3D world

2D depth map

3D Point Cloud



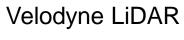
3D Mesh



• Acquired by depth sensing, laser scanning or image processing

Microsoft Kinect

Intel RealSense

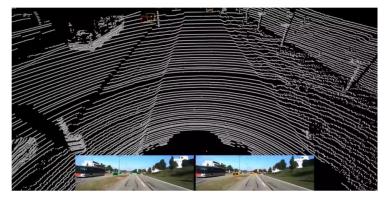


LiDAR scanner of Apple iPad Pro

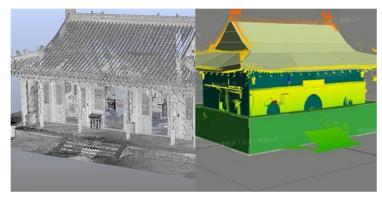
Introduction to geometric data processing and analysis

Geometric Data

• Central to a wide range of applications



Navigation in Autonomous Driving



Heritage Protection

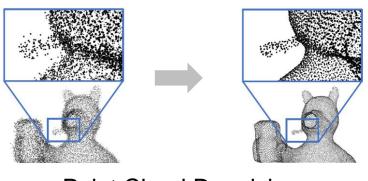
Augmented/Virtual Reality

Free-viewpoint Video

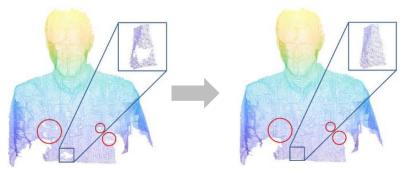
Introduction to geometric data processing and analysis

Tasks

• **Processing**: denoising, inpainting, super-resolution, resampling, etc.

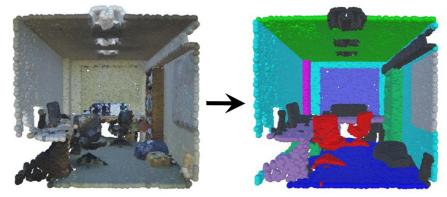


Point Cloud Denoising

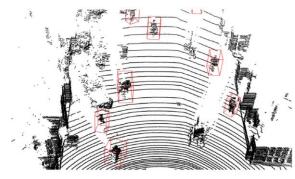


Point Cloud Inpainting

• Analysis: classification, segmentation, detection, etc.



Point Cloud Segmentation



Point Cloud Detection

Truck? Car?

Point Cloud Classification

Outline

Data & Tasks

Geometric data

- Processing
- Analysis

- Challenges
- Irregularity
- Robustness
- Interpretability

Representative Works

Feature graph learning [TSP'20, TPAMI'21] Unsupervised graph representation learning [TKDE'21]

Interpretable graph neural networks [TPAMI'22]

Graph Signal Processing (GSP)

Interpretability

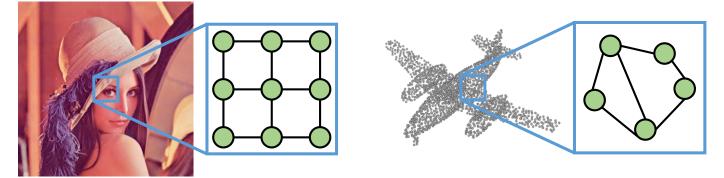
Graph Neural Network (GNN)

Framework

Weither Stragenster

Challenges

① Unlike images, a wide range of geometric data have irregular sampling patterns

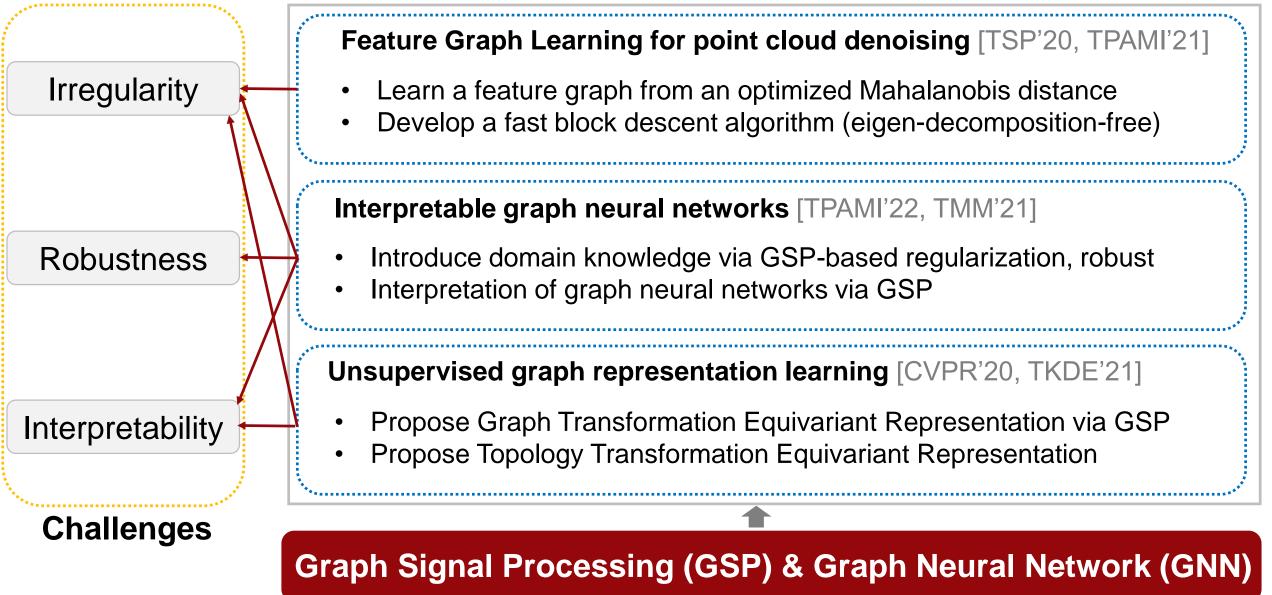


Traditional image/video processing/analysis methods: assume sampling patterns over *regular* grids

- 2 Real-world geometric data often suffer from noise, missing data,
 - Require Robustness
- ③ Model Interpretability of geometric deep learning for analysis tasks

Paris-rue-Madame

Contributions



Outline

Data & Tasks Geometric data

- Processing
- Analysis

- Challenges
- Irregularity
- Robustness
- Interpretability

Representative Works

Feature graph learning [TSP'20, TPAMI'21] Unsupervised graph representation learning [TKDE'21]

Interpretable graph neural networks [ICCV'21]

Graph Signal Processing (GSP)

Interpretability

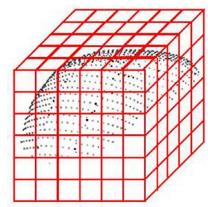
Graph Neural Network (GNN)

Framework

Why Graph Representation?

Non-Graph representations of irregular geometric data

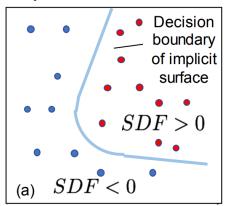
• Quantization-based representations



Quantize onto regular voxel grids

Project onto multiple viewpoints

• Implicit functions

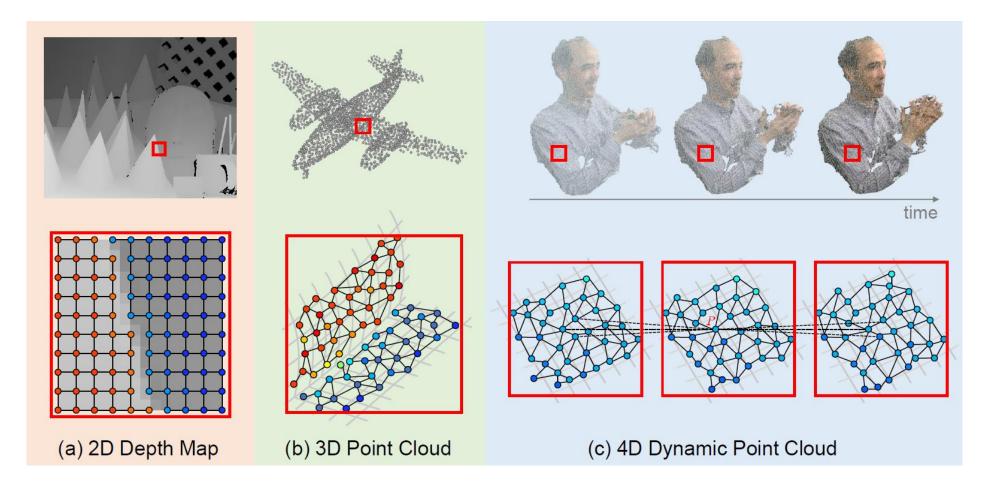


Signed Distance Function

- © Amenable to existing methods for Euclidean data
- ⁽³⁾ Often deficient in capturing the geometric *structure* explicitly
- Sometimes inaccurate
- Sometimes redundant

Why Graph Representation?

• Graphs provide *structure-adaptive*, *accurate*, and *compact* representations for geometric data



Background in GSP & GNN

Graph Signal Processing (GSP)

- Extend classical signal processing to the graph domain
- Principled mathematical models
- Theoretical guarantee
- **Tools: Graph filter**, Graph Fourier Transform, graph wavelets, etc.

Graph Neural Network (GNN)

- Extend deep learning techniques to the graph domain
- Data-driven models
- Empirical performance
- **Tools: Graph convolution**, graph attention,graph pooling, etc.
- Interpretability (e.g., interpretation of graph convolution)
- Introduce GSP-based domain knowledge into GNNs

Wei Hu, Jiahao Pang, Xianming Liu, Dong Tian, Chia-Wen Lin, Anthony Vetro, "Graph Signal Processing for Geometric Data and Beyond: Theory and Applications," accepted to TMM, 2021.

Outline

Data & Tasks Geometric data

- Processing
- Analysis

- Challenges
- Irregularity
- Robustness
- Interpretability

Representative Works

Feature graph learning [TSP'20, TPAMI'21] Unsupervised graph representation learning [TKDE'21]

Interpretable graph neural networks [TPAMI'22]

Graph Signal Processing (GSP)

Interpretability

Graph Neural Network (GNN)

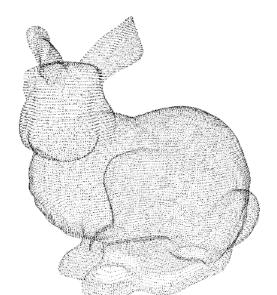
Framework

Problem Statement - Feature graph learning

- **Problem:** The graph is often unavailable over geometric data
- Previous works:
 - > Previous graph learning methods often require *multiple observations*
- Contributions:
 - Given feature vector per node, we propose feature graph learning from only a single or even partial signal observation
 - Develop a fast algorithm (eigen-decomposition-free)

Wei Hu, Xiang Gao, Gene Cheung, Zongming Guo, "Feature Graph Learning for 3D Point Cloud Denoising," *IEEE Transactions on Signal Processing (TSP)*, vol. 68, pp.2841-2856, March 2020.

Cheng Yang, Gene Cheung, **Wei Hu**, "Signed Graph Metric Learning via Gershgorin Disc Alignment," accepted to *IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)*, 2021.



Key Idea - Feature graph learning

• Given a single or partial observation with relevant feature vector \mathbf{f}_i , compute the

Mahalanobis distance:
$$\delta_{i,j} = (\mathbf{f}_i - \mathbf{f}_j)^\top \mathbf{M} (\mathbf{f}_i - \mathbf{f}_j)$$

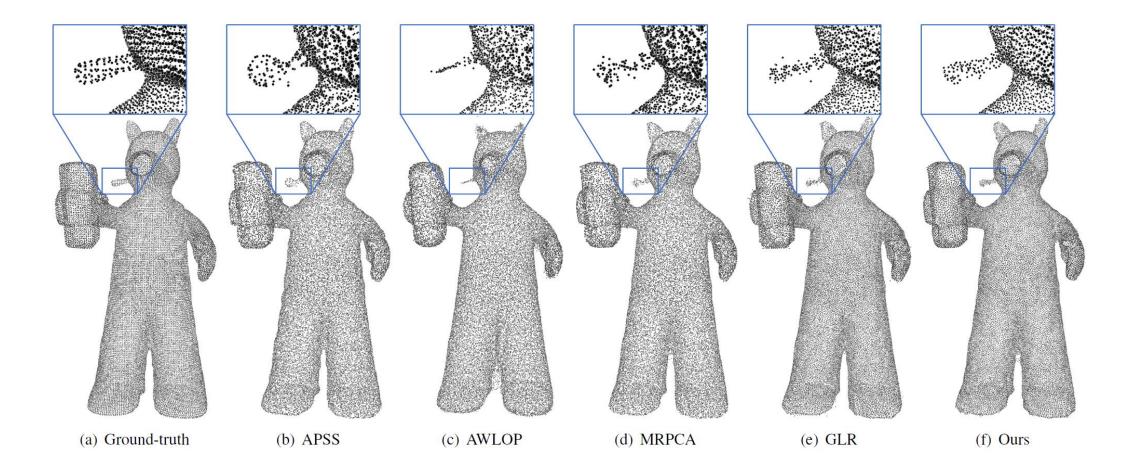
 $\mathbf{N} \text{ PD metric matrix}$

- Edge weight $w_{i,j}$ of feature graph is $w_{i,j} = \exp\{-\delta_{i,j}\}$ feature distance
- Minimize Graph Laplacian Regularizer (GLR):

$$\min_{\mathbf{M}} \mathbf{x}^{\top} \mathbf{L} \mathbf{x} = \sum_{i,j} w_{i,j} (x_i - x_j)^2 = \sum_{i,j} \exp \{-(\mathbf{f}_i - \mathbf{f}_j)^{\top} \mathbf{M} (\mathbf{f}_i - \mathbf{f}_j) \} d_{i,j}$$
s.t. $\mathbf{M} \succ 0$; $\operatorname{tr}(\mathbf{M}) \leq C$. Minimizing GLR makes the graph adapt to the signal structure

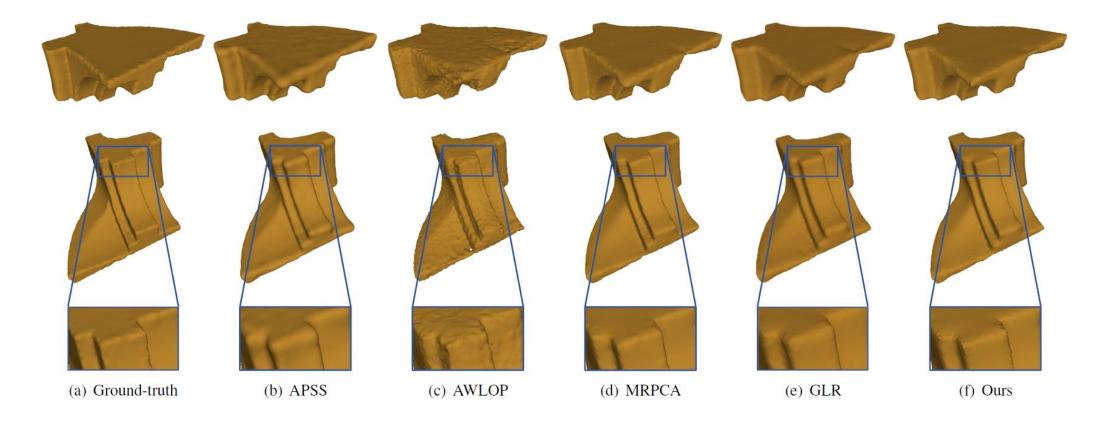
Solved via our proposed **eigen-decomposition-free** block-coordinate descent algorithm

N Results: 3D Point Cloud Denoising



Wei Hu, Xiang Gao, Gene Cheung, Zongming Guo, "Feature Graph Learning for 3D Point Cloud Denoising," *IEEE Transactions on Signal Processing (TSP)*, vol. 68, pp.2841-2856, March 2020.

N Results: 3D Point Cloud Denoising



Wei Hu, Xiang Gao, Gene Cheung, Zongming Guo, "Feature Graph Learning for 3D Point Cloud Denoising," *IEEE Transactions on Signal Processing (TSP)*, vol. 68, pp.2841-2856, March 2020.

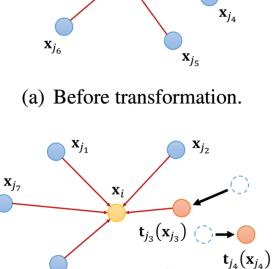
Problem Statement – Unsupervised GraphTER learning

- **Problem:** Existing GNNs are mostly trained in a (semi-)supervised manner, requiring a large amount of labeled data
- **Previous works:** Transformation Equivariant Representation
 - Assumption: representations equivarying to transformations are able to encode the intrinsic structures of data
 - Limitation: focus on Euclidean data such as images, which cannot be directly extended to graphs

Contributions:

- Define generic graph signal transformations
- Propose Graph Transformation Equivariant Representation (GraphTER) learning in an unsupervised manner

Xiang Gao, **Wei Hu**, Guo-Jun Qi, "GraphTER: Unsupervised Learning of Graph Transformation Equivariant Representations via Auto-Encoding Node-wise Transformations," IEEE CVPR, 2020.



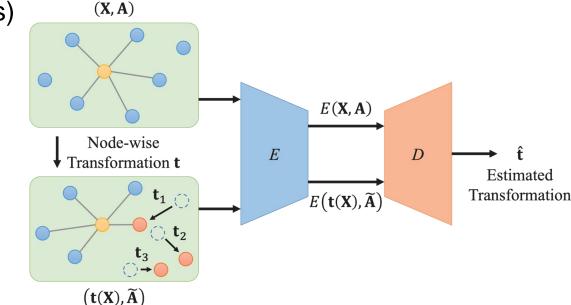
 \mathbf{X}_{i}

 \mathbf{x}_{j_7}

(b) After transformation.

Key Idea - Unsupervised GraphTER learning

• Define a generic graph signal transformation on the signal X as node-wise graph filtering on X, e.g.,



- Low-pass graph filtering (averaging connected nodes)
- Node-independent graph filtering
- A function $E(\cdot)$ is transformation equivariant if

$$E\left(\underset{\downarrow}{\mathbf{t}}(\mathbf{X}), f(\mathbf{t}(\mathbf{X}))\right) = \underset{\downarrow}{\rho(\mathbf{t})}[E(\mathbf{X}, \mathbf{A})]$$

node-wise homomorphism
transformation transformation of t

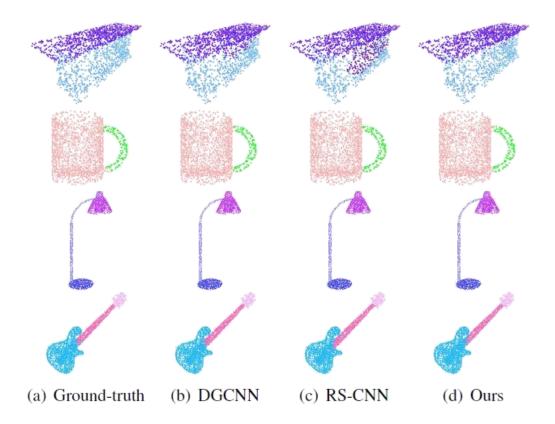
The function $E(\cdot)$ extracts equivariant representations of graph signal **X**

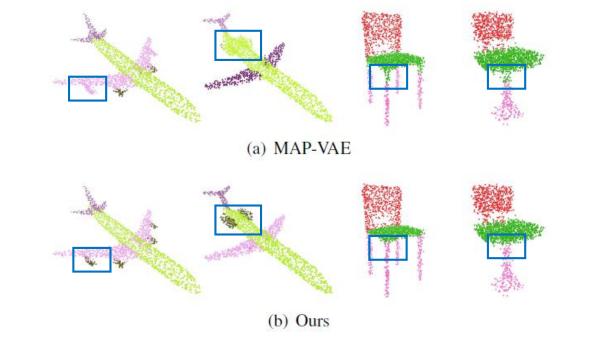
Xiang Gao, Wei Hu, Guo-Jun Qi, "GraphTER: Unsupervised Learning of Graph Transformation Equivariant Representations via Auto-Encoding Node-wise Transformations," IEEE CVPR, 2020.

N Results: unsupervised point cloud learning

3D Point Cloud Classification	Method	Year	Unsupervised	Accuracy
	3D ShapeNets [47]	2015	No	84.7
 Dataset: ModelNet40 	VoxNet [30]	2015	No	85.9
	PointNet [32]	2017	No	89.2
 Metric: Accuracy (%) 	PointNet++ [33]	2017	No	90.7
	KD-Net [21]	2017	No	90.6
	PointCNN [25]	2018	No	92.2
	PCNN [2]	2018	No	92.3
	DGCNN [44]	2019	No	92.9
	RS-CNN [28]	2019	No	93.6
	T-L Network [13]	2016	Yes	74.4
	VConv-DAE [39]	2016	Yes	75.5
Approach the upper bound set by	3D-GAN [<mark>45</mark>]	2016	Yes	83.3
the fully supervised counterparts	LGAN [1]	2018	Yes	85.7
the fully supervised counterparts	FoldingNet [48]	2018	Yes	88.4
	MAP-VAE [15]	2019	Yes	90.2
	L2G-AE [27]	2019	Yes	90.6
	GraphTER		Yes	92.0

N Results: unsupervised point cloud learning



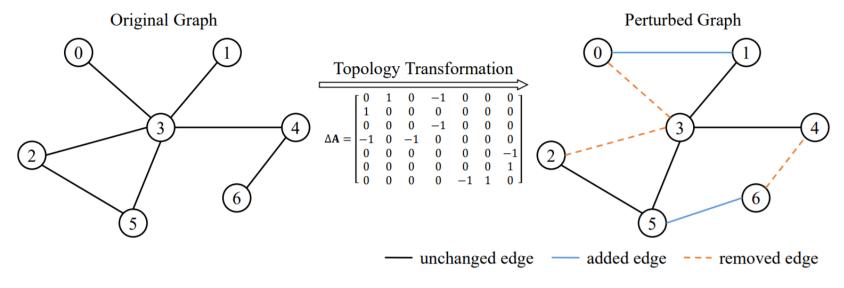


Visual comparison with the **supervised** methods

Visual comparison with the SOTA **unsupervised** method

Extension to Unsupervised TopoTER learning

Idea: maximize the mutual information between topology transformations & node representations before and after the transformations.



$$E(\mathbf{X}, \widetilde{\mathbf{A}}) = E(\mathbf{X}, \mathbf{t}(\mathbf{A})) = \rho(\mathbf{t})[E(\mathbf{X}, \mathbf{A})]$$

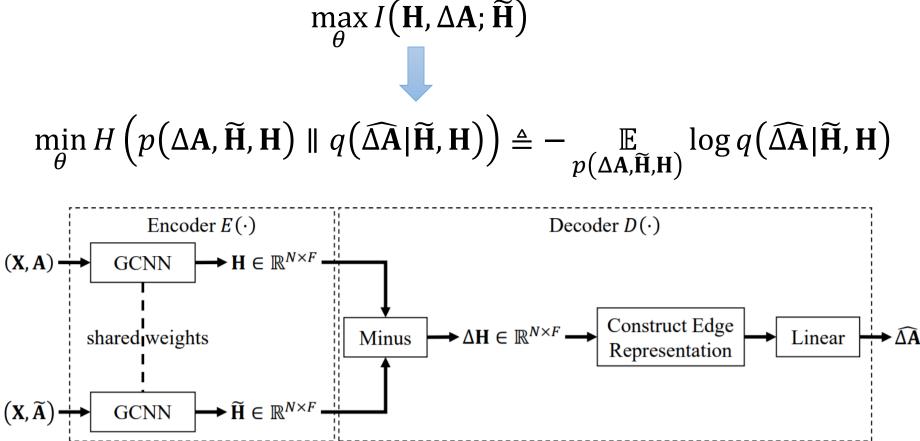
Encoder $E: (\mathbf{X}, \mathbf{A}) \mapsto \mathbf{H}, (\mathbf{X}, \widetilde{\mathbf{A}}) \mapsto \widetilde{\mathbf{H}}$

Decoder $D: (\mathbf{H}, \widetilde{\mathbf{H}}) \mapsto \widehat{\Delta \mathbf{A}}$

Xiang Gao, **Wei Hu**, Guo-Jun Qi, "Self-Supervised Graph Representation Learning via Topology Transformations," accepted to IEEE TKDE, May, 2021.

Extension to Unsupervised TopoTER learning

Idea: maximize the mutual information between topology transformations & node representations before and after the transformations.



Xiang Gao, **Wei Hu**, Guo-Jun Qi, "Self-Supervised Graph Representation Learning via Topology Transformations," accepted to IEEE TKDE, May, 2021.

Results on node classification

Method	Training Data	Cora	Citeseer	Pubmed			
Semi-Supervised Methods							
GCN (Kipf & Welling, 2017)	$\mathbf{X}, \mathbf{A}, \mathbf{Y}$	81.5	70.3	79.0			
MoNet (Monti et al., 2017)	$\mathbf{X}, \mathbf{A}, \mathbf{Y}$	81.7 ± 0.5	0 -	78.8 ± 0.3			
GAT (Veličković et al., 2018)	$\mathbf{X}, \mathbf{A}, \mathbf{Y}$	83.0 ± 0.7	72.5 ± 0.7	79.0 ± 0.3			
SGC (Wu et al., 2019)	$\mathbf{X}, \mathbf{A}, \mathbf{Y}$	81.0 ± 0.0	71.9 ± 0.1	78.9 ± 0.0			
GWNN (Xu et al., 2019a)	$\mathbf{X}, \mathbf{A}, \mathbf{Y}$	82.8	71.7	79.1			
MixHop (Abu-El-Haija et al., 2019)	$\mathbf{X}, \mathbf{A}, \mathbf{Y}$	81.9 ± 0.4	71.4 ± 0.8	80.8 ± 0.6			
DFNet (Wijesinghe & Wang, 2019)	$\mathbf{X}, \mathbf{A}, \mathbf{Y}$	85.2 ± 0.5	74.2 ± 0.3	84.3 ± 0.4			
Unsupervised Methods							
Raw Features (Velickovic et al., 2019)	X	47.9 ± 0.4	49.3 ± 0.2	69.1 ± 0.3			
DeepWalk (Perozzi et al., 2014)	A	67.2	43.2	65.3			
DeepWalk + Features (Velickovic et al., 2019)	\mathbf{X}, \mathbf{A}	70.7 ± 0.6	51.4 ± 0.5	74.3 ± 0.9			
GAE (Kipf & Welling, 2016)	\mathbf{X}, \mathbf{A}	80.9 ± 0.4	66.7 ± 0.4	77.1 ± 0.7			
VGAE (Kipf & Welling, 2016)	\mathbf{X}, \mathbf{A}	80.0 ± 0.2	64.1 ± 0.2	76.9 ± 0.1			
DGI (Velickovic et al., 2019)	\mathbf{X}, \mathbf{A}	81.1 ± 0.1	71.4 ± 0.2	77.0 ± 0.2			
GMI (Peng et al., 2020)	\mathbf{X}, \mathbf{A}	82.2 ± 0.2	71.4 ± 0.5	78.5 ± 0.1			
TopoTER	\mathbf{X}, \mathbf{A}	83.7 ± 0.3	71.7 ± 0.5	79.1 ± 0.1			

Results on graph classification

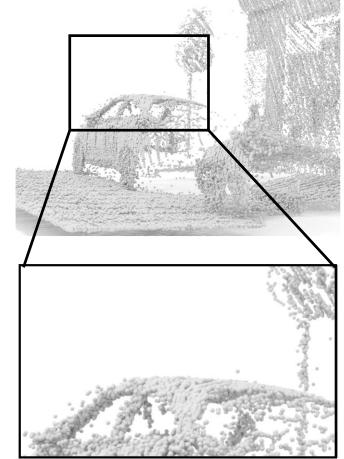
Dataset	MUTAG	PTC-MR	RDT-B	RDT-M5K	IMDB-B	IMDB-M			
(No. Graphs)	188	344	2000	4999	1000	1500			
(No. Classes)	2	2	2	5	2	3			
Graph Kernel Methods									
RW	83.72 ± 1.50	57.85 ± 1.30	OOM	OOM	50.68 ± 0.26	34.65 ± 0.19			
SP	85.22 ± 2.43	58.24 ± 2.44	64.11 ± 0.14	39.55 ± 0.22	55.60 ± 0.22	37.99 ± 0.30			
GK	81.66 ± 2.11	57.26 ± 1.41	77.34 ± 0.18	41.01 ± 0.17	65.87 ± 0.98	43.89 ± 0.38			
WL	80.72 ± 3.00	57.97 ± 0.49	68.82 ± 0.41	46.06 ± 0.21	72.30 ± 3.44	46.95 ± 0.46			
DGK	87.44 ± 2.72	60.08 ± 2.55	78.04 ± 0.39	41.27 ± 0.18	66.96 ± 0.56	44.55 ± 0.52			
MLG	87.94 ± 1.61	63.26 ± 1.48	>1 Day	>1 Day	66.55 ± 0.25	41.17 ± 0.03			
Supervised Methods									
GCN	85.6 ± 5.8	64.2 ± 4.3	50.0 ± 0.0	20.0 ± 0.0	74.0 ± 3.0	51.9 ± 3.8			
GraphSAGE	85.1 ± 7.6	63.9 ± 7.7	-	-	72.3 ± 5.3	50.9 ± 2.2			
GIN-0	89.4 ± 5.6	64.6 ± 7.0	92.4 ± 2.5	57.5 ± 1.5	75.1 ± 5.1	52.3 ± 2.8			
$GIN-\epsilon$	89.0 ± 6.0	63.7 ± 8.2	92.2 ± 2.3	57.0 ± 1.7	74.3 ± 5.1	52.1 ± 3.6			
Unsupervised Methods									
node2vec	72.63 ± 10.20	58.58 ± 8.00	-	-	-	-			
sub2vec	61.05 ± 15.80	59.99 ± 6.38	71.48 ± 0.41	36.68 ± 0.42	55.26 ± 1.54	36.67 ± 0.83			
graph2vec	83.15 ± 9.25	60.17 ± 6.86	75.78 ± 1.03	47.86 ± 0.26	71.10 ± 0.54	50.44 ± 0.87			
InfoGraph	89.01 ± 1.13	61.65 ± 1.43	82.50 ± 1.42	53.46 ± 1.03	73.03 ± 0.87	49.69 ± 0.53			
TopoTER	89.25 ± 0.81	64.59 ± 1.26	84.93 ± 0.18	55.52 ± 0.20	73.46 ± 0.38	49.68 ± 0.31			

N Problem Statement – Interpretable Graph Neural Networks

- **Problem:** Real-word data often suffer from **noise**, **missing data**...
- Previous Works:
 - > Optimization-based approaches rely heavily on geometric priors
 - Deep learning methods often suffer from over-estimation or under- \succ estimation of the displacement
- Contributions:
 - > propose deep point set resampling for point cloud restoration, which models the distribution of degraded point clouds via gradient fields and converges points towards the underlying surface for restoration.

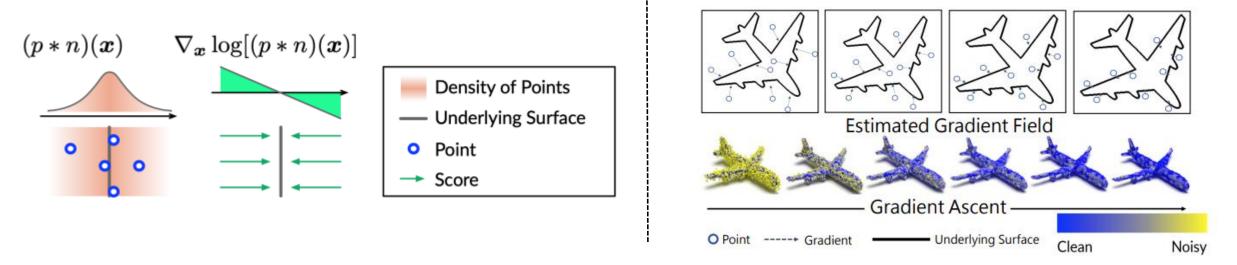
Shitong Luo, Wei Hu, "Score-Based Point Cloud Denoising," ICCV 2021. Haolan Chen, Bi'an Du, Shitong Luo, Wei Hu, "Deep Point Set Resampling via Gradient Fields," accepted to TPAMI, 2022.

Paris-rue-Madame



Key Idea - Interpretable Graph Neural Networks

Key observation: the distribution of a noisy point cloud can be viewed as the distribution of noise-free points p(x) convolved with some noise model n, leading to (p * n)(x)

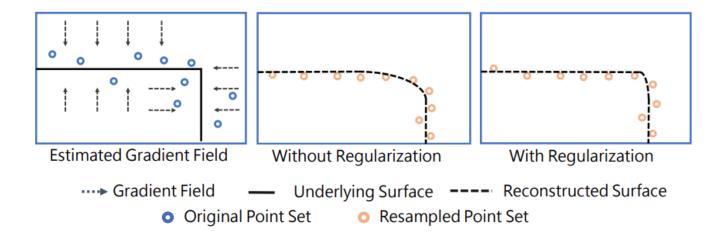


Perform gradient ascent on the log-probability function $\log[(p * n)(x)]? p * n$ is unknown!

- estimate the gradient field of the distribution: $abla_{m{x}} \log[(p*n)(m{x})]_{t}$
- denoise the point cloud by gradient ascent to move noisy points towards the mode of p * n

Key Idea - Interpretable Graph Neural Networks

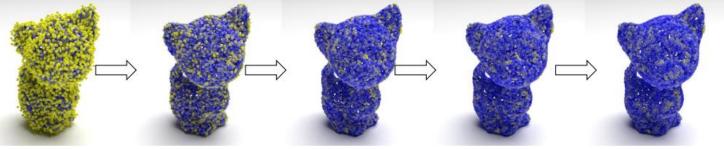
Key observation: the distribution of a noisy point cloud can be viewed as the distribution of noise-free points p(x) convolved with some noise model n, leading to (p * n)(x)

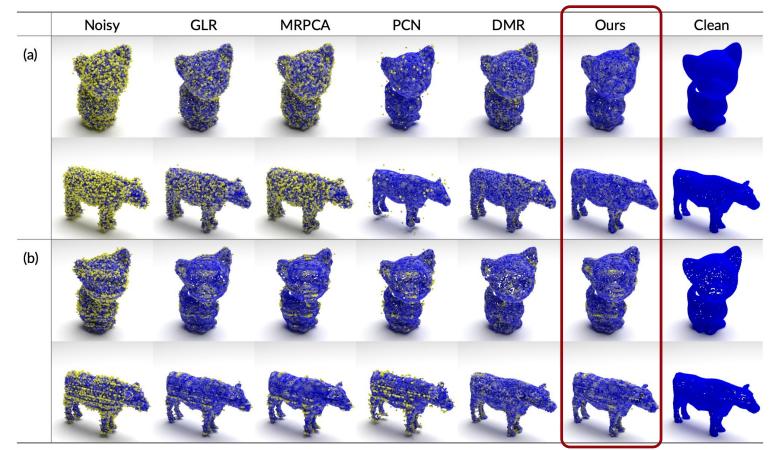


- introduce **regularization** (GLR, etc.) into the point set resampling process, to enhance the intermediate resampled point cloud iteratively **during the inference**
- more robust and interpretable

Results: Synthetic Point Cloud Denoising

A gradient ascent trajectory of our point cloud denoising every other 10 steps.

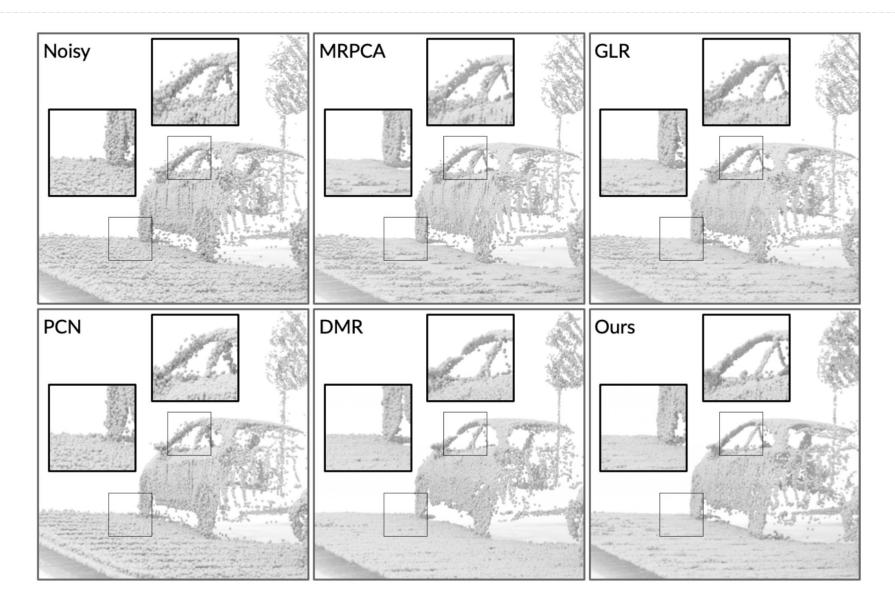




Comparison with other methods

- (a) Gaussian noise
- (b) Synthetic Lidar noise

N Results: Real-world Point Cloud Denoising



- Graph is flexible abstraction of geometric data residing on irregular domains
- Propose graph spectral methods for robust & interpretable processing and analysis
 - Learn the underlying graph to infer the geometric data structure
 - Propose graph transformation equivariant representation learning for unsupervised & interpretable analysis
 - Introduce GSP-based prior knowledge for robust analysis
- Achieve efficient, robust and interpretable geometric data processing & analysis!

Ongoing & Future Works

- GSP for enhancing model interpretability
 - > e.g., the effect of graph sparsity on the depth of GNNs
- Model-based geometric deep learning
 - Systematic framework for combining knowledge and data
- Adversarial attacks on geometric data with interpretation
 - > e.g., point cloud attacks with imperceptibility and transferability
- Functional brain network analysis with GSP & GNNs
 - ➢ e.g., neuron classification

Thank you!

Homepage: https://www.wict.pku.edu.cn/huwei/ Email: forhuwei@pku.edu.cn