
MA360: MULTI-AGENT DEEP REINFORCEMENT LEARNING BASED LIVE 360-DEGREE
VIDEO STREAMING ON EDGE

Yixuan Ban, Yuanxing Zhang, Haodan Zhang, Xinggong Zhang, Zongming Guo∗

Wangxuan Institute of Computer Technology, Peking University, Beijing, China
Email:{banyixuan, longo, pkuzhd, zhangxg, guozongming}@pku.edu.cn

ABSTRACT

The mobile edge caching has made video service providers
deliver live 360-degree videos worldwide. However, these
services still suffer from the huge network traffic on the
core network due to the spherical nature and the diverse re-
quests generated from large user populations. It is challeng-
ing to optimize the Quality of Experience (QoE) and the
bandwidth consumption simultaneously under the significant
number of users as well as dynamic network and playback
status. In this paper, we propose a Multi-Agent deep rein-
forcement learning based 360-degree video streaming system,
named MA360, to tackle this multi-user live 360-degree video
streaming problem in the context of the edge cache network.
Specifically, MA360 employs the Mean Field Actor-Critic
(MFAC) algorithm to make clients collaboratively and dis-
tributively request tiles aiming at maximizing the overall QoE
while minimizing the total bandwidth consumption. Experi-
ments over real-world datasets show that MA360 can improve
the QoE while significantly reducing the bandwidth consump-
tion compared with several state-of-the-art edge-assisted 360-
degree video streaming strategies.

Index Terms— 360-degree video, live video streaming,
adaptive streaming, multi-agent deep reinforcement learning

1. INTRODUCTION

360-degree videos, also known as Virtual Reality (VR)
videos, have become increasingly popular in recent years.
Many commercial platforms, such as YouTube and Facebook,
have launched live 360-degree video streaming services.

To provide the same Quality of Experience (QoE) for
users, clients require much more bitrates to deliver 360-
degree videos than common 2D videos due to the spher-
ical nature. However, only a small portion of the scene,
named viewport, can be seen by users due to the limited
screen size [1], which makes the multi-user high-quality 360-
degree video delivery pretty challenging. Inspired by Dy-
namic Adaptive Streaming over HTTP (DASH) standard [2]
applied on ordinary videos, both industry and academia have

∗Corresponding author. E-mail:guozongming@pku.edu.cn.
This work was supported by the National Key R&D program of China

(2019YFB1802701, 2018YFB0803702), Toutiao Research Funding.

Source Server Edge Server

User 3

Raw 360° Video

Tiling and
Multi-Bitrate Encoding

Cloud User 1

User 2

Fig. 1. Edge-assisted live 360-degree video streaming system

proposed tile-based viewport-adaptive video streaming strate-
gies to deliver 360-degree videos efficiently [1, 3]. These
strategies allocate high tile rates inside the viewport and low
tile rates outside the viewport to maximize the QoE for users
and alleviate the bandwidth consumption accordingly.

In addition to tile-based streaming, the edge cache net-
work is also deployed to serve multiple users simultaneously.
However, the traffic on the core network is still huge since
the user requests are highly diverse in practice. In 360-degree
video streaming, users may watch the same video with differ-
ent viewports and bitrates, which means the edge server has
to retrieve various tile representations from the source server.
It will lead to considerable delivery cost for service providers
and tremendous pressure for the source server. Besides, the
slight quality changes in different tile representations are dif-
ficult to perceive by customers due to the non-linear rela-
tionship between bitrates and distortions. In current adaptive
streaming systems, clients usually request tiles without coop-
eration [1, 3], i.e., the tile requests are made only by their
own network conditions and playback status. It is essential
and necessary to coordinate all clients’ requests to alleviate
traffic to the source server. Several works about multi-user
adaptive streaming have proposed to deliver videos to clients
cooperatively [4, 5], but all in a centralized scheme. They
have to solve a sophisticated model to decide the overall bi-
trate allocation schemes after collecting all clients’ statistics.
It will lead to considerable computational complexity for edge
servers as well as inevitable latency for users, and degrade the
live streaming system’s performance eventually.

To reduce the traffic on the core network in low compu-
tational complexity, we utilize an edge-assisted framework to

978-1-7281-1331-9/20/$31.00 c©2020 IEEE

Authorized licensed use limited to: Peking University. Downloaded on October 26,2020 at 09:41:03 UTC from IEEE Xplore. Restrictions apply.

deliver tile-based live 360-degree videos collaboratively and
distributively, as shown in Fig. 1. In this framework, clients
will actively adjust their tile rates to optimize both the QoE
and the overall bandwidth consumption by communicating
with the edge server. Ideally, if all clients with the same view-
ports request the same tile rates, the traffic could get signifi-
cant alleviation. To get aware of the system’s overall states,
clients watching the same videos in our framework will re-
port their local states to the edge server and receive the pro-
cessed global states generated from the server. Then the lo-
cal states and global states are combined to generate cooper-
ative requests distributively, which can effectively reduce the
streaming system’s computational complexity.

Based on the proposed framework, we design a Multi-
Agent deep reinforcement learning based live 360-degree
video streaming system, called MA360, to learn the optimal
collaboration streaming scheme in multi-user live 360-degree
video streaming. Specifically, we utilize the Long Short-Term
Memory (LSTM) network [6] to predict each user’s future
bandwidth and viewport to fit the dynamic network and play-
back conditions. Then, we leverage the Mean Field Actor-
Critic (MFAC) model [7] to learn the optimal rate alloca-
tion strategy. Extensive experiments on real-world datasets
demonstrate that MA360 can achieve significant improve-
ment on overall QoE and bandwidth reduction compared with
state-of-the-art streaming schemes.

To summarize, our main contributions include:
• We provide a live 360-degree video streaming frame-

work to make clients allocate tile rates collaboratively
and distributively, which can maximize the overall QoE
while minimizing the total bandwidth consumption.

• We propose an MFAC-based model to solve the large-
scale multi-user rate allocation problem in real-time un-
der dynamic environments.

• We demonstrate the MA360 can outperform the exist-
ing schemes under various network and playback con-
ditions. It can improve QoE by 14% and reduce band-
width consumption by 52% on average.

2. MADRL BASED LIVE 360-DEGREE VIDEO
STREAMING

2.1. Multi-User Live 360-Degree Video Streaming

Fig. 2 illustrates the core idea of our edge-assisted live
360-degree video streaming system. Suppose K users are
watching the same 360-degree video through the same edge
server with similar viewports. If they request the same tile
rates, the bandwidth consumption C between the edge server
and the source server can be much saved. LetUk denote client
k’s QoE, where k ∈ {1...K}, then our optimization objective
can be depicted as below with coefficient η:

max

K∑
k=1

Uk − ηC. (1)

Bandwidth Consumption

Viewport

Source Server

Edge Server

…
User 1 User K

Reused Tiles

Viewport

Fig. 2. Core idea on bandwidth reduction in MA360

2.2. MADRL Based Live 360-Degree Video Streaming

The edge-assisted network for tile-based adaptive 360-
degree video streaming is a complex system influenced by
a large number of factors, which can be seen as a high-
dimensional environment for multi-user bitrate adaptation
strategies. The total bandwidth consumption is calculated
based on all clients’ joint decisions. Traditional centralized
optimization can hardly solve this problem in low complexity.
Even if the system is deployed distributively, the communica-
tion overhead among large-scale clients is still high. To deal
with the high-dimensional distributive collaboration problem,
we introduce the Multi-Agent Deep Reinforcement Learning
(MADRL) model to learn the optimal rate allocation scheme.

Formally, a typical MADRL model can be described by a
Markov process denoted by a tupleG =< K,S,A,R, P, γ >
representing agent numbers, state space, joint action space,
reward function, transition probability function and discount
factor respectively. In each iteration of the MADRL model,
agents make actions based on their current states and impact
the environment simultaneously. The actions prompt the en-
vironment to yield rewards for agents, and then the states of
all agents are changed by the transition probability function.
During that, the agents can gradually learn the optimal coop-
erative policy, which can map the states to actions to maxi-
mize the cumulative discounted reward.

As shown in Fig. 3, in our framework, clients are seen
as agents interacting with the playback environment jointly
to maximize the utility function in Eqn. (1). To make each
client allocate tile rates with the knowledge of the global cir-
cumstances, the clients are designed to report some of their
local states skl including estimated viewport V ′k, estimated
bandwidthB′k and other local information to the edge server.
Then the edge server will embed the previous report of each
client into a global state sg , and distribute it back in real-time,
instead of implementing heavy and intense computing tasks
like the centralized schemes. Based on their own states sk,
where sk = {skl , sg}, the clients can independently make re-
quests ak on tiles, and receive rewards rk generated from the
edge server. After thousands of interactions among sk, ak,
and rk, the clients can learn the optimal policy π to allocate
tile rates cooperatively.

Following the adaptive streaming standard like DASH [2],
we segment the 360-degree videos periodically into L chunks

Authorized licensed use limited to: Peking University. Downloaded on October 26,2020 at 09:41:03 UTC from IEEE Xplore. Restrictions apply.

User 1 User K

Global State Cache

Edge Server

…

Viewport Bandwidth Viewport Bandwidth

- Reward
- Global State
- Local State

- Tile Rate Selection

Fig. 3. Streaming framework of MA360 based on MADRL

with the same duration T , denoted as lt, where t ∈ {1, ..., L}.
The chunks are further cropped into N tiles with M bitrate
levels, denoted as bj , j ∈ {1, . . . ,M}. Let V kt be the k-
th client’s viewport on chunk lt in euler angle, which can
be mapped into the viewing tiles {vki,t}, where vki,t indicates
whether the i-th tile (i ∈ {1, . . . , N}) locates in the client’s
viewport (vki,t = 1) or not (vki,t = 0). Meanwhile, let Bkt
represent the bandwidth of the k-th client while downloading
chunk lt.

To maximize the QoE, clients should decide each tile’s
bitrate for the chunk. We denote xki,j,t as whether the i-th tile
on the t-th chunk lt is allocated with the j-th bitrate level for
client k, where xki,j,t = 1 means yes vice versa.

2.3. MADRL Semantics
The multi-user live 360-degree video streaming system

can be transformed into the following MADRL semantics.
State: We formulate the live streaming system into a time-

slotted representation, where the source server releases new
chunk every T seconds. Therefore, clients are expected to
start downloading chunk lt at time t×T , as shown in “User-1”
in Fig. 4. However, due to the dynamic network conditions in
practice, clients may fail to download the chunk lt−1 entirely
by the end of the slot t − 1. Then the remain data should be
downloaded in slot t, leading to the asynchronous download-
ing of a specific chunk and possible one-way delay, as shown
in “User-2” in Fig. 4. Here, dkt represents the remain data in
slot t of the k-th client.

To make clients aware of the dynamic changes and reduce
the delay, we come up with a timing communication mecha-
nism, where clients are designed to report their local states skl,t
including estimated viewport V ′kt , estimated bandwidth B′kt ,
and remain data dkt to the edge server by the end of the cur-
rent slot. The edge server then takes the mean of the reports as
the global state, i.e., sg,t = {V ′t, B′t, dt}, to depict the sys-
tem’s network and playback conditions and provide clues for
clients to make cooperative decisions asynchronously. The
simple calculation can significantly reduce the computational
pressure on the edge server and can efficiently deal with the
multi-user scenario in practice. Meanwhile, the client’s last
action akt−1 is also involved in the local state considering the
temporal viewing variance’s influence on QoE [3].

Within the timing communication mechanism, the clients

…
User-1

User-2
…

…

…

Source Server

Communication Time
…

Fig. 4. Time slot-based decision process

can make decisions based on their states skt = {skl,t, sg,t}. To
make our framework adapt to the system’s uncertainties well,
we leverage the Long Short-Term Memory (LSTM) [6] model
to predict each user’s future viewport and bandwidth. The
prediction process can be formulated as below where ϕV and
ϕB are the LSTM network’s parameters, ht(V k) and ht(Bk)
are the historical viewports and bandwidth traces.{

V ′
k
t = LSTM(ht(V

k);ϕV)

B′
k
t = LSTM(ht(B

k);ϕB),
(2)

Action: The target of our streaming system is to decide
each tile’s bitrates, i.e., akt = {xki,j,t}. We constrain each
client to select one rate level for any tile in case of the band-
width waste:

M∑
j=1

xki,j,t ≤ 1, xki,j,t ∈ {0, 1}, ∀k, i, t. (3)

Besides, to avoid from seeing a “blank” screen and en-
sure the smoothness playback in viewports, we constrain that
tiles outside the viewport are allocated in lowest rates and the
tiles inside the viewports are allocated with the same rates as
below:{∑M

j=1 x
k
i,j,tbj = b1, ∀k, t, vki,t = 0∑M

j=1 x
k
i,j,tbj =

∑M
j=1 x

k
i′,j,tbj , ∀k, t, vki,t = vki′,t.

(4)

Given the constraints above, each client’s action can be
denoted as a one-hot vector akt indicating which bitrate inside
user k’s viewport should be requested at time slot t.

Reward: As shown in Eqn. (1), MA360’s main idea is
to maximize the QoE and minimize the bandwidth consump-
tion. Thus the reward of each client rkt is assigned as its
own perceived QoE minus the average bandwidth consump-
tion shared by each client, as shown below:

rkt = Ukt − η
1

K
Ct. (5)

In practice, the k-th client’s QoE Ukt in slot t should con-
sider not only the average quality inside the viewport, denoted
by Ukq,t, but also the temporal viewing variance Ukv,t between
consecutive chunks [3]. Besides, the QoE metrics should also
involve the newly generated remain data to reduce delay Ukd,t
in live streaming, as shown below:

Ukt = Ukq,t − λUkv,t − µUkd,t (6)

Authorized licensed use limited to: Peking University. Downloaded on October 26,2020 at 09:41:03 UTC from IEEE Xplore. Restrictions apply.

Thus the objective of the live 360-degree video streaming
system focuses on four aspects:

Average Quality Ukq,t: We denote the quality of the i-th
tile with the j-th bitrate level on chunk t as qi,j,t, representing
the Peak Signal to Noise Ratio (PSNR) calculated by Mean
Squared Error (MSE) on points. Thus the estimated perceived
quality Ukq,t can be calculated as:

Ukq,t =

∑N
i=1 v

k
i,t

∑M
j=1 x

k
i,j,tqi,j,t∑N

i=1 v
k
i,t

. (7)

Temporal Viewing Variance Ukv,t: The temporal viewing
variance can be formulated as the average quality difference
between the consequent chunks:

Ukv,t = |Ukq,t − Ukq,t−1|. (8)

Playback Delay Ukd,t: The playback delay can be repre-
sented by the newly generated remain data on the reward:

Ukd,t=[dkt]
++[

N∑
i=1

vki,t

M∑
j=1

xki,j,tbj+(N−
N∑
i=1

vki,t)b1−Bkt]+T,

(9)
where [x]+ = max{0, x} ensures the delay to be positive.

Bandwidth Consumption Ct: Due to the edge server’s
caching capability, multiple same requests for one tile will
only forward once. Let fi,j,t denote whether tile-i in j-th bi-
trate level are requested in slot t, where fi,j,t = 1 means it’s
requested and fi,j,t = 0 otherwise. The total bandwidth con-
sumption on slot t can be described as:

Ct =

N∑
i=1

M∑
j=1

fi,j,tbj (10)

Policy: The clients should follow the streaming policy
akt ∼ πθ(s

k
t) to select tile rates, where θ is the policy’s pa-

rameter. Then our task can be written in MADRL semantics
as:

π∗θ(s
k
t) = argmax

πθ

Qπ(s
k
t ,at) (11)

Value: MA360 requires offline training before online
fine-tuning to be efficient in real-world streaming services.
During the training process, we introduce the value to mea-
sure whether a policy can optimize the objective of MA360.
We denote the joint state-action value function as Qπ(skt ,at)
to indicate the estimated performance of each client, which is
the expectation of the cumulative discounted reward of client
k on state skt with all clients following joint action π:

Qπ(s
k
t ,at) = Eπ,p[

L∑
t′=t

γ(t
′−t)rkt |skt ,at] (12)

2.4. Learning Strategy of MA360
In MA360, each client’s reward is determined by the joint

action at, thus the dimension of joint state-action pairs grows
proportionally w.r.t the number of users K. To deal with this
problem, we use the Mean-Field Actor-Critic learning infras-
tructure (MFAC) [7] to learn the optimal policy, which can

Environment
State

LSTM

History Bandwidth

History Viewport

Last Action

Global Bandwidth

Global Viewport

Experience Replay Memory

Adam Optimizer

Q-Network
Actor

Critic

Target Q-Network
Actor

Critic

Update
and

Execute

Update
and

Policy Policy

Value Value

Sample Batch

LSTM

Remain Data

Global Remain

Fig. 5. MFAC-DQN based learning network

decompose the complex interaction among all clients into a
simple learning process. Specifically, the k-th client only se-
lects bitrates by cooperation with other clients’ average action
at =

1
K

∑K
k=1 a

k
t . Then the joint state-action value function

for each client can be estimated by a deep learning network
[8] with parameter φ:

Qπ(s
k
t ,at) ≈ Qφ(skt ,at) = Qφ(s

k
t , a

k
t , at) (13)

To stabilize the learning process, we also utilize the Deep
Q-Network (DQN) model [9] to update our model’s param-
eters by leveraging the experience replay memory and target
Q-network.

The structure of the MFAC-DQN based learning network
is shown in Fig. 5. The model is composed of two net-
works, called the Q-network and the target Q-network sep-
arately. Each network consists of two sub-networks called
actor-network and critic-network respectively. The actor-
network is to learn the optimal cooperation policy πθ and
generate tile rate selections according to the learned policy,
which is the core component. The critic-network is to eval-
uate the joint state-action value function Qφ and guide the
update of the actor-network’s parameters. To break the train-
ing samples’ correlation, the experience replay memory is
also adopted. During each video playback process namely
episode in MADRL semantics, the edge server will calcu-
late the mean action at and store the interaction tuple <
st,at, rt, st+1,at > for all clients as experience in the ex-
perience replay memory. When the current episode of video
playback is complete, we randomly select ε mini-batches
from experience replay memory to update Q-network’s pa-
rameters, where each mini-batch contains δ experiences.

To stabilize the training process and to keep the memory
of the previously learned strategy, target Q-network with pa-
rameter θ and φ is also adopted to evaluate the joint state-
action value function with Q-network together. Specifically,
after each episode, target Q-network uses the moving average
of Q-network’s parameters computed with the learning rate
τφ and τθ to update its own parameters :{

φ = τφφ+ (1− τφ)φ
θ = τθθ + (1− τθ)θ

(14)

Additionally, the standard Adam Optimizer [8] is used to
train the network.

Authorized licensed use limited to: Peking University. Downloaded on October 26,2020 at 09:41:03 UTC from IEEE Xplore. Restrictions apply.

Mathematically, we use the actor-critic model [3] to com-
pute the system’s cumulative reward gradient∇θJ(θ) to learn
the optimal cooperation policy πθ. It utilizes the next slot’s
joint state-action value function and reward to estimate the
value on this slot as below:

∇θJ(θ) ≈
K∑
k=1

L∑
t=1

∇θ logπθ
(skt)Aφ(s

k
t , a

k
t , at) (15)

Here, Aφ(skt , a
k
t , at) represents the advantage function

in critic-network to accelerate the convergence of the model,
which can be calculated as:

Aφ(s
k
t , a

k
t , at) = ykt −Qφ(skt , akt , at) (16)

The ykt is the target value on the next slot generated by
target Q-network, which can be expressed as:

ykt = rkt + γQφ (skt+1, a
k
t+1, at+1) (17)

Then the actor-network’s parameters can be updated in
the direction of generating a more determinate action on that
state with the learning rate α. As for the critic-network, to
get a more specific evaluation on joint state-action value, we
minimize the advantage function with learning rate β. The
update of parameters can be formulated as below:{

θ=θ+α
∑K
k=1

∑L
t=1∇θ logπθ

(skt)Aφ(s
k
t , a

k
t , at)

φ=φ+β
∑K
k=1

∑L
t=1∇φ(ykt −Qφ(skt , akt , at))

2

(18)

3. PERFORMANCE EVALUATION

3.1. Settings and Evaluation Methodologies

Datasets and Experimental configurations. The 360-
degree video head movement dataset and bandwidth dataset
are collected from [10] and [11], where the former contains
864 head movement traces with 48 users watching 18 videos
each, the latter includes 86 traces scaled to ensure playback.
We randomly choose 3× 48 head movement traces from three
videos and 20 bandwidth traces as the test set, while the oth-
ers as the training set. To enlarge our training data, we always
randomly choose head movement traces and bandwidth traces
for clients at each training episode. Also, we normalize the
viewing quality, video size and the bandwidth before train-
ing. In the experiments, we crop and encode these chunks
into 4 × 8 tiles (N = 32) and 5 kinds of bitrates (M = 5) in-
cluding {100kbps, 300kbps, 500kbps, 1000kbps, 1500kbps}
with segment duration T = 1 second.

Hyper-parameters. In MA360’s training process, the
learning rate α, β is initialized by 10−4 and updated accord-
ing to Adam Optimization [8]. Other hyper-parameters used
in our framework are listed as follows:

Table 1. Hyper-parameters of MA360
η µ λ γ τφ τθ ε δ
1 0.01 0.1 0.95 0.99 0.99 10 100

Methodology. We compare MA360 with four state-of-
the-art streaming systems to evaluate the performance:

SDASH [2] acts like the Standard DASH algorithm,
which delivers the entire video contents to users.

LRTile [1] leverages LR to predict the viewport and the
bandwidth. It delivers tiles inside the viewports with the high-
est affordable rates while the others in the lowest rates.

ECache [5] utilizes a centralized framework to maximize
user’s QoE and minimize the bandwidth consumption by edge
caching placement, which can be extended to our streaming
scenario by conducting the placement process in real-time and
adopting the same prediction algorithm like MA360.

Pytheas [12] adopts a single-agent reinforcement learning
model to maximize the system’s utility function. The predic-
tion algorithm also sets the same as MA360.

3.2. Performance on Viewport and Bandwidth Prediction
To evaluate the performance of LSTM-based prediction,

we compare it with the LR algorithm [1] and the Baseline ap-
proach, which utilizes the past three segments’ information
to conduct Linear Regression and average calculation sepa-
rately. The prediction precision of viewport is calculated by
the ratio of predicted tiles in real viewport tiles, and the preci-
sion of bandwidth is calculated by one minus the percentage
of absolute error. As shown in Tab. 2, LSTM outperforms the
LR and Baseline approach on both viewport prediction and
bandwidth prediction, which proves its adaptations.

Table 2. Performance on Viewport and Bandwidth Prediction
Metrics Baseline LR LSTM

Viewport Prediction Precision 85.17% 86.10% 88.14%
Bandwidth Prediction Precision 88.87% 91.86% 92.50%

3.3. Performance on Different User Numbers
To check our framework’s performance under different

user numbers in real-world, we constrain the video index and
conduct five experiments with user number equal to {10, 20,
30, 40, 48} separately. As shown in Fig. 6, no matter how
many users, MA360 can effectively enhance the average nor-
malized QoE and reduce the total bandwidth consumption,
thus improve the average system utility (Eqn. (1)) on all users.
As the user number grows, MA360 can further promote these
metrics by extensive cooperation among clients.

As depicted in Fig. 6(b), our model can reduce the total
bandwidth consumption by 68% compared with LRTile and
41%-45% compared with Pytheas and SDASH, which greatly
demonstrates our cooperation model’s effectiveness. With
such bandwidth consumption reduction, our model can still
enhance the QoE by 14% on average compared with SDASH,
while others only improve 10%-12% as shown in Fig. 6(a).
Eventually, the system’s average utility can get a promotion
by 18% compared with SDASH in MA360, and the other
schemes’ improvement are 9%-14% as shown in Fig. 6(c).

The reason behind this is that SDASH, LRTile, and Pyth-
eas act without cooperation. They only select the best tile
rates for themselves, thus lead to higher bandwidth consump-
tion and lower QoE. ECache can reduce the bandwidth con-
sumption about the same extent as MA360 due to the cen-

Authorized licensed use limited to: Peking University. Downloaded on October 26,2020 at 09:41:03 UTC from IEEE Xplore. Restrictions apply.

10 20 30 40 48
User Number

0.70

0.75

0.80

0.85

A
ve

ra
ge

 Q
oE

SDASH
LRTile

ECache
Pytheas

MA360

(a) Average QoE

10 20 30 40 48
User Number

0

20

40

B
W

 C
on

su
m

pt
io

n
(M

bp
s)

SDASH
LRTile

ECache
Pytheas

MA360

(b) Bandwidth Consumption

10 20 30 40 48
User Number

0.60

0.65

0.70

0.75

0.80

0.85

A
ve

ra
ge

 U
til

ity

SDASH
LRTile

ECache
Pytheas

MA360

(c) Average Utility

Fig. 6. Performance on different user numbers

1 2 3
Video Number

0.70

0.75

0.80

0.85

A
ve

ra
ge

 Q
oE

SDASH
LRTile

ECache
Pytheas

MA360

(a) Average QoE

1 2 3
Video Number

0

50

100
B

W
 C

on
su

m
pt

io
n

(M
bp

s)

SDASH
LRTile

ECache
Pytheas

MA360

(b) Bandwidth Consumption

1 2 3
Video Number

32

34

36

38

40

Sy
st

em
 U

til
ity

SDASH
LRTile

ECache
Pytheas

MA360

(c) System Utility

Fig. 7. Performance on different live video numbers

tralized bandwidth-efficient optimization. Nevertheless, as il-
lustrated in Fig. 6(a), the harm on QoE can not be neglected.
Furthermore, the complexity of selecting reasonable tile rates
for huge user populations is enormous, which makes ECache
scheme impractical in real world.

3.4. Performance on Different Live Video Numbers
To evaluate MA360’s performance on different live video

numbers, we constrain the user number to 48 and conduct
three experiments with video number equal to {1, 2, 3} sep-
arately. As shown in Fig. 7(a), as the video number grows,
the normalized QoE almost remains steady for all methods,
but the download traffic grows proportionately in Fig. 7(b),
which leads to the decrease of the system utility as shown in
Fig. 7(c). In this case, we can still observe MA360’s effective-
ness on the three metrics. The cooperation strategy in MA360
can achieve the most absolute bandwidth reduction while en-
hancing the user’s QoE, which further confirms the validity
and necessity of our scheme in real-world since there could
be substantial live videos broadcasting over the Internet.

4. CONCLUSION

In this paper, we present a Multi-Agent deep reinforce-
ment learning based system, named MA360, to maximize
users’ QoE while minimizing the bandwidth consumption on
the core network through cooperation in multi-user live 360-
degree video streaming. MA360 utilizes the LSTM model to
predict users’ bandwidth and viewports. Besides, an MFAC-
based model is also employed to enhance the system utility
by generating a robust and effective rate allocation scheme
for clients distributively. The framework of MA360 can eas-
ily migrate to the existing streaming systems with variable
user numbers and video numbers. Extensive experiments in-
dicate that MA360 can outperform the existing state-of-the-

art methods on a variety of network conditions. Specifically,
the MA360 can improve the QoE by about 14% compared
with the baseline and reduce the bandwidth consumption by
41% to 68% over different methods.

5. REFERENCES

[1] F. Qian, L. Ji, B. Han, et al., “Optimizing 360 video delivery
over cellular networks,” ACM SIGCOMM All Things Cellular,
pp. 1–6, 2016.

[2] T. Stockhammer, “Dynamic adaptive streaming over http: stan-
dards and design principles,” ACM MMSys, pp. 133–144, 2011.

[3] Y. Zhang, P. Zhao, K. Bian, et al., “Drl360: 360-degree video
streaming with deep reinforcement learning,” IEEE INFO-
COM, pp. 1252–1260, 2019.

[4] C. Liu, N. Kan, J. Zou, et al., “Server-side rate adaptation for
multi-user 360-degree video streaming,” 2018.

[5] C. Li, L. Toni, J. Zou, et al., “Qoe-driven mobile edge caching
placement for adaptive video streaming,” IEEE TMM, vol. 20,
no. 4, pp. 965–984, 2018.

[6] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural computation, pp. 1735–1780, 1997.

[7] Y. Yang, R. Luo, M. Li, et al., “Mean field multi-agent rein-
forcement learning,” ICML, pp. 5567–5576, 2018.

[8] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning,
MIT press, 2016.

[9] V. Mnih, K. Kavukcuoglu, D. Silver, et al., “Human-level con-
trol through deep reinforcement learning,” Nature, vol. 518,
no. 7540, pp. 529, 2015.

[10] C. Wu, Z. Tan, Z. Wang, et al., “A dataset for exploring user
behaviors in vr spherical video streaming,” ACM MMSys, pp.
193–198, 2017.

[11] H. Riiser, P. Vigmostad, C. Griwodz, et al., “Commute path
bandwidth traces from 3g networks: analysis and applica-
tions,” ACM MMSys, pp. 114–118, 2013.

[12] J. Jiang, S. Sun, V. Sekar, et al., “Pytheas: Enabling data-
driven quality of experience optimization using group-based
exploration-exploitation,” NSDI, pp. 393–406, 2017.

Authorized licensed use limited to: Peking University. Downloaded on October 26,2020 at 09:41:03 UTC from IEEE Xplore. Restrictions apply.

