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ABSTRACT

To ensure 360-degree video’s continuous playback and reduce
the bandwidth waste, predicting user’s future fixation is indis-
pensable. However, existing methods concentrate either on
user’s motion information or content information. None of
them consider users watching behaviors’ inconsistency which
embodies user’s attention distribution more explicitly. So in
this paper, we exploit Cross-Users Behaviors for viewport
prediction in 360-degree video adaptive streaming, namely
CUB360, trying to concurrently consider user’s personalized
information and cross-users behaviors information to predict
future viewport. Besides, we use a QoE-driven framework to
optimize existing video streaming approaches and propose a
general algorithm aiming at solving the NP problem at a low
complexity. Extensive experimental results over real datasets
demonstrate that compared with traditional adaptive stream-
ing method, our proposal can significantly boost the predic-
tion accuracy by 20.2% absolutely and 48.1% relatively. Be-
sides, the mean quality can get 30.28% gain while quality
variance can be reduced by 29.89%.

Index Terms— 360-degree video, cross-users behaviors,
viewport prediction, tile-based adaptive streaming, viewport
adaptive streaming

1. INTRODUCTION

360-degree Video on Demand (360-VoD) is becoming in-
creasingly popular on both industry and academia. It can cre-
ate a completely immersive experience, allowing users to con-
trol their visual fixation freely during video playback through
Head-Mounted Displays (HMDs). Traditional streaming plat-
forms, such as YouTube, deliver the full projected panorama
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Fig. 1. User’s visual fixation heat map on video frames.

videos to clients [1]. This approach however is neither band-
width efficient nor high-quality since only a portion of the
entire video frame is viewed by the user. Recently, tile-based
viewport adaptive streaming is regarded as a promising way
to deliver 360-degree video efficiently [2–4]. Instead of trans-
mitting the entire video frame, it delivers high quality tiles
within user’s viewport, while others are in low quality or even
discarded. In addition, to ensure continuous playback, the
client must keep a relative large buffer, which makes proac-
tively pre-fetching tiles by viewport prediction necessary as
well.

Existing viewport prediction methods can be classified
into two categories: motion-based [2, 3] and content-based
[5]. The motion-based methods extrapolate user’s future
viewport according to user’s history motion information from
HMD – in terms of Euler Angle, Quaternion or Rotation Ma-
trix. However, the long-term viewport prediction is highly in-
accurate, e.g. for viewport after 2 seconds, the motion-based
prediction accuracy could drop below 70% [2]. And the ac-
curacy decreases rapidly along with prediction period. As for
the content-based method, it considers the visual saliency of
video to predict the viewport with the cost of high computa-
tional complexity. Besides, it exists bias since users may have
different Region of Interest (ROI) and the correlation between
user’s watching behaviors and saliency information is unclear.

Unlike the aforementioned methods, we predict viewport
leveraging cross-users viewing behaviors as guidance, which
is inspired by user behavior’s statistics. Intuitively, if we
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know most individuals are interested in one object within the
picture, then we have good reason to believe other viewers
also tend to gaze the same area. To verify this, we depict the
position of all users’ visual fixation through analyzing a real
head-movement trace dataset [6]. As shown in Fig. 1, the vi-
sualization heat map includes 48 users’ visual fixation during
69-70 sec of Freestyle Skiing (left) and 33-34 sec of Cooking
Battle (right). The result indicates: 1) humans share similar
watching behaviors, 2) the interesting area for users can be
multiple, which is ubiquitous in 360-degree videos [6].

Inspired by these observations, we exploit Cross-Users
Behaviors to predict viewport for 360 video adaptive stream-
ing, called CUB360. In viewport prediction, our proposal
combines the benefits of motion-based prediction and cross-
users behaviors. From historical trajectories of head move-
ments, a motion-based fixation is firstly predicted using Lin-
ear Regression (LR). Then, cross-users viewing fixations
are exploited by K-Nearest-Neighbors(KNN) algorithm. K-
nearst fixations around LR result are found to improve the
prediction accuracy. Additionally, a QoE-driven rate alloca-
tion algorithm is proposed to optimize the rates of each tile
within predicted viewport.

To summarize, our main contributions include:

• We propose a KNN-based Viewport Prediction ap-
proach called KVP, trying to concurrently consider per-
sonalized behavior and cross-users behaviors to predict
user’s viewport especially for long-term.

• We mathematically formulate the rate adaptation into
an QoE-driven optimization framework and propose an
Optimal Rate Allocation algorithm, ORA, to solve this
problem.

• Extensive simulation experiments carried out on real-
istic datasets validate that CUB360 can revolutionarily
achieve 20.2% absolutely and 48.1% relatively gain on
viewport prediction accuracy. Besides, the video qual-
ity can be improved by 30.28%.

The rest of this paper is organized as follows. Section 2
surveys related works on tile-based viewport adaptive video
streaming and viewport prediction. In Section 3, we specif-
ically describe the viewport prediction approach, KVP. The
optimal streaming method and the general solution ORA are
presented in Section 4. In the end, we discuss results of ex-
perimental performance in Section 5 and conclude this paper
in Section 6.

2. RELATED WORK

Recently, viewport adaptive streaming is emerging as a
promising way to deliver 360-degree videos. Among them,
tile-based viewport adaptive streaming is regarded as a hot
research direction which can offer spatial random access on
360-degree content. It crops original 360-degree video frames

Fig. 2. KNN-based viewport prediction

into multiple tiles and encodes them into multiple bitrate ver-
sions by modifying coding settings such as resolution, quan-
tization parameter, etc.

As the key role in viewport adaptive streaming, viewport
prediction is of crucial importance. However, the existing pre-
diction methods only work for short-term (<2s) [2], which is
not sufficient to ensure 360 videos continuous playback and
may lead to blank block even stall. In general, the prediction
approaches broadly fall into two major categories: motion-
based and content-based.

Feng et al. [2] apply LR to predict the future fixations
represented by Euler Angle (pitch, yaw and roll) separately.
However, this naive approach’s accuracy drops quickly espe-
cially for long-term, which could result in huge blank block.
Lan et al. [3] perform a viewport probabilistic model consid-
ering the Gaussian Distribution of LR prediction error, which
can not ensure accuracy for long-term neither. Both motion-
based methods above are absence of content and behavior in-
formation inherently, so the gain is extremely limited.

As for content-based method, [5] builds a fixation predic-
tion network which uses pre-trained CNN to generate saliency
map. However, the computational complexity is relatively
high since the neural network works pixel-wise. Besides, the
correlation between saliency map and user’s viewing likeli-
hood has not been fully investigated, the ROI could also be
multiple, which makes the performance not reliable enough.

3. KNN-BASED VIEWPORT PREDICTION

In this section, we formally present our KNN-based View-
port Prediction algorithm, KVP, which incorporates LR re-
sult and cross-users behaviors into design aiming at promot-
ing viewport prediction accuracy especially for long-term. To
calculate each tile’s viewing probability and coordinate per-
sonalized and cross-users behaviors information reasonably,
we partition KVP’s implementation into three main steps in-
cluding: a) LR (according to single viewer’s history fixation),
b) KNN-Based Election and c) Probability Vote Mechanism.

Specifically, as shown in Fig. 2, LR extrapolates user’s
possible fixation based on historical trajectories while KNN-
based election picks the nearest K fixations of other users
to amend the prediction result. Finally, the probability vote

Authorized licensed use limited to: Peking University. Downloaded on November 04,2020 at 02:54:58 UTC from IEEE Xplore.  Restrictions apply. 



mechanism is carried out to calculate each tile’s viewing prob-
ability.

3.1. Linear Regression

Assuming viewer’s fixation is represented as O(α, β, γ)
in Euler angle, while α, β, γ representing yaw, pitch, roll, re-
spectively. The same as [2], in system time t0, we train a
LR model in window (t0 − 1, t0] using historical fixations to
predict viewport in future δ time. The regression coefficient
over yaw, pitch, roll is bα, bβ , bγ estimated by Least Squares
Method (LSM), then the estimated fixation Or generated by
LR can be formulated as:

αr(t0 + δ) = bαδ + α(t0),

βr(t0 + δ) = bβδ + β(t0),

γr(t0 + δ) = bγδ + γ(t0).

(1)

3.2. KNN-Based Election

Due to the observations on cross-users behaviors incon-
sistency, we adopt a KNN-based election method aiming at
electing nearest K fixations Of to amend the inaccurate LR
result Or. Since all the fixations are distributed on the sphere,
the distance calculation should be conducted on sphere. As-
suming the Euler angle is in the left-handed coordinate system
adopted by the Unity 3D platform [6], in which the positive x,
y and z axes representing the pitch, yaw and roll while point-
ing right, up and forward respectively. Then all the fixations
can be transformed into unit directional vector in Cartesian
coordinate system as below:

x = sin(α) · cos(β)
y = sin(β)

z = cos(α) · cos(β)
(2)

Ultimately, the sphere distance between LR result and
other users fixations D(Or, Of ) can be calculated as:

D(Or, Of ) = arccos(xr · xf + yr · yf + zr · zf ) (3)

Based on the sphere distance, we can sort and number the
nearest K fixations as Okf from smallest to largest represent-
ing cross-users behaviors, where k ∈ {1...K}.

3.3. Probability Vote Mechanism

Given LR result and the nearest K fixations, to generate
a series of tile probability for subsequent streaming, we pro-
pose a vote mechanism considering fixation weights and tile’s
viewed times. Firstly, LR’s accuracy decreases rapidly as pre-
diction time extends, so its weight should be diminished by
time. We denote it as wr = 1

δ . As for other fixations, we
distribute a constant weight wf = 1.

Field of Viewport (FoV)         Tile-i Covered Times = 2

i

Viewport A

Viewport B

Fig. 3. Probability vote mechanism

Secondly, as shown in Fig. 3, each fixation actually cor-
responds a covering area on the plane. For each tile, the cov-
ered times should be proportional to the viewing probability.
Assuming L(O) is the covering fields of each fixation repre-
sented by a N -dimension vector, where N represents the tile
number indexed in raster-scan order. Li = 1 means the tile
is viewed while Li = 0 otherwise. Then for certain tile, the
votes Vi can be inferred as below:

Vi = wr · Li(Or) +
K∑
k=1

wf · Li(Okf )

=
1

δ
· Li(Or) +

K∑
k=1

Li(O
k
f )

(4)

To depict the distribution of each tile’s viewing probabil-
ity pi, we normalize votes V as below:

pi =
Vi∑N
i=1 Vi

(5)

4. OPTIMAL VIDEO STREAMING

In this section, we present a QoE-driven tile-based adap-
tive streaming system which leverages video’s quality opti-
mization framework to maximize user’s quality while mini-
mizing spatial quality variance and rebuffering. In the mean-
while, we propose a general method called Optimal Rate Al-
location, ORA, trying to find the optimal solution under this
NP problem.

4.1. Optimization Function

In tile-based adaptive streaming, the original 360-degree
videos are spatially cropped into N tiles with raster-scan or-
der. Then each tile is temporally divided into several continu-
ous segments with fixed duration T and encoded byM bitrate
levels. Consequently, there are N ×M kinds of tiles in one
segment waiting to be delivered on the server side. To derive
the optimal tile sets, we denote j ∈ {1...M} as the bitrate
level while letting ri,j and di,j denote the bitrate and distor-
tion of tile i in j-th rate. Besides, we denote X = {xi,j} as
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the choosing results, where xi,j = 1 means the tile is selected
and xi,j = 0 otherwise.

To maximize user’s QoE, the same as [3], we define
two QoE functions Φ(X) and Ψ(X) representing video’s
expected quality distortion and quality variance separately.
Then for the purpose of minimizing both quality distortion
and variance, our optimization problem can be formulated as:

min
X

Φ(X) + η · Ψ(X)

s.t.
N∑
i=1

M∑
j=1

xi,j · ri,j ≤ R,

M∑
j=1

xi,j ≤ 1, xi,j ∈ {0, 1}, ∀i.

(6)

Specifically, η represents the weight for quality variance
while R representing the available bandwidth generated by
rate adaptation algorithm, which is used to reduce rebuffering.
The other limitation ensures each tile should be delivered in
one rate in case of unnecessary waste. The same as [3], the
expected quality distortion can be formulated as:

Φ(X) =

∑N
i=1

∑M
j=1Di,j · xi,j · pi∑N

i=1

∑M
j=1 xi,j · si

, (7)

Note that pi is derived from our proposed KVP algorithm
while si and Di,j representing each tile’s spherical area and
spherical distortion. Numerically, the relationship obeys:

Di,j = di,j · si. (8)

In tile-based streaming, the spatial quality variance is
strictly related to the seams between adjacent tiles rather than
the overall quality variance. Besides, calculating all tiles vari-
ance introduces much computational burden for the system.
So in this paper, we proposed a novel lightweight method to
depict the spatial quality variance. Contrary to [3], we denote
the tile number assemblage adjacent to tile i as Ui, then the
Ψ(X) can be formulated as:

Ψ(X) =
1

2

N∑
i=1

∑
u∈Ui

pi · pu|
M∑
j=1

(xi,j ·Di,j − xu,j ·Du,j)|

(9)

4.2. ORA Algorithm

Since the QoE-driven framework’s objective is to find an
optimal solution under limited resources, the ORA algorithm
can be regarded as a knapsack problem, which is a typical
NP complete problem. Before describing the solving process
concretely, we firstly introduce the definition OPTr, which is
the optimization function value corresponding to the optimal
selection Xr under available bandwidth r ∈ {1...R}.

Algorithm 1 Optimal Rate Allocation (ORA) Algorithm
Input: (1) Tile’s probability pi. (2) Available bitrate R.
Output: XR = {xRi,j}.
1: /* Function 1: ORA main function */
2: Set OPTr to be MAX and initialize Xr = 0;
3: for i ∈ N do
4: for r ∈ R do
5: for j ∈M do
6: if r > ri,j then
7: OPTr = min{OPTr, Com(i, j, r)};
8: Update(Xr);
9: return XR = {xRi,j};

10: /* Function 2: Recompute OPTr adding xr−ri,ji,j = 1 */
11: Com(i, j, r){
12: x

r−ri,j
i,j = 1;

13: OPTr = Φ(Xr−ri,j ) + η · Ψ(Xr−ri,j );
14: x

r−ri,j
i,j = 0;

15: return OPTr;}

As shown in Algorithm 1, each tile’s viewing probability
pi and available bandwidth R are our proposal’s input while
the best selection result XR is the output. To minimize the
QoE function, we firstly set all the OPTr as a big enough
number MAX while initializing Xr as zero (line 2).

For certain tile i (line 3), under certain bandwidth r (line
4), in certain bitrate j (line 5), there could be two choices,
selecting this tile or not. In both cases, we have to recom-
pute OPTr by adding xr−ri,ji,j = 1 to the optimal selection
Xr−ri,j (line 12). Then tile i should be selected only if the
new OPTr is smaller (line 7). To record it, for each rate, we
have to update the selection Xr (line 8). One thing should
be noticed that in function Com(), we only recompute the
OPTr based on new adding tile, when the function exits, the
Xr get back to the old one in case of error recording (line
14). After this, we can obtain the best selection over rate R,
which is XR (line 9).

5. PERFORMANCE EVALUATION

5.1. Experimental Configuration

In our experiments, we evaluate the strengths of CUB360
under simulated environments. Specifically, we use realistic
HSDPA bandwidth dataset [7] and Wu’s trajectory dataset [6]
including 18 videos and 48 users. To meet practical require-
ments, the same as [3], we partition each video into 6×12 tiles
(N = 72) and crop them into segments every second (T = 1).
Then all the tiles are encoded into 5 different bitrates (M = 5)
including {20kbps, 50kbps, 100kbps, 200kbps, 300kbps} us-
ing open source encoder x264. After that, each tile’s planar
distortion di,j can be calculated by comparing them with raw
panoramic videos.
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Table 1. Video Information and Viewport Deviation

Video ID Content Category LR (%) CUB360 (%)

Video-1 Conan360◦-Sandwich Performance 42.2 14.1
Video-2 Freestyle Skiing Sport 38.3 27.5
Video-3 Google Spotlight-HELP Film 43.8 22.1

As discussed above, the accuracy of viewport prediction
is closely associated with prediction time. In practice, the pre-
diction duration is equal to buffer size actually. Based on that,
we apply the target-buffer based rate adaptation algorithm [3],
which can adjust downloading bitrates to make sure smooth
play. To demonstrate our proposal’s improvement on view-
port prediction especially for long-term, we set the buffer size
into {2s, 3s, 4s, 5s, 6s} separately for comparison.

To explore our proposal’s performance, we compare
CUB360 with the representative work [2] which leverages LR
as prediction method and delivers predicted tiles at the same
rates. In system evaluation, we take the following metrics into
consideration:

• Viewport Deviation: It calculates the percentage of
black area rendering over the screen which could dam-
age user’s experience, which implies the distribution of
prediction accuracy.
• Viewport PSNR: It uses the Peak Signal to Noise Ratio

(PSNR) in viewport to effectively depict video quality
and user’s experience, which is widely adopted in re-
search fields [8].
• Viewport Quality Variance: It adopts Coefficient of

variation (CV) to evaluate the viewport quality variance
in one segment.
• Bandwidth Occupation: It calculates the total bitrates

for each segment, which reflects the ability of utilizing
data and video quality.

5.2. Viewport Deviation Performance

As shown in Table 1, to demonstrate our approach’s gen-
erality, we pick three typical videos in [6] covering different
categories including performance, sport and film as compari-
son. To eliminate the impact of users’ individual difference,
we denote specific user’s trajectory as viewer while others as
reference in turns. Besides, we change the buffer size and
video ID in turns to observe the performance under different
conditions.

As shown in Fig.4, as buffer size increases, both LR
and CUB360’s black ratio increases. However, our proposed
method CUB360’s increase is not so drastic as LR espe-
cially in video-1 (Fig.4(a)), which is because under perfor-
mance video, user’s attention is more concentrated. Besides,
CUB360’s medians of the three videos all lie next to zero basi-
cally, which once again proves our proposal’s high prediction
accuracy. Numerically, as shown in Table 1, when buffer size

is 6s, implemented by CUB360, the absolute improvement of
these three videos can reach up to 28.1%, 10.8% and 21.7%
separately, 20.2% on average. The average relative improve-
ment can even obtain 48.1%.

5.3. Video Quality Performance

The video quality performance is illustrated in Fig. 5 and
the average performance is listed in Table 2. To reveal our
proposal’s property, we set the target-buffer as 6s to com-
pare the video quality performance. As shown in Fig.5(a),
for each video, the two curves of viewport PSNR both follow
the same trend, however, the difference in quantity reveals
our proposal’s outperformance. Especially in video-3, almost
50% of the viewport PSNR are over 40 dB in CUB360, as
for LR, the percentage declines sharply to 18%. Overall, the
average improvement can reach up to 30.28%.

As for viewport quality variance, as shown in Fig.5(b),
once the black ratio is over 90%, the quality variance is un-
bearable in a sense, so we set a threshold at this point denot-
ing the corresponding quality variance here as 10, which is
reasonable for these experiments. Then, as shown in Table
2, CUB360 can get average 29.89% gain on quality variance.
Besides, from the percentage on the maximum, 10, we can
infer that the LR is more likely to suffer from blank block.

In fig.5(c), we can observe that CUB360’s bandwidth
occupation greatly exceed LR, almost attains 33% on aver-
age. Besides, the peculiar sawtooth of LR’s curves caused
by quantization implies LR’s low utilization on bandwidth,
which is absence on CUB360.

Table 2. Average Quality Performance and Improvement

Metrics LR CUB360 Relative Imp.

Viewport PSNR (dB) 25.76 33.56 +30.28%
Viewport Quality Variance (CV) 3.78 2.65 +29.89%
Bandwidth Occupation (kbps) 1570.80 2077.53 +32.26%

6. CONCLUSION

In this paper, we propose a novel framework CUB360
which leverages cross-users behaviors to predict viewer’s fix-
ation especially for long-term and utilize the QoE-driven op-
timization problem to realize optimal video streaming. Be-
sides, we present a general approach ORA to solve the range
of rate allocation problems. Compared with traditional LR
algorithm, our proposal CUB360’s viewport deviation can be
improved by 20.2% absolutely and 48.1% relatively. The
improvement of viewport PSNR, quality variance and band-
width can reach up to 30.28%, 29.89% and 32.26% sepa-
rately.
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Fig. 4. Viewport Deviation results
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Fig. 5. Video Quality Results
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