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HTTP/2 Live Streaming

Zhimin Xu , Xinggong Zhang, and Zongming Guo , Member, IEEE

Abstract— Dynamic adaptive streaming (DAS) over HTTP
has been widely deployed over the Internet. However, due
to the pull-based nature of HTTP/1.1, there exists intolerable
streaming latency and high request overhead in the current
DAS systems. With dynamic k-push, HTTP/2 live streaming
promises to achieve low live latency with less overhead and
small segment duration. In this paper, we propose a quality of
experience (QoE) driven adaptive k-push mechanism (QK-Push)
for HTTP/2 live streaming. The client just sends one request to
set push length (K ) and bitrate (v) parameters and the server
would push back K segments in a batch. To determine k-push
parameters, a probabilistic buffer model is first designed to avoid
buffer underflow/overflow. Also, three QoE objective functions
are designed to ensure the high streaming quality (bitrate),
playback continuity, and smoothness. QK-Push casts this multi-
objective optimization problem as a Pareto optimal problem.
To solve it, a Nash bargaining solution is designed to balance
the needs for video quality, bitrate smoothness, and request
overhead. Finally, the segments in each push cycle are selected
by solving the Nash problem with a discrete space Lagrangian
method. We implement an HTTP/2 live streaming prototype
system, with the QK-Push algorithm over modified dash.js and
media presentation description. To evaluate the performances,
the extensive live streaming experiments are carried out over
a controllable network test bed and real Internet trace. The
results demonstrate that the proposed QK-Push algorithm is able
to improve the average bitrate up to 13%, reduce the bitrate
oscillations up to 81%, decrease the startup delay up to 58%,
and increase the estimate the mean opinion score up to 12%
compared to the current HTTP/1.1 system.

Index Terms— Dynamic adaptive streaming, live streaming,
HTTP/2, adaptive k-push, fast start.

I. INTRODUCTION

IN RECENT years, Dynamic Adaptive Streaming (DAS)
over HTTP/1.1 has been widely used for providing

uninterrupted video streaming services over harsh network
conditions and heterogeneous devices. However, due to large
segment duration, round-trip time (RTT) and playback buffer,
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Fig. 1. Flowchart of k-push scheme.

the current HTTP/1.1 DAS in live video streaming often
leads to high streaming latency [1]–[3]. To lower the live
latency, one most straightforward way is to reduce the segment
duration [2]. However, it may lead to significant request
explosions in HTTP/1.1 pull-based live streaming. First,
each request or response poses additional HTTP header and
overhead to clients, servers and the network infrastructure,
the request explosions may severely decrease the performance
of system scalability. Second, one RTT duration is needed in
each request-response pair. Request explosion may degrade
link utilization especially when RTT is large and segment
duration is small. Finally, if the segment duration is too small,
the TCP congestion windows may not get chance to increase
and fully utilize the available bandwidth.

Recently, HTTP/2 [4], which promises performance
improvements over HTTP/1.1 due to the new features such as
Server Push, has been standardized. The Server Push feature
allows one server to push multiple segments with one request.
Leveraging this feature, the k-push scheme is designed for
live video streaming to help address the request explosion
problem and thus reduce the live latency [3]. Fig.1 depicts
the flowchart of the k-push scheme in HTTP/2 live streaming.
In one push cycle, the client first determines the parameters
of video bitrate vector v and push length K . Then, the client
sends one request with Push Directive to initiate a new k-push
session and whereafter receives K segments that sequentially
pushed by the HTTP/2 server. Compared to legacy HTTP/1.1,
it only takes 1 request and at least K − 1 RTTs are saved to
receive K segments in one push cycle.

In HTTP/2 k-push, the rate adaptation logic plays a critical
role in guaranteeing high streaming service, thus attracting
many research efforts [3], [5]–[12]. However, most of these
methods ignore the issue how to determine the parameters
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(v, K ) of dynamic k-push by the user’s quality of experi-
ence (QoE). This motivates us to propose a more effective
rate adaptation approach of dynamic k-push for HTTP/2 live
streaming.

In general, designing an efficient k-push rate adaptation
scheme for HTTP/2 live streaming faces some challenges:
• Push length, to cope with bandwidth variations, a small

push length is preferred to increase the responsiveness of
the system. However, this may lead to a large number of
HTTP requests and thus bringing down network utiliza-
tion due to RTT loss, additional header and processing
overhead along with each request.

• Bitrate smoothness and bandwidth utilization, generally,
there is a fundamental conflict between bitrate smooth-
ness and bandwidth utilization. Exactly matching band-
width achieves the highest bandwidth utilization while
leading to severe bitrate fluctuations and worsening the
quality of viewer’s experience severely.

• Playback stalling, due to the latency constraint, the play-
back buffer of live streaming is always small. It is a big
challenge for dynamic k-push in HTTP/2 live stream-
ing to prevent playback stalling over the time-varying
channel.

• Startup delay, which is defined as the time between the
moment when the user clicks on “play” button and the
moment when the video actually starts playing. It is a
metric to balance the live latency and it is mainly limited
by playback buffer size (even a small buffer size), RTT,
segment duration and time of parsing Media Presentation
Description (MPD) file.

In this paper, we address the rate adaption problem of
HTTP/2 live streaming. Considering those factors affecting
QoE for an HTTP/2 live video streaming session, includ-
ing video quality, playback continuity, bitrate smoothness
and startup delay, we propose a QoE-driven adaptive k-push
(QK-Push). To ensure continuous playback, a probabilis-
tic buffer control model is firstly designed. Then, three
QoE objective functions are designed and maximized via
comprehensively considering critical factors of QoE for an
HTTP/2 live video streaming session, including bitrate maxi-
mization function to maximize video quality, bitrate oscillation
minimization function to improve video bitrate smoothness,
and push length maximization function to reduce request
overhead and thus to improve link utilization. We cast the
above multi-objective optimization problem as Pareto optimal
problem. Then, a Nash bargaining solution is designed to
balance the needs for video quality, bitrate smoothness and
request overhead. Finally, the segments in each push cycle
are selected by discrete space Lagrangian method. A fast
start mechanism and a push cancel mechanism also have been
designed, which provide low startup delay and responsiveness
of HTTP/2 live streaming.

We develop a real HTTP/2 live streaming system with
libnghttp2_asio [13] and modified dash.js [14], and design
extensive experiments on a network test-bed and real Internet
trace to investigate the performance of the proposed adap-
tation approach, including performance under fixed band-
width, square bandwidth and real Internet trace, and impact

TABLE I

COMPARED RESULTS

of different RTTs and segment durations. The experimental
results demonstrate the efficiency of our method. Table. I
summarizes the QoE improvement in video bitrate, bitrate
oscillation, startup delay and the estimate the Mean Opinion
Score (eMOS) [15], [16] of our proposed method compared
to existing schemes via real Internet trace experiments. The
results show that our proposed QK-Push is able to increase
average video bitrate by 13%, smoothness by 81%, decrease
startup delay by 58% and increase eMOS up to 12% compared
to the HTTP/1.1 method, and reduce bitrate oscillation by
35%, startup delay by 57%, increase average video bitrate by
11% and the eMOS by 9% compared to the HTTP/2.0 method,
which adopts HTTP/2 with Server Push feature. Besides,
compared to the DASH2M method [10], average video bitrate
is improved by 5%, unnecessary bitrate oscillation is reduced
by 69%, startup delay is decreased by 35% and the eMOS is
increased by 18 % in our method.

The main contributions of this paper can be summarized as:
• We propose a QoE-driven adaptive k-push algorithm

for low latency HTTP/2 live streaming and design
three different objective functions to maximize visual
quality, including bitrate maximization function, bitrate
oscillation minimization function and push length
maximization function. And we cast the above multi-
objective optimization problem as a Pareto optimal
problem.

• We leverage a probabilistic buffer model to ensure con-
tinuous video playback. Since the network bandwidth can
be highly dynamic, which is hardly predicted accurately,
to avoid unnecessary playback stalls, probabilistic buffer
constraints are built to guarantee that buffer stay in a
given range to avoid buffer overflow/underflow.

• We design a Nash bargaining solution algorithm to
balance the needs for video playback quality, bitrate
smoothness and request overhead. By solving the discrete
optimization problem, we can decide the k-push parame-
ters for each push session.

• We implement the proposed QK-Push algorithm in a
dynamic k-push system prototype and integrate additional
mechanisms of the fast start and push cancel, which
reduce startup delay and increase responsiveness.

The rest of the paper is organized as follows. Sec.II sur-
veys the related works. In Sec.III, we introduce the multi-
objective optimization problem. In Sec.IV, the probabilistic
buffer model is designed. Then solutions are given in Sec.V.
We also introduce the design of our real HTTP/2 live streaming
system in Sec.VI, and show experimental results in Sec.VII.
Finally, we conclude the paper in Sec.VIII.
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II. RELATED WORKS

DAS over HTTP/1.1 has emerged as a dominant technology
to stream video over the Internet [17]–[19], and attracted many
research efforts [20]–[33] for its adaptability to heterogeneous
network and devices. Most of them switch bitrate either by
bandwidth [27] or by buffer occupancy [31], in a request-
response downloading paradigm of HTTP/1.1. However, due
to the pull-based nature of HTTP/1.1, it incurs significant
round-trip time (RTT) overheads, which impairs bandwidth
utilization especially for live streaming with small segments.
Fortunately, the emergence of the HTTP/2 brings a promising
solution for the above problem.

The HTTP/2 Server Push feature [4] is a mechanism
designed for reducing web page load latency initially. Some
pioneering works [3], [5], [34] demonstrate the benefits of
HTTP/2 push in video streaming. Comparing with HTTP/1.1,
lower overhead, higher link utilization, lower live latency and
lower power cost can be obtained by HTTP/2 k-push, i.e.
server pushes K video segments in a batch to respond to one
request. But, it’s still an open issue to determine the push
length K and bitrate v to adapt to the dynamic network.

Some pioneering works [3], [5], [6] propose a fixed k-push
method, which pushes a fixed number of segments in one
response. Sheng and Viswanathan [3] explore that it is possible
to achieve low live latency by pushing fixed K segments with
small duration, such as 1 second. In [5], Wei and Swaminathan
also study the potential of fixed k-push in eliminating unnec-
essary requests and battery power in mobile streaming.
Huysegems et al. [6] employ a full-push scheme which keeps
pushing segments continually and controls the streaming like
legacy RTSP protocol with the control messages, such as start-
ing, stopping, pausing, resuming. However, these fixed k-push
schemes may damage the adaptability if network conditions
are changed abruptly during the K segments transmission.

Other works [7]–[9], [11], [12] propose adaptive k-push
schemes, which dynamically adjust the parameter K during
one push cycle to adapt to the runtime environment. In [11],
Wei et al. employ an adaptive k-push strategy to reduce power
consumption. In [10], Xiao et al. design DASH2M, which
dynamically adjusts parameters of the push length and bitrate
to improve power efficiency in mobile streaming. However,
these works only focus on reducing overhead and power con-
sumption but ignores the user’s Quality of Experience (QoE)
in video streaming.

Recently, some efforts [35]–[37] explore HTTP/2 push
mechanism in 360◦ virtual reality videos streaming. They crop
360-degree video into tiles and push only the tiles in the user’s
Field-of-View (FoV) to the user. This reduces the bitrate and
overhead of streaming. But this scheme is still simple which
does not consider the adaptability to the network.

On the other hand, one of the most important objectives of
video streaming is QoE. QoE is defined as “the overall accept-
ability of an application or service, as perceived subjectively
by the end-user”. The QoE of HTTP streaming is influenced
by several factors, such as video playback quality [38]–[40],
video bitrate switching frequency and amplitude [41], [42],
buffer overflow/underflow [24], [43], [44], request over-
head [5], [6], [11], and live latency [3], [45], [46].

Fig. 2. Flowchart of proposed QoE-driven adaptive k-push.

In Claeys et al. [15] and Sobhani et al. [16] propose and use
the QoE model, the estimate the Mean Opinion Score (eMOS),
for HTTP Adaptive Streaming (HAS). In eMOS, the average
quality of selected representations, the number and magnitude
of switches among different representations, and the frequency
and duration of freezes are considered as the most important
factors that have an impact on QoE. This paper will use
these QoE metrics as the k-push objectives to find the push
parameters (v, K ).

III. QOE OBJECTIVES

In this section, we introduce the designed three QoE objec-
tive functions. Fig.2 shows the flowchart of QK-Push.

A. Bitrate Maximization

To provide high video playback quality for a streaming ses-
sion, the ideal bitrate in each push cycle should be the highest
ones that the network can sustain. Meanwhile, the selection of
the video bitrate should not cause any stalling. Let R denotes
the bitrate set which holds N different quality levels. Let v
denotes a bitrate vector of v(l) with length Kmax, and v(l)
denotes the video bitrate for the l-th segment in the next push
cycle, K denotes the number of consecutive segments with
non-zero bit-rate from the beginning of v. In the other words,
v(l) > 0 when 0 < l ≤ K and v(l) = 0 when K < l ≤ Kmax.
Then we have the function as

F1(v, K ) = rmax − 1
K

∑K
l=1 v(l)

rmax
,

s.t . v(l) > 0, 0 < l ≤ K ,

v(l) = 0, K < l ≤ Kmax, (1)

where v(l) denotes the video bitrate for l-th segment in the
next push cycle, and v(l) ∈ R, 0 < l ≤ K . By minimizing (1),
we can maximize the bitrate.

B. Bitrate Oscillation Minimization

The frequency and amplitude of video bitrate switching have
a great effect on QoE, and switching back-and-forth between
different bitrate may significantly degrade viewer’s experi-
ence [47], [48]. We define the bitrate instability metric [49] of
the i -th segment as

f (i) =
∑d−1

l=0 |v(i − l)− v(i − l − 1)| · ω(l)
∑d

l=1 v(i − l) · ω(l)
, (2)

where v(l) denotes the video bitrate for the l-th segment in
the next push cycle and v(l) ∈ R, 0 < l ≤ K . f (i) is the
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weighted sum of all switch steps observed within the last d
segments divided by the weighted sum of bitrates. We use the
weight function ω(l) = d − l to add a linear penalty to more
recent bitrate switch. In this paper, we let d = max(20, i).

To provide smooth video bitrate for a streaming session,
we design the bitrate oscillation function as

F2(v, K ) = 1

K

K∑

i=1

f (i), (3)

where f (i) denotes the bitrate instability metric for i -th
segment of next push cycle, which can be solved according
to the instability model defined as (2). By minimizing (2),
the bitrate oscillation can be minimized.

C. Push Length Maximization

Each request or response poses additional header and
processing overhead to the client, the server, and the network
infrastructure. Besides, the RTT overhead along with each
request also will decrease the link utilization and average video
quality [6]. To improve the scalability and link utilization of
HTTP/2 live streaming, a push length function is designed
to minimize the request overhead. The equivalent function is
expressed as

F3(K ) = Kmax − K

Kmax
. (4)

And we can minimize the request overhead by minimizing (4).

IV. PROBABILISTIC BUFFER MODEL

In this section, we propose a probabilistic buffer model to
keep playback continuity and design a probabilistic buffer con-
straint that the chance of buffer occupancy falling out of dual-
threshold must be less than the given probability threshold.
Under this constraint, all feasible solutions maximizing the
aforementioned QoE objectives are solved.

A. Buffer Model

In this work, the buffer occupancy is denoted by the buffered
video time, because a video buffer may contain segments from
different versions, i.e., different video bitrate. There is no
longer a direct mapping between the buffered video size and
the buffered video time.

Let q(t) denote the buffered video time at time t , which
can be modeled as a queue with constant service rate of unity,
i.e., in each second, a piece of buffered video with one second
length of playback time is consumed and dequeued from the
buffer. The enqueue process is driven by downloading and
the selected video version. All versions of video are broken
into equal length segments, each of which contains the same
playback time of T . Without loss of generality, suppose a
client starts to send next request to initiate next push session
at ts . And, the time instant for completing receiving the i -th
segment of next push cycle is denoted as te

i . Then, we have

te
i − ts = T

∑i
l=1 v(l)

C
+ r tt (5)

where C and r tt denote the available bandwidth and round-trip
time (RTT) between server and client respectively. (5) denotes
the total consumed time to download all previous i (from
first to i -th) segments in the next push cycle. When i = K ,
(5) also denotes the total time consumed to complete the whole
push session, which is also the dequeued time from the buffer.
Then, the buffer occupancy evolution during each push session
becomes

q(te
i ) = q(ts)+ i T − (

T
∑i

l=1 v(l)

C
+ r tt), (6)

where the second term of (6) is the enqueued video time upon
the completion of receiving segments 1 to i , and the third
term is the consumed video time taken to receive all segments,
which reflects the fact that the buffer occupancy is consumed
linearly at a rate of one per second.

B. Probabilistic Buffer Constraints

To ensure continuous playback during the whole streaming
session, the selected adaptation pair (v, K ) in each push cycle
should be able to keep buffer occupancy no less than qmin
during the whole push session. On the other hand, to prevent
the buffer from overflow, the selected adaptation pair should be
able to maintain buffer occupancy no more than qmax during
the whole push session. Combining the buffered video time
model, we express above buffer control model as

q(te
i ) > qmin, i = 1, 2, . . . , K , (7)

q(te
i ) < qmax, i = 1, 2, . . . , K . (8)

(7-8) denote constraints that during next push session, upon
the completion of receiving each segment i , the buffer occu-
pancy must fall in the range [qmin, qmax]. To find all adaptation
pairs satisfying above constraints, it is a good choice to
predict link capability accurately and solve (7-8) directly based
on the buffer occupancy estimation model in (6). However,
as demonstrated in [50], the network bandwidth is time-
varying which is hardly predicted accurately. Thus, we use
a probabilistic event to describe this problem. We rewrite the
above buffer control model as

P(q(te
i ) < qmin) ≤ pε, i = 1, 2, . . . , K , (9)

P(q(te
i ) > qmax) ≤ pε, i = 1, 2, . . . , K , (10)

where pε represents a given probability threshold value.
(9-10) denote constraints that during next push session, upon
the completion of receiving each segment i , the chance of
buffer occupancy falling out of dual-threshold must be less
than a given probability threshold. Then, each adaption pair
(v, K ) satisfying constraints (9-10) is able to keep buffer
occupancy staying in the range [qmin, qmax] during next push
session.

C. Probabilistic Bandwidth

One key problem is how we can get the P(q(te
i ) < qmin)

and P(q(te
i ) > qmax). Firstly, we let Li,min and Li,max denote

the margin time to the threshold as

Li,min = q(ts)+ i T − qmin − r tt, (11)

Li,max = q(ts)+ i T − qmax − r tt . (12)
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We define Cτ (t) as the average end-to-end available band-
width during the time interval (t, t+τ ). Then, given segment i
and video bitrate vector v, according to (6-8) and (11-12),
we have

P(q(te
i )<qmin)= P(CLi,min (t

s+r tt)<
T

∑i
l=1 v(l)

Li,min
), (13)

P(q(te
i )>qmax)= P(CLi,max (t

s+r tt) >
T

∑i
l=1 v(l)

Li,max
). (14)

As demonstrated in the references [50] and [51], the avail-
able bandwidth in a time slot τ can be viewed as a stationary
and identically distributed stochastic process, and at any time
instant t the process is described by the same random vari-
able Cτ (t). Furthermore, Cτ (t) can be viewed as a Gaussian
random variable with mean μ̃ and variance σ̃ 2

τ . The mean
μ̃ does not depend on τ . The variance σ̃ 2

τ = V ar [Cτ (t)],
however, depends strongly on τ . So we have

CLi,min (t
s + r tt) ∼ (μ̃, σ̃ 2

Li,min
), (15)

CLi,max (t
s + r tt) ∼ (μ̃, σ̃ 2

Li,max
). (16)

Under the assumption that Cτ (t) is independently and
identically distributed, the variance decreases inversely pro-
portional with the length of the measuring time duration,
i.e., V ar [Cτ (t)] = V ar [Ckτ (t)]/k. Thus, we can know
that CLi,min (t

s + r tt) and CLi,max (t
s + r tt) are also Gaussian

random variables. If we can get μ̃ and σ̃ 2
τ , then we can know

σ̃ 2
Li,min

and σ̃ 2
Li,max

by

σ̃ 2
Li,min
= σ̃ 2

τ · τ
Li,min

, σ̃ 2
Li,max

= σ̃ 2
τ · τ

Li,max
. (17)

Let er f (•) denote the Gauss error function, we have

P(q(te
i ) < qmin) = P(CLi,min (t

s + r tt) <
T

∑i
l=1 v(l)

Li,min
)

= 1

2

⎛

⎜
⎝1+ er f

⎛

⎜
⎝

T
∑i

l=1 v(l)
Li,min

− μ̃
√

2σ̃τ

√
Li,min

τ

⎞

⎟
⎠

⎞

⎟
⎠,

(18)

P(q(te
i ) > qmax) = P(CLi,max (t

s + r tt) >
T

∑i
l=0 v(l)

Li,max
)

= 1

2

⎛

⎜
⎝1+ er f

⎛

⎜
⎝

T
∑i

l=1 v(l)
Li,max

− μ̃
√

2σ̃τ

√
Li,max

τ

⎞

⎟
⎠

⎞

⎟
⎠.

(19)

Finally, we can get the probability P(q(te
i ) < qmin),

P(q(te
i ) > qmax) from (18-19) respectively, which means that

we can know whether the selected segments vector v satisfies
the conditions in (9-10). Then, we obtain the probabilistic
buffer constraints, which not only consider the buffer occu-
pancy, but also consider the available bandwidth.

V. SOLUTION

In this section, we firstly give the Pareto optimality for
the proposed QK-Push. Then, we will design a Nash bar-
gaining solution to balance the needs for link utilization,

Fig. 3. Pareto optimality and disagreement point for bitrate and bitrate
oscillation cost.

bitrate smoothness and low-overhead. Finally, we describe the
algorithm to find the Nash disagreement point.

A. Pareto Optimality

Since the designed three objective functions are conflicting
with each other, to measure efficiency in a system with
multiple objectives, a common approach is to explore the
Pareto Curve, which characterizes the trade-off of potentially
conflicting goals of different parties. To trace the tradeoff and
balance the needs for video quality, bitrate smoothness and
request overhead, one simple way is to optimize a weighted
sum of the single objective function, which is constructed as
a sum of objective functions multiplied by weighting coef-
ficients, which reflect preferences for different optimization
objectives under the (9-10) constraints, as follows

min U(v, K )=w1 F1(v, K )+w2 F2(v, K )+w3F3(K ) (20)

where
∑3

j=1 w j = 1, w j > 0, j = 1, 2, 3, which represent
the relative weight of three objectives.

To illustrate the Pareto optimality for the needs among video
quality, bitrate smoothness and request overhead, we can plot
the achieved F1(v, K ), F2(v, K ) and F3(K ) versus each other
by varying w1, w2, w3. Then, we can obtain the Pareto surface.
Without loss of generality, we illustrate a sample Pareto curve
in Fig.3 to observe the change of optimal solution of F1(v, K )
and F2(v, K ), which only vary w1, w2.

However, it is difficult to figure out which point on
the Pareto surface is the best solution. Solving problem in
the (20) for each weighting coefficient w j and tuning w j

in a trial-and-error fashion is impractical and inefficient.
Furthermore, we need to compute appropriate weight para-
meters w j for each combination of v and K , and tune w j

to explore a broad region of system operating points. It is
not straightforward to weigh the trade-off among the three
objectives. To overcome these problems, we propose a Nash
bargaining solution in Sec.V-B.

B. Nash Bargaining Solution

As demonstrated in [52], if all of the weights are posi-
tive, as assumed in this study, the optimum solution to the
weighted-sum optimization problem depicted in (20) is always
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Pareto optimal. However, since there exists a number of
Pareto optimal solutions, no single feasible solution exists that
simultaneously minimizes all objective functions in the multi-
objective optimization problem. Fortunately, we can solve this
problem by the Nash bargaining solution [53].

The Nash bargaining solution solves the following
optimization problem under the (9-10),

max(F0
1 − F1)(F0

2 − F2)(F0
3 − F3) (21)

where (F1, F2, F3) is a Nash bargaining solution for three
objectives F1(v, K ), F2(v, K ) and F3(K ), and (F0

1 , F0
2 , F0

3 )
is a constant called the disagreement point, which is the
starting point of the negotiation and the point that the players
can expect to receive if negotiations break down. In other
words, the cost cannot more than disagreement point value
for each bargaining party. The selection of the disagreement
point will be introduced in Sec.V-C.

By optimizing the performance of three objectives, the Nash
bargaining solution guarantees that the joint system is optimal
and fair (it is the only solution that satisfies all of four
axioms: Pareto optimality, Symmetry, Expected utility axiom,
Independence of irrelevant alternatives) [53].

The (21) can be converted to

max log(F0
1 − F1)+ log(F0

2 − F2)+ log(F0
3 − F3)

s.t . P(q(te
i ) < qmin) ≤ pε, i = 1, 2, . . . , K ,

P(q(te
i ) > qmax) ≤ pε, i = 1, 2, . . . , K ,

v(l) > 0, 0 < l ≤ K ,

v(l) = 0, K < l ≤ Kmax,

1 ≤ K ≤ Kmax. (22)

The log function is monotonic and the feasible solution space
is same as (21). The (22) is a discrete optimization problem
with inequality constraints. There are no gradients or global
optimal solution for discrete optimization problems. However,
we can find an approximative solution by discrete space
Lagrangian methods [54]. As in our problem, the value K
is from 1 to Kmax, so we can iterate each K to reduce the
solution complexity.

Given a K , we denote hi (v, K ) = P(q(te
i ) < qmin) − pε

and gi(v, K ) = P(q(te
i ) > qmax) − pε , then we get discrete

Lagrangian function as

Ld (v, K ,λ,μ)

= log(F0
1 − F1)+ log(F0

2 − F2)+ log(F0
3 − F3)

−
K∑

i=1

λi hi (v, K )−
K∑

i=1

μi gi(v, K ), (23)

where λ, μ are Lagrangian multipliers vector, and λi ≥ 0,
μi ≥ 0. Since the Dual problem min

λ,μ
Ld (v, K ,λ,μ) is convex,

we iterate λi and μi with the following price updates

λi (π + 1) = [λi (π)− θλi (π)hi (v, K )]+, (24)

μi (π + 1) = [μi (π)− θμi (π)gi (v, K )]+, (25)

where θλi (π) = 1/π and θμi (π) = 1/π denote the step size
in current iteration π .

For each price of λ and μ, we use a direction of maximum
potential raise (DMPR) method in discrete space [54] to
find an approximate solution for the primal discrete problem,
max

v
Ld (v, K ,λ,μ). We define N (v), the neighborhood of

point v in discrete space, as

N (v) = {(v−(1), . . . , v(Kmax)), (v+(1), . . . , v(Kmax)),

. . . , (v(1), . . . , v−(K ), . . . , v(Kmax)),

(v(1), . . . , v+(K ), . . . , v(Kmax))}, (26)

where v−(i) is the bitrate of preceding quality level compared
to v(i), and the v+(i) is the bitrate of following quality level
compared to v(i).

Then, we can iteratively search the neighborhood of point vτ

in iteration τ to find the maximal Ld ,

Ld (vτ+1, K ,λ,μ) = max
v�∈N (vτ )∪{vτ }

Ld(v�, K ,λ,μ) (27)

Then we update vτ with the maximum potential raises
neighborhood point v� iteratively. Until vτ converges, we will
find a discrete local maximum. Finally, we only get an
approximate solution to our primal problem.

Summarizing, the Nash bargaining solution is also the
Pareto solution in (20). The pseudo-code of the Nash bar-
gaining algorithm is presented in Algorithm 1.

Algorithm 1 Adaption Algorithm
1: Parameters: available bandwidth C , buffer length q(t), RTT

r tt for current time, hyper-parameter pε , and disagreement
point (F0

1 , F0
2 , F0

3 ), which can be calculated by the
approach in Sec.V-C.

2: Initialization: set K = 1, L �d = 0. Let λi and μi equal to
some nonnegative value, and v(i)∗ ← rmin for all i .

3: (i). Set K ← K + 1, and π ← 1.
4: (ii). Set τ ← 1, let vτ as last push cycle’s value v∗ and

vτ ( j)← 0 for all j (K < j ≤ Kmax).
5: (iii). Calculate N (vτ ) with function in (26) and

Ld(vτ+1, K ,λ,μ) with function in (27).
6: (iv). Set τ ← τ+1 and go to step (iii) (until vτ converges).
7: (v). Calculate the value of (23). If the value is greater

than L �d , broadcast and update the new value v∗ ← vτ ,
K ∗ ← K , and L �d ← Ld(vτ , K ,λ,μ).

8: (vi). For each i , update its prices with the function
in (24-25).

9: (vii). Set π ← π +1 and go to step (ii) (until converging).
10: (viii). Go to step (i) (until K ≥ Kmax).
11: return (v∗, K ∗).

C. Disagreement Point

The disagreement point is the value the players can expect
to receive if negotiations break down. This could be some focal
equilibrium that both players could expect to play. Therefore,
it stands to reason that each player should attempt to choose
his disagreement point in order to maximize his bargaining
position. The choice of the disagreement point is subject to
different economic considerations.

Authorized licensed use limited to: Peking University. Downloaded on November 04,2020 at 03:05:46 UTC from IEEE Xplore.  Restrictions apply. 



XU et al.: QoE-DRIVEN ADAPTIVE K-PUSH FOR HTTP/2 LIVE STREAMING 1787

Fig. 4. System architecture.

In this paper, we aim to minimize three objectives,
F1(v, K ), F2(v, K ) and F3(K ). We denote (F0

1 , F0
2 , F0

3 )
as the disagreement point. It is often advantageous to
increase one’s own disagreement payoff while harming
the opponent’s disagreement payoff. So, we can respec-
tively consider three different objectives, and set it as
(F1_max, F2_max, F3_max), which means we cannot accept
the value of F1, F2 and F3, that bigger than F1_max, F2_max
and F3_max. As shown in Fig.3, we plot the disagreement
point C of F1 and F2 by fixing the value of F3, and all the
feasible solutions belong to the closed region ABC .

To solve (F1_max, F2_max, F3_max), we consider three
objectives respectively. For F3_max, it is very easy to set
F3_max = (Kmax − 1)/Kmax, which means the push length
is 1, and the disagreement point value is achieved for F3(K ).

For F1_max and F2_max, they are mutually exclusive.
In order to maximize its own bargaining position, each objec-
tive should attempt to choose a disagreement point which
is the most beneficial for itself. Towards this objective, it is
often advantageous to increase one’s own disagreement payoff
while harming the opponent’s disagreement payoff. If we only
minimize F1, then F2 will be maximum and achieve its own
disagreement point value, and vice versa. As result of that,
we can get the disagreement point value F1_max of F1 by
only minimizing F2, and get the disagreement point value
F2_max of F2 by only minimizing F1. We denote QoE1 as the
minimized problem for F1, and the QoE2 as the minimized
problem for F2. Then under the (9-10) constraints and K = 1,
we can derive these two minimization problems as

QoE1 = arg min
v

F1(v, K ) (28)

QoE2 = arg min
v

F2(v, K ) (29)

Above functions are easy to solve. We consider a simple
case, where the last segment’s bitrate is rmin, and the available
bandwidth C is bigger than the highest bitrate rmax. We firstly
only optimize QoE1, which will hurt interests of F2. Then,
we only optimize QoE2, which will hurt interests of F1.
As shown in Fig.3, if we minimize QoE1, then QoE2 will
be maximal and we can get F2_max as the point B , we also
can get F1_max as the point A vice versa. Further, we can
derive the disagreement point (F1_max, F2_max) as the
point C for F1(v, K ) and F2(v, K ). Then, we can get
the disagree point (F1_max, F2_max, F3_max) for three
objectives.

VI. SYSTEM IMPLEMENTATION

In this section, we present the implementation details
of QoE-driven adaptive k-push (QK-Push) in HTTP/2 live
streaming. The system architecture is shown in Fig. 4.

A. Media Production

This part prepares live video segments and Media Presen-
tation Description (MPD). It contains a Media Source module
with the world’s first open movie Elephants Dream, a Live
Streaming module with e2eSoft VCam, a Live Encode module
with open source software of GPAC DashCast [55] and a
Media Content module by modifying the attribute @mediaP-
resentationDuration or @minimumUpdatePeriod and @start-
Number in MPD file to support live streaming.

B. HTTP/2 Server Implementation

We implement our HTTP/2 live streaming system in
Linux/Unix platforms. The HTTP/2 server is implemented
based on libnghttp2_asio [13], an open-source high-level
HTTP/2 C++ library. Once received a request with
PushDirective, the server launches a push session, where
the corresponding segments are pushed back sequentially.
The server side contains a Listen module with support-
ing of SSL/TLS encrypted connection, a Request Parser
to support @fast_start_directive, @fast_start_ACK_directive,
@push_directive and @push_cancel_directive push directives,
a Files State Checker to check the existence of live streaming
segment, a Timer, and a Push Controller.

C. Client Implementation

We implement the video player based on the open
source available MPEG-DASH dash.js [14] player and
implement our QK-Push algorithm in HTTP/2 live stream-
ing scheme. The client consists of an MPD Parser,
a Bandwidth Estimator, a Buffer Controller to support our
dual-threshold buffer model, a Decoder, a Push Number
Adaptation module, a Rate Adaptation module and a HTTP
Request Generator to generate the request by adding
@fast_start_directive, @fast_start_ACK_directive, @push_
directive and @push_cancel_directive into HTTP request
header according to different requirement.
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D. Fast Start Mechanism

To decrease startup delay, we can take advantage of the fast
start mechanism. The playback duration is classified into two
period: fast-start period and normal push period. At the fast-
start period, the client sends an MPD request which contains
a Fast-Start Directive to the server. After receiving the MPD
request, the server will parse the Fast-Start Directive and send
MPD response which contains a Fast-Start ACK Directive.
At the same time, the server will push some segments to
the client. When the client received the MPD file, it will
parse the MPD response header and get the fast start push
information. If the next requested segment is not in the
response list, the client will directly request these segments
from the server. In normal push period, the client will normally
run push session by HTTP request with Push Directive.

E. Push Cancel Mechanism

Based on the proposed QK-Push, the adaption pair (v∗, K ∗)
obtained in Algorithm.1 is able to provide smooth video bitrate
with high quality, while maintaining the low overhead and
continuous playback. However, since the bandwidth may be
highly dynamic, there still have chances that buffer occupancy
falls out of dual-threshold qmin and qmax, which means the
high risk of buffer overflow/underflow. To prevent the buffer
from overflow/underflow, the client must terminate the running
push session immediately and launch a new push cycle.

The running push cycle can be canceled via HTTP/2 stream
termination mechanism. If a great bandwidth mismatch is
found, the client can cancel the promised but not complete
streams by sending RST_STREAM frames associated with the
stream IDs (which can be extracted from PUSH_PROMISE
frames). Once the running push session is terminated,
the client will send a new request to initiate another push
session.

VII. PERFORMANCE EVALUATION

In this section, we evaluate our QK-Push in HTTP/2 live
streaming by conducting controlled experiments on a network
test-bed and experiments over the real Internet trace.

A. Experiment Setup

We implement our HTTP/2 live streaming system in
Linux/Unix platforms. Our test-bed consists of four nodes:
media resource server, HTTP/2 server with TC controller,
router, and DASH client as shown in Fig.5. The HTTP/2 server
and the client are deployed on a 64-bit Linux machine respec-
tively. The installed operating systems are Ubuntu 16.04 with
Linux Kernel. The TC controller is also installed in the
HTTP/2 server to control the network bandwidth and introduce
a planned network delay.

In our experiments, the server provides five different
versions of video bitrate (345Kbps, 618Kbps, 1.57Mbps,
2.54Mbps, and 3.60Mbps). Each version of the video is
divided into video segments with the same length (1sec, 2sec,
4sec, and 6sec). The buffer length is set as 12sec, and the
start playback buffer offset is set as 6sec. For performance

Fig. 5. Network topology in test-bed.

comparison, in addition to our method, we also implement
the typical bandwidth-based scheme for DAS over HTTP/1.1.
Besides, the bandwidth-based adaption method for DAS over
HTTP/2.0 and the similar DASH2M proposed in [10] are also
implemented. All the methods of comparison as follows:

1) HTTP/1.1 method is a bandwidth-based scheme, which
aims to maintain the buffer occupancy staying at a
high level so as to ensure continuous playback. In this
method, the video bitrate is always switched down to an
available bandwidth.

2) HTTP/2.0 method is also a bandwidth-based method,
which is similar to the HTTP/1.1 method. In addition
to that, it also adopts Server Push feature in HTTP/2,
and sends K same video bitrate segments to the client in
one push cycle. We can find the advantage of HTTP/2 by
comparing HTTP/1.1 and HTTP/2.0 method.

3) DASH2M aims to stabilize the buffer occupancy around
given target level to ensure continuous playback. To opti-
mize playback quality level, the maximal video bitrate
under constraints that the estimated buffer is no less than
given target level is select.

4) QK-Push is our method which aims to avoid buffer
underflow/overflow within a certain tolerance. Our
method not only balances the needs for video quality,
bitrate smoothness and request overhead, but also pro-
vides low startup delay and flexibility for live streaming.

In performance comparison, we take several measurement
metrics into consideration, video bitrate, Peak signal-to-noise
ratio (PSNR), startup delay, stalling ratio, buffer occupancy,
instability, which was calculated by function in (2), and
the estimate the Mean Opinion Score (eMOS), which was
proposed and used in [15] and [16].

B. Performance Under Fixed Bandwidth

In this section, we show experiments under the case that the
available bandwidth is fixed and set to 1.9Mbps, with 100ms
RTT and 1sec segment duration, as shown in Fig.6.

When the available bandwidth keeps fixed, the video bitrate
with the HTTP/1.1 method should be stable, and maintain
buffer occupancy staying at a high level. However, we can
find that the bitrate will switch down and up once in a while.
First, this is because we control the bandwidth at 1.9Mbps,
but the bandwidth could not accurately be 1.9Mbps and it
will also fluctuate up and down the 1.9Mbps. Second, we use
the variable bitrate (VBR) encoding method which will lead
to the segment size fluctuation in the vicinity of bitrate level.
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Fig. 6. Performance under fixed bandwidth with 100ms RTT and 1sec segment duration environment. (a) HTTP/1.1. (b) HTTP/2.0. (c) DASH2M.
(d) QK-Push.

In the HTTP/2.0 method, the buffer variation is similar to
the HTTP/1.1 method. Because the selection of video bitrate
for the bandwidth-based scheme is solely based on bandwidth.
By this scheme, the selected video bitrate is never allowed to
be higher than the available bandwidth and make the buffer
up to high level quickly. However, the bitrate and PSNR
variation are more stable than the HTTP/1.1 method. This
is because the HTTP/2 Server Push feature can make the
server send segments that the client has not yet requested.
In the HTTP/1.1 protocol, the client needs to send each
segment request to the server, which will degrade the link
utilization (especially when the RTT is long). As the k-push
mechanism is adopted and the server will push k same bitrate
segments to the client in one push cycle, the HTTP/2.0 method
will overcome some small spikes in the network bandwidth
variation and have a high average video bitrate.

In DASH2M method, the video bitrate and PSNR fluc-
tuate heavily, while it stabilizes buffer occupancy. Because
the objective of this method focuses on maximizing average
quality level while maintaining buffer occupancy no less than
the predefined threshold, however the smoothness of video
bitrate is not well considered.

Different from the bandwidth-based method, with QK-Push,
the bitrate switches between 1.57Mbps and 2.54Mbps.
Because QK-Push method determines adaptive segments based
on the probabilistic buffer constraints and the multi-objective
optimization decision, where a video bitrate higher than
captured bandwidth is allowed, thus avoiding buffer over-
flow while achieving high bandwidth utilization. In QK-Push,
bitrate and PSNR variation are more stable than DASH2M
method. What’s more, we can observe that the buffer occu-
pancy is well controlled between dual-threshold in our method,
because our method takes the smoothness of video bitrate in
the multi-objective optimization decision process into account.

We also find that all the method will request high bitrate
level segments between the time of 570sec to 620sec, because
we use the VBR encoding method, and this duration video
content is cast with a black ground. The encoded segment
size will be smaller than the bitrate. Therefore, all method
will request high bitrate level segments.

In Table.II, the performance of various methods under fixed
bandwidth is compared in terms of four critical QoE metrics,
including average video bitrate, average PSNR, bitrate insta-
bility, and startup delay. We can find that the HTTP/2-based
methods will achieve higher average video bitrate and PSNR,

TABLE II

PERFORMANCE UNDER FIXED BANDWIDTH

because the Server Push feature can increase the link uti-
lization. For pursuing target buffer, DASH2M will achieve
the highest instability. As adopting of k-push, HTTP/2.0 will
be more stable than HTTP/1.1. However, our QK-Push holds
the lowest instability as considering the smoothness of video
bitrate. The startup delay for HTTP/1.1 method is the highest,
as the client needs to send a request for each segment to the
server, which is time-consuming. Our QK-Push achieve the
highest average bitrate, PSNR, eMOS and the lowest startup
delay as the use of our QoE-driven adaptive k-push scheme
and fast start mechanism.

C. Impact of RTT Variations

In this part, the experimental results under different RTT
(0ms, 50ms, 100ms, and 150ms) with fixed bandwidth and
the 1sec segment duration are presented.

As shown in Fig.7, we can find that with the RTT
getting bigger, the average bitrate will get smaller in the
HTTP/1.1 method, which is more sensitive than others
methods. As the push method can counteract the influence
of RTT in one push cycle, the other HTTP/2-based meth-
ods’ performance is nearly stable. Comparing HTTP/1.1 with
HTTP/2.0 method, we can find HTTP/2-based methods can
take full advantage of the available bandwidth by HTTP/2
Server Push feature.

When the RTT gets big, the instability for HTTP/1.1 will
be small, however, the other HTTP/2-based method’s
performance nearly stable. Because HTTP/1.1 is sensitive
to bandwidth variation, although we control the bandwidth
at 1.9Mbps, there are many spikes during whole bandwidth
variation, as the RTT get big, the longer overhead time for
one segment will make the client overcome these spikes. For
DASH2M, it is unstable and holds big instability, as it is a
target buffer based method, and it will request a segment,
whose bitrate is big or small than last one. On the contrary, our
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Fig. 7. Impact of different RTT (0ms, 50ms, 100ms, 150ms) under fixed bandwidth with 1sec segment duration environment. (a) Average video bitrate.
(b) Average instability. (c) Startup delay.

Fig. 8. Impact of different segment duration (1sec, 2sec, 4sec, 6sec) under fixed bandwidth with 100ms RTT environment. (a) Average video bitrate.
(b) Average instability. (c) Startup delay.

method is designed with dual-threshold buffer and we consider
the bitrate oscillation, so it is more stable.

Statistics suggest that the startup delay of our QK-Push
method is the lowest. Because we adopt fast start mecha-
nism when the client sends the MPD request with Fast-Start
Directive, the server will send the client MPD file with
Fast-Start ACK Directive and some pushed segments, which
saves the number of requests and RTT time. For DASH2M,
it will request the lowest quality bitrate segment first,
so the live latency will be lower than the HTTP/1.1 and
the HTTP/2.0 methods. Comparing the HTTP/1.1 with the
HTTP/2.0 method, we can find the startup delay is nearly
equal when the RTT is small. However, when the RTT gets
big, the HTTP/2.0 method can slow down the startup delay
compared to the HTTP/1.1 method, because the client needs
to buffer some segments before starting to play the video
content for all methods. The HTTP/2.0 method will save
some requests by HTTP/2 Server Push feature, which means
the HTTP/2.0 method save some RTT time for these saved
requests, so when the RTT gets big, it will save more time.

D. Impact of Segment Duration

In this part, the experimental results under different segment
duration (1sec, 2sec, 4sec, and 6sec) with fixed bandwidth and
the 100ms RTT are presented.

As shown in Fig.8, we find that as the segment dura-
tion gets big, the average bitrate will change into high
in the HTTP/1.1 method, and it is more sensitive than
other methods. For instance, when the segment duration is
6sec, the HTTP/1.1 method will be similar to the HTTP/2.0
method (where k = 6 for k-push and segment duration
is 1sec), which will save about 83% requests number for

a certain duration video and have a higher link utilization.
For other methods, they can offset the influence of RTT
in one push cycle, when the segment duration gets big,
the saved requests number will be small compared to
the HTTP/1.1 method. Comparing the HTTP/1.1 with the
HTTP/2.0 method, we can find the HTTP/2-based methods
can take full advantage of the available bandwidth by HTTP/2
Server Push feature when the segment duration is small, which
will decrease the startup delay.

We can find that all methods hold low instability level when
the segment duration gets big. Because when the segment
duration gets big, the client will need a small number of
segments for a certain video, which means we need more
overhead time for one segment. This will make the client omit
some bandwidth variation spikes and decrease the instability.

For our method, the startup delay is the lowest by adopt-
ing the fast start mechanism. The influence of the segment
duration for HTTP/2.0 and DASH2M methods is very small
because they only need one or two push request(s) to start
playing the video content with the variation of the segment
duration. For the HTTP/1.1 method, the different segment
duration means different requests number to start playing the
video content, so its startup delay is more sensitive than
segment duration. No doubt that the startup delay for our
method is the lowest all the time as adopting our fast start
mechanism.

E. Performance Under Square Bandwidth

In this part, the experimental results under the case that the
available bandwidth goes through some positive or negative
spikes that last for few seconds are compared in Fig.9, where
the segment duration is 1sec and the RTT is 100ms.
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Fig. 9. Performance under square bandwidth with 100ms RTT and 1sec segment duration environment. (a) HTTP/1.1 (b) HTTP/2.0. (c) DASH2M.
(d) QK-Push.

When happening short-term variations, which are com-
mon in practice, especially in wireless networks, a good
rate adaption method is able to compensate for such spikes
using its buffer, without causing short-term bitrate switch-
ings. As shown in Fig.9, when the available bandwidth
changes (such as 540sec to 560sec), HTTP/1.1 method
will often change the segments’ bitrate level. However,
the HTTP/2.0 method will not switch the quality as the
HTTP/1.1 method, because the HTTP/2 k-push mechanism
will skip some bandwidth variations. Compared to these
bandwidth-based methods, DASH2M method will always
chase a goal buffer occupancy, so it will often switch the
quality. On the contrary, our method takes the smoothness
of video bitrate in the multi-objective optimization decision
process into account. We can observe that the short-term
spikes are well absorbed via buffer accumulation/consumption,
without causing short-term bitrate fluctuations. Thus, in our
QK-Push method, the instability metric always stay at a low
level.

When happening long-term variations, all schemes switch
the requested video bitrate so as to prevent the buffer from
overflow/underflow. However, when the bandwidth decreases
severely from 1.9Mbps to 0.5Mbps, in DASH2M method and
bandwidth-based methods, different levels of buffer depleting
happen. This is because that when the bandwidth is stable,
a large push length is selected to reduce requests in bandwidth-
based methods, which will lead to dramatical buffer dropping
for unpredictable severe bandwidth deterioration. In DASH2M
method, to improve playback quality, the maximal video
bitrate is selected under constraints that the estimated buffer is
no less than given target level. However, network bandwidth
can be highly dynamic which is hardly predicted accurately,
thus buffer depleting happens for unpredictable severe band-
width deterioration. In contrast, the buffer occupancy with
our method is well controlled via quickly switching down
requested video bitrate. This is because that in our method,
when buffer occupancy falls below threshold qmin where the
risk of buffer depleting is high, the running push session is
terminated immediately and a new push cycle is launched with
new adaptive segments to prevent the buffer from underflow.
Thus our method will not lead to stalling.

In Table.III, the performance of various methods under
short-term bandwidth variations is compared in terms of four
critical QoE metrics, including average video bitrate, average
PSNR, bitrate instability, and stalling ratio. We also can find

TABLE III

PERFORMANCE UNDER SQUARE BANDWIDTH

that the HTTP/2-based methods will achieve higher average
video bitrate and PSNR by the HTTP/2 Server Push feature.
The instability for DASH2M is the highest, as it pursues
a target buffer. And the HTTP/1.1 method also has high
instability because it is a bandwidth-based method, which is
easily influenced by the bandwidth variation. The stalling ratio
for HTTP/1.1 method is small, as the selected video bitrate is
never allowed to be higher than the available bandwidth. For
the HTTP/2.0 method, it adopts k-push and it will slowly react
to bandwidth variation, so it will have a high stalling ratio
when the available bandwidth is fluctuant. To pursue a target
buffer level, DASH2M will always request segments, whose
bitrate mismatches the available bandwidth, which will lead to
big instability. As a result, DASH2M will easily stall when it
faces drastic fluctuation in available bandwidth. However, our
method will not cause stall as we adopt a probabilistic buffer
model and a push cancel mechanism. Finally, our QK-Push
achieves the highest eMOS.

F. Performance Under Real Internet Trace

In this section, we first compare all the methods under a real
Internet trace (about 670sec) depicted in Fig.10, where both
the long-term shifts and short-term fluctuations of bandwidth
can be observed. All Internet trace is collected in PlanetLab,
with one node located in Hong Kong, China (plab1.cs.ust.hk)
and another node in Beijing, China (p11.pku.edu.cn) for
4 hours from 7:00 pm to 11:00 pm.

The results depicted in Fig.10 demonstrate our proposed
method well adapts to the varying network conditions. The
results show that our proposed method can effectively absorb
short-term spikes using buffered video, without causing
short-term bitrate switchings. While for long-term bandwidth
changes, our proposed method is able to switch to an appropri-
ate bitrate without causing buffer overflow/underflow or play-
back stall. However, in bandwidth-based methods, due to
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Fig. 10. Performance under real Internet trace with 100ms RTT and 1sec segment duration environment. (a) HTTP/1.1. (b) HTTP/2.0. (c) DASH2M.
(d) QK-Push.

Fig. 11. Performance under real Internet trace with 100ms RTT and 1sec segment duration environment. (a) Proportion of video bitrate level. (b) CDF of
average video bitrate. (c) CDF of instability. (d) CDF of buffer occupancy.

TABLE IV

PERFORMANCE UNDER REAL INTERNET TRACE

its conservative bandwidth-based adaption logic, the video
bitrate fluctuates frequently and the buffer occupancy always
stays at high level. In DASH2M, the bitrate smoothness
is sacrificed so as to provide high playback quality while
stabilizing buffer occupancy. However, the sacrificing of video
bitrate smoothness to stabilize the buffer occupancy usually
unbefitting in maintaining QoE. From the viewer’s point of
view, visual quality degradation due to bitrate fluctuations are
more perceivable than buffer occupancy oscillations.

The comparison of quality metrics is shown in Table.IV,
which shows that our method provides a continuous video
playback with the most smooth bitrate, highest quality level
and eMOS. And the HTTP/2-based methods will achieve
higher average video bitrate and PSNR by the HTTP/2 Server
Push feature. We find that HTTP/1.1 holds the highest insta-
bility because the real internet trace is time-varying. For
DASH2M, it will always pursue a target buffer, so it will
have high instability. HTTP/2.0 method can overcome some
bandwidth spikes by k-push. However, by considering the
smoothness, our QK-Push will hold the lowest instability.
Stalling events will not occur as our probabilistic buffer
model and push cancel mechanism. As the selected video

bitrate is never allowed to be higher than the available
bandwidth, the stalling ratio for HTTP/1.1 method is small.
HTTP/2.0 method will slowly react to bandwidth variation
as this method will push k segments which hold the same
bitrate, so it will have a high stalling ratio compared with
the HTTP/1.1 method. DASH2M method has the highest stall
ratio. Because, DASH2M will always request segments which
mismatch the available bandwidth to pursue a target buffer
level, which will lead to high instability when the available
bandwidth fluctuates.

Then, we test our proposed scheme in the long Internet
trace (approximately 8500sec). To make a fair comparison,
we then sequentially conduct 3 group of experiments. In each
group, different schemes are tested sequentially by running
650sec. The results of different methods are summarized
in Fig.11.

Results show that QK-Push method always provides smooth
video bitrate with the high-quality level (3.60Mbps, about
11%, 2.54Mbps, about 34%, 1.57Mbps, about 38%, as shown
in Fig.11 (a)) since our method takes those critical factors
affecting QoE into account comprehensively and thoroughly.
However, other three schemes only consider part of critical
QoE factors and thus fail to achieve the best performance.
Besides, though with k-push, the average video bitrate in
bandwidth-based methods are always lower for its conservative
bandwidth-based rates selection logic, such as the proportion
of HTTP/1.1 and HTTP/2.0 are mainly concentrated on the
1.57Mbps (HTTP/1.1, about 61%, HTTP/2.0, about 62%) and
2.54Mbps (HTTP/1.1, about 20%, HTTP/2.0, about 18%).

In Fig.11 (b), we calculate the Cumulative Distribution
Function (CDF) of average video bitrate for each segment.
We can find that our QK-Push method will hold the highest
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average video bitrate level by our QoE-driven adaptive
k-push scheme, and the HTTP/1.1 holds the lowest average
video bitrate as it never allows to request segment which
video bitrate is higher than the available bandwidth. The
HTTP/2.0 and DASH2M methods have a higher average video
bitrate as the adoption of the Server Push feature.

We also calculate the CDF of instability for each segment
in Fig.11 (c), the instability for our QK-Push is the lowest
and the HTTP/1.1 method achieves the highest instability as
the real Internet trace is time-varying. However, by adopting
the Server Push feature, the HTTP/2.0 method achieves low
instability to some extent. For DASH2M, it also has high insta-
bility to maintain the buffer at a target level. By considering
the smoothness, our QK-Push still holds the lowest instability.

Fig.11 (d) shows that DASH2M always keeps the buffer
near the target buffer, and HTTP/1.1 with HTTP/2.0 keep the
buffer at a high level as they are the bandwidth-based method
and they will request segments which video bitrate never
higher than the available bandwidth all the time. On the con-
trary, our QK-Push method switches the buffer level between
qmin and qmax, which avoid buffer overflow/underflow.

VIII. CONCLUSION

In this paper, we proposed a QoE-driven rate adapta-
tion approach of dynamic k-push in HTTP/2 live streaming.
To ensure continuous playback, a probabilistic buffer control
model was firstly designed to keep buffer occupancy staying
between dual-threshold to avoid buffer underflow/overflow.
Then, we designed three QoE objective functions and maxi-
mized them via comprehensively considering critical factors of
QoE for an HTTP/2 live video streaming session. To balance
the needs for video quality, bitrate smoothness and request
overhead, we cast the above multi-objective optimization
problem as a Pareto problem via a Nash bargaining solution.
A discrete space Lagrangian method was designed to pro-
duce the segments in each push cycle. Furthermore, we also
designed a fast start mechanism and a push cancel mechanism,
which provided low startup delay and flexibility for our
scheme. Finally, we implemented a real HTTP/2 QK-Push
prototype with dash.js and modified MPD. To evaluate the
performances, the extensive live streaming experiments were
carried out over controlled network test-bed and real Inter-
net trace. The results demonstrated good efficiency of the
QK-Push algorithm.
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