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Y Introduction to geometric data processing and analysis NEFES

Geometric Data

* Describe the geometry of the 3D world

& ~

2D depth map 3D Point Cloud

3D Mesh

* Acquired by depth sensing, laser scanning or image processing

Microsoft Kinect Intel RealSense Velodyne LIiDAR LIDAR scanner of
Apple iPad Pro




Y Introduction to geometric data processing and analysis NPT

Geometric Data

« Central to a wide range of applications

Heritage Protection Free-viewpoint Video




Y Introduction to geometric data processing and analysis Drry

Tasks
* Processing: denoising, inpainting, « Analysis: classification, segmentation,

super-resolution, resampling, etc. detection, etc.

Point Cloud Segmentation
?E@E Truck? Car?

Point Cloud Inpainting Point Cloud Detection Point Cloud Classification
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Y Challenges

@ Unlike images, a wide range of geometric data have irregular sampling patterns
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Traditional image/video processing/analysis methods: assume sampling patterns over regular grids

@ Real-world geometric data often suffer from noise, missing data, ....

» Require Robustness
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3 Model Interpretability of geometric deep learning for analysis tasks
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Y Contributions
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Feature Graph Learning for point cloud denoising [TSP'20, TPAMI'21]

Irregularity <— « Learn a feature graph from an optimized Mahalanobis distance
: « Develop a fast block descent algorithm (eigen-decomposition-free)

*
*
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------
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Interpretable graph neural networks [TPAMI'22, TMM'21]

« Introduce domain knowledge via GSP-based regularization, robust
» Interpretation of graph neural networks via GSP

Robustness

*
*
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------
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Unsupervised graph representation learning [CVPR20, TKDE21]

Interpretability <—— * Propose Graph Transtormation Equivariant Representation via GSP
* Propose Topology Transformation Equivariant Representation

Challenges

Graph Signal Processing (GSP) & Graph Neural Network (GNN)
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Unsupervised graph representation learning [ TKDE'21]
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Y Why Graph Representation? ARME A
Non-Graph representations of irregular geometric data
« Quantization-based representations * Implicit functions
= A
' WA
;oo e <> r{ \ e o o o
o % © « SDF >0
" - @ SDF<0
Quantize onto regular voxel grids  Project onto multiple viewpoints Signed Distance Function

© Amenable to existing methods for Euclidean data

® Often deficient in capturing the geometric structure explicitly

® Sometimes inaccurate

@ Sometimes redundant




Y Why Graph Representation? @Dtz

» Graphs provide structure-adaptive, accurate, and compact representations for geometric data

(a) 2D Depth Map (b) 3D Point Cloud (c) 4D Dynamic Point Cloud
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Y\ Background in GSP & GNN

Graph Signal Processing (GSP) Graph Neural Network (GNN)

« Extend classical signal processing to « Extend deep learning techniques to
the graph domain the graph domain

* Principled mathematical models « Data-driven models

* Theoretical guarantee « Empirical performance

Tools: Graph filter, Graph Fourier Transform, Tools: Graph convolution, graph attention,

graph wavelets, etc. u graph pooling, etc.

* Interpretability (e.g., interpretation of graph convolution)

* Introduce GSP-based domain knowledge into GNNSs

Wel Hu, Jiahao Pang, Xianming Liu, Dong Tian, Chia-Wen Lin, Anthony Vetro, “Graph Signal Processing for
Geometric Data and Beyond: Theory and Applications,” accepted to TMM, 2021.
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Y\ Problem Statement - Feature graph learning

 Problem: The graph is often unavailable over geometric data

* Previous works:
» Previous graph learning methods often require multiple observations

e Contributions:

» Given feature vector per node, we propose feature graph learning
from only a single or even partial signal observation

» Develop a fast algorithm (eigen-decomposition-free)

Wei Hu, Xiang Gao, Gene Cheung, Zongming Guo, “Feature Graph Learning for 3D Point Cloud Denoising,” IEEE Transactions on
Signal Processing (TSP), vol. 68, pp.2841-2856, March 2020.

Cheng Yang, Gene Cheung, Wei Hu, "Signed Graph Metric Learning via Gershgorin Disc Alignment," accepted to IEEE
Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2021.
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Y Key Idea - Feature graph learning

Given a single or partial observation with relevant feature vector f; , compute the
Mahalanobis distance: ;i = (f; — fj)TM(fi —f;)

N PD metric matrix

Edge weight W; j of feature graph is w; ; = exp {—5@-73-} +— feature distance

Minimize Graph Laplacian Regularizer (GLR):

min XTLX = Z 'UJZ'J'(ZU?; — CUJ')2 — ZeXp {_(fz — f])TM(fZ _ fj)}diyj
1]

M . .
0,J

s.t. M>0; o(M)<C. >~

Minimizing GLR makes the graph adapt to the signal structure

» Solved via our proposed eigen-decomposition-free block-coordinate descent algorithm
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Y Results: 3D Point Cloud Denoising

RO

(a) Ground-truth (b) APSS (c) AWLOP (d) MRPCA (f) Ours

Wei Hu, Xiang Gao, Gene Cheung, Zongming Guo, “Feature Graph Learning for 3D Point Cloud Denoising,” IEEE Transactions on
Signal Processing (TSP), vol. 68, pp.2841-2856, March 2020.
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Y Results: 3D Point Cloud Denoising

(a) Ground-truth (b) APSS (c) AWLOP (d) MRPCA (e) GLR (f) Ours

Wei Hu, Xiang Gao, Gene Cheung, Zongming Guo, “Feature Graph Learning for 3D Point Cloud Denoising,” IEEE Transactions on
Signal Processing (TSP), vol. 68, pp.2841-2856, March 2020.
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 Problem: Existing GNNs are mostly trained in a (semi-)supervised (\ /3
manner, requiring a large amount of labeled data \O

(a) Before transformation.

Y Problem Statement — Unsupervised GraphTER learning

@ .

X3

 Previous works: Transformation Equivariant Representation

» Assumption: representations equivarying to transformations are able
to encode the intrinsic structures of data

» Limitation: focus on Euclidean data such as images, which cannot be O"f\
5—\. /‘,

directly extended to graphs
. . / 13( ) ’_,‘ )
« Contributions: 6, (%)
> Define generic graph signal transformations ’ )

» Propose Graph Transformation Equivariant Representation (b) After transtormation.

(GraphTER) learning in an unsupervised manner

Xiang Gao, Wei Hu, Guo-Jun Qi, “GraphTER: Unsupervised Learning of Graph Transformation Equivariant Representations via Auto-Encoding
Node-wise Transformations,” IEEE CVPR, 2020.
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Y Key ldea - Unsupervised GraphTER learning

« Define a generic graph signal transformation on the signal X as
node-wise graph filtering on X, e.g.,

- Low-pass graph filtering (averaging connected nodes) (X,A)
- Node-independent graph filtering O\/O ®
O O/ \ @ -
¥ ] \\\} E(X,A)
« Afunction E(-) is transformation equivariant if |, Node-vis . | . ,
Transformation t
. Estimated
(t(X) f (t(X))) ’? (t) E(X A)] O\ /Q ;’fj . /E(t(X), K) Transformation
node -wise homomorphism 07 tg""\"\%
transformation  transformation of t 0~@
(t(X),A)

The function E(-) extracts equivariant representations of graph signal X

Xiang Gao, Wei Hu, Guo-Jun Qi, “GraphTER: Unsupervised Learning of Graph Transformation Equivariant Representations via Auto-Encoding
Node-wise Transformations,” IEEE CVPR, 2020.
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Y Results: unsupervised point cloud learning

3D Point Cloud Classification Method Year Unsupervised Accuracy
3D ShapeNets [47] 2015 No 84.7
« Dataset: ModelNet40 VoxNet [30] 2015 No 85.9
PointNet [32] 2017 No 89.2
e Metric: Accuracy (%) PointNet++ [33] 2017 No 90.7
KD-Net [21] 2017 No 90.6
PointCNN [25] 2018 No 92.2
PCNN [2] 2018 No 92.3
DGCNN [44] 2019 No 92.9
RS-CNN [28] 2019 No 93.6
T-L Network [13] 2016 Yes 74.4
VConv-DAE [39] 2016 Yes 75.5
Approach the upper bound set by 3D-GAN [45] 2016 Yes 83.3
: LGAN [1] 2018 Yes 85.7
the fully supervised counterparts FoldingNet [48] 2018 Yes 38 4
MAP-VAE [15] 2019 Yes 90.2
L2G-AE [27] 2019 Yes 90.6

GraphTER Yes 92.0




Results: unsupervised point cloud learning

(a) Ground-truth  (b) DGCNN (¢c) RS-CNN

Visual comparison with
the supervised methods

(d) Ours
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(a) MAP-VAE
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(b) Ours

Visual comparison with
the SOTA unsupervised method
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Y\ Extension to Unsupervised TopoTER learning

Idea: maximize the mutual information between topology transformations & node representations
before and after the transformations.
Original Graph Perturbed Graph

©

Topology Transformation

L >
01 0 -1 0 0 0
1 00 0 0 0 0
4 00 0 -1 0 0 0 @
AA=|-10 -1 0 0 0 0 )
0 00 0 0 0 -1 R
000 0 0 0 1
0 0 0 0 -11 0
— unchanged edge —— added edge --- removed edge

E(X,A) = E(X,t(A)) = p(D[E(X,A)]

Encoder E: (X,A) » H,(X,A) » H
Decoder D: (H,H) » AA

Xiang Gao, Wei Hu, Guo-Jun Qi, “Self-Supervised Graph Representation Learning via Topology Transformations,”
accepted to IEEE TKDE, May, 2021.
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Y\ Extension to Unsupervised TopoTER learning

Idea: maximize the mutual information between topology transformations & node representations

before and after the transformations. _
max I(H, AA; H)

!

min H (p(AA, H, H) Il q(AA|H, H)) £ — o 108 q(AA|H,H)

Encoder E () :: Decoder D(-)

(X,A)=» GCNN F—=>H € RV*F =
I 1
I
. 1 N .
' sharedjweights | Minus —p AH € RV*F e
I

Construct Edge
Representation

== [ inear -:-bﬂ

Xiang Gao, Wei Hu, Guo-Jun Qi, “Self-Supervised Graph Representation Learning via Topology Transformations,”
accepted to IEEE TKDE, May, 2021.
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Extension to Unsupervised TopoTER learning

Results on node classification

Method Training Data Cora Citeseer Pubmed
Semi-Supervised Methods

GCN (Kipf & Welling, 2017) X,AY 81.5 103 79.0

MoNet (Monti et al., 2017) X,AY ST =058 - 78.8 + 0.3
GAT (Velickovi¢ et al., 2018) X,AY 83.0 £ 0.7 2.5 0.7 9.0 £ 0.3
SGC (Wu et al., 2019) X, A Y S1.0 0.0 119 0.1 8.9 0.0
GWNN (Xu et al., 2019a) X,AY 82.8 71.7 79.1

MixHop (Abu-El-Haija et al., 2019) X, A Y 81.94+0.4 71.4 4+ 0.8 80.8 = 0.6
DFNet (Wijesinghe & Wang, 2019) X A,Y 85.2 £ 0.5 74.2 1+ 0.3 84.3 £ 0.4

Unsupervised Methods

Raw Features (Velickovic et al., 2019) X 479+0.4 49.3 =10.2 69.1 = 0.3
DeepWalk (Perozzi et al., 2014) A 67.2 43.2 65.3

DeepWalk + Features (Velickovic et al., 2019) X, A 70.7 £ 0.6 Sl £ )5 74.3 £ 0.9
GAE (Kipf & Welling, 2016) X, A 80.9 0.4 66.7 = 0.4 7.1 0.7
VGAE (Kipf & Welling, 2016) X, A 800 =10.2 64.1 £+ 0.2 6.9 = 0.1
DGI (Velickovic et al., 2019) X, A al.] =01 7l.4 0.2 fi.0 0.2
GMI (Peng et al., 2020) X, A 82.2 =02 71.44+ 0.5 78.5 + 0.1
TopoTER X, A 83.7+0.3 71.7 0.5 79.1 £ 0.1
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Y\ Extension to Unsupervised TopoTER learning

Results on graph classification

NPT TR
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Dataset MUTAG PTC-MR RDT-B RDT-MS5K IMDB-B IMDB-M
(No. Graphs) 188 344 2000 4999 1000 1500
(No. Classes) 2 2 2 5 2 3
Graph Kernel Methods
RW 83.72 £ 1.50 57.85 £ 1.30 OOM OOM 50.68 + 0.26 34.65 £+ 0.19
SP 85.22 £ 2.43 58.24 + 2.44 64.11 +£0.14 39.55 =0.22 55.60 & 0.22 37.99 £ 0.30
GK 81.66 = 2.11 57.26 = 1.41 77.34 =0.18 41.01 £ 0.17 65.87 £ 0.98 43.89 £+ 0.38
WL 80.72 £ 3.00 57.97 £ 0.49 68.82 £ 0.41 46.06 £ 0.21 72.30 & 3.44 46.95 £ 0.46
DGK 87.44 = 2.72 60.08 £ 2.55 78.04 & 0.39 41.27 £ 0.18 66.96 £+ 0.56 44.55 £ 0.52
MLG 87.94 £+ 1.61 63.26 + 1.48 >1 Day >1 Day 66.55 £+ 0.25 41.17 £ 0.03
Supervised Methods
GCN 85.6 == 5.8 64.2 1+ 4.3 50.0 &= 0.0 20.0 & 0.0 74.0 & 3.0 51.9 3.8
GraphSAGE 85.1 1+ 7.8 63.9 =& 7.7 - - 2.3+ 5.3 50.9 = 2.2
GIN-0 89.4 £ 5.6 64.6 = 7.0 924+ 2.5 57.5 1+ 1.5 5.1 5.1 52.3 1+ 2.8
GIN-¢ 89.0 £ 6.0 63.7 - 8.2 922123 570 %= 1.7 4.3 £ 5.1 52.1 1+.3.6
Unsupervised Methods
node2vec 7263 £ 10:20 58.58 4+ 8.00 - - - -
sub2vec 61.05 £+ 15.80 59.99 £ 6.38 71.48 £ 0.41 36.68 4= 0.42 55.26 &+ 1.54 36.67 4+ 0.83
graph2vec 83.15 £ 9.25 60.17 = 6:86 75.78 =£1.03 47.86 £ 0.26 71.10 £ 0.54 50.44 + 0.87
InfoGraph 89.01+1.13 61.65 £+ 1.43 82.50 X+ 1.42 53.46 = 1.03 €3.03 &= 0.87 49.69 & 0.53
TopoTER 89.25+0.81 64.59+1.26 84.93+0.18 55.52+0.20 73.46 +0.38 49.68 £+ 0.31




Y Problem Statement - Interpretable Graph Neural Networks

* Problem: Real-word data often suffer from noise, missing data...
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* Previous Works:

> Optimization-based approaches rely heavily on geometric priors

» Deep learning methods often suffer from over-estimation or under-

estimation of the displacement

 Contributions:

» propose deep point set resampling for point cloud restoration, which

X

models the distribution of degraded point clouds via gradient fields and * 4
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converges points towards the underlying surface for restoration.

Shitong Luo, Wei Hu, “Score-Based Point Cloud Denoising,” ICCV 2021.

Paris-rue-Madame

Haolan Chen, Bi'an Du, Shitong Luo, Wei Hu, “Deep Point Set Resampling via Gradient Fields,” accepted to TPAMI, 2022.
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Key observation: the distribution of a noisy point cloud can be viewed as the distribution of noise-free
points p(x) convolved with some noise model n, leading to (p * n)(x)

(pxn)(®)  Vglog[(pxn)(z)]

/\ \ . Density of Points
* \

—— Underlying Surface Estnmated Gradient Fleld

Q { ‘ © Point .
o — | S1 & x x x x
o | < — Score

Gradient Ascent

O Point  -=---+ Gradient Underlying Surface

Clean Noisy

Perform gradient ascent on the log-probability function log[(p * n)(x)]? p * n is unknown!

- estimate the gradient field of the distribution: Vg log[(p * ﬂ)(ﬂl)]
- denoise the point cloud by gradient ascent to move noisy points towards the mode of p xn




Y Key Idea - Interpretable Graph Neural Networks NELFES
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Key observation: the distribution of a noisy point cloud can be viewed as the distribution of noise-free
points p(x) convolved with some noise model n, leading to (p * n)(x)
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Estimated Gradient Field Without Regularization With Regularization

-=» GradientField =~ == Underlying Surface ==== Reconstructed Surface

o Original Point Set Resampled Point Set

Introduce regularization (GLR, etc.) into the point set resampling process, to enhance the
Intermediate resampled point cloud iteratively during the inference
- more robust and interpretable
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A gradient ascent trajectory of our point

cloud denoising every other 10 steps.

Results: Synthetic Point Cloud Denoising
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Noisy

MRPCA

PCN

DMR

Ours

Clean

(a)

GLR

Comparison with other methods
(a) Gaussian noise

(b)

(b) Synthetic Lidar noise

> o
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Results: Real-world Point Cloud Denoising

MRPCA

GLR
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Summary

« Graph is flexible abstraction of geometric data residing on irregular domains

* Propose graph spectral methods for robust & interpretable processing and analysis

» Learn the underlying graph to infer the geometric data structure
» Propose graph transformation equivariant representation learning for

unsupervised & interpretable analysis

» Introduce GSP-based prior knowledge for robust analysis

* Achieve efficient, robust and interpretable geometric data processing & analysis!

technicolor £l
. 3 B Alibaba Group @'4 HUAWEI
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Ongoing & Future Works

GSP for enhancing model interpretability
» e.g., the effect of graph sparsity on the depth of GNNs

Model-based geometric deep learning

» Systematic framework for combining knowledge and data

Adversarial attacks on geometric data with interpretation

» e.g., point cloud attacks with imperceptibility and transferability

Functional brain network analysis with GSP & GNNs

» e.g., neuron classification




Thank you!

Homepage: https://www.wict.pku.edu.cn/nhuwei/
Email: fornuwei@pku.edu.cn




