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Abstract—With the deployment of real-time video applications
and wireless networks, the real-time congestion control becomes
a hot topic. Most existing congestion control algorithms are not
designed for low-latency real-time flows, or perform poorly in
the face of highly variable channel capacities. In this paper, we
proposed a novel Learning-based Congestion Control (LCC) for
real-time video communication over wireless networks. The key
idea of LCC is employing Kernel Density Estimation for one-
way delay and sending rate to capture the underlying information
about channel state. Then LCC bases on the estimated probability
density and Bayesian theorem to quickly adapt sending rate to the
changing channel. We implemented LCC in WebRTC framework
and extensive experiments were carried out. Compared with the
native WebRTC congestion control (GCC), experimental results
show that LCC achieves higher channel utilization, even more
than 4.2ˆ throughput in lossy links. LCC is also much better
at adapting to the variable channel than GCC. Besides, LCC
performs well in delay constraint and intra-protocol fairness.

I. INTRODUCTION

With the advance of mobile network and video technology,
interactive video applications are increasingly emerging and
wireless networks have become a popular mode of Internet
access. As a consequence, real-time congestion control be-
comes a hot topic. Two IETF working groups, RTCWeb and
RMCAT, are standardizing a set of protocols for real-time
video communication. There are also increasing researchers
devoted into real-time congestion control research.

Although there has been already many prior works in the
field of congestion control, it is still a challenge to design an
efficient algorithm for real-time video streaming over wireless
networks. The effects of wireless link-level mechanisms on
end-to-end transport protocols were well studied in [1] and the
challenges can be summarized in two parts: rapid variation of
the link capacity and bursty [2].

The conventional algorithms like TCP Cubic [3] and TCP
Vegas [4] are not usually employed by real-time flows. They
use constant parameters to adjust the rate, introducing rate
oscillation and intolerable queuing delay [5]–[7]. Similarly,
the algorithms designed for real-time video streaming, such
as TFRC, GCC and NADA [8]–[10], also have some serious
flaws. They all back off when packet loss occurs, but none
of them can distinguish stochastic loss which is a part of
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the wireless environment from the packet loss caused by
congestion, resulting in bandwidth under-utilization. Besides,
there are several recent algorithms designed for various en-
vironments, such as PCC [11], Sprout [12], Verus [2] and
Remy [13]. Especially, Verus and Remy novelly try to learn
the control strategy, separately based on online observation
and offline prior knowledge. But Remy can not perform well
in the network beyond the training set.

Motivated by these issues, we aim to design a specialized
congestion control for real-time video streaming over wireless
networks, to achieve following goals: 1) low queuing latency;
2) high channel utilization; 3) adaptability to changing chan-
nel; 4) a fair share of bandwidth between concurrent flows.

Addressing the above goals, we designed a novel end-to-
end Learning-based Congestion Control (LCC), specialized
for real-time video communication over wireless networks.
The key of LCC is employing weighted Kernel Density Esti-
mation (KDE) to continuously learn the relationship between
sending rate and one-way delay (OWD), which implies the
information about wireless channel condition. Then, based on
the difference between OWD and our desired delay target,
LCC employs Bayesian theorem to adaptively adjust sending
rate. This approach avoids the effects of fixed adjustment
parameters, achieving higher channel utilization and better
adaptability to the changing channel.

We implemented our proposed LCC algorithm in the We-
bRTC framework, and experimentally evaluated LCC in the
typical scenario described in the IETF RMCAT [14]. By com-
paring with the native WebRTC congestion control (GCC), the
experimental results show that LCC 1) obtains higher channel
utilization, even more than 4.2ˆ throughput when stochastic
loss rate is high, at the cost of only a dozen milliseconds delay;
2) achieves smoother bitrate and faster convergence; 3) gets a
fair share of bandwidth between concurrent LCC flows.

The main contributions of this paper are three-fold:

‚ A probability density model is used to objectively reflect
the channel status, instead of attempting to predict the
unpredicted wireless channel dynamics.

‚ Based on Bayesian theorem, the sending rate is quickly
adjusted to achieve high channel utilization and the
adaptation to changing link.

‚ A delay target is introduced to successfully constrain the
queuing delay in bottleneck links.
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This paper is organized as follows: Section II describes
the components of LCC. Section III shows the experimental
environment, results and corresponding analysis. Section IV
concludes the paper.

II. LCC ALGORITHM

LCC is an end-to-end congestion control protocol designed
for Internet real-time video communication over wireless
networks. Due to the unpredictability of wireless networks,
LCC uses OWDs to reflect the state of bottleneck link. The
key idea of LCC is to continuously learn a probability density
model which captures the relationship between OWDs and
sending rate. Then LCC employs this relationship to increase
or decrease sending rate, based on the desired delay target and
Bayesian theorem.

Considering that the channel changes over short time scales
in wireless networks, LCC adjusts sending rate in a small ε
ms cycle to quickly adapt to the changing link. At each epoch,
LCC decides the next sending rate Si`1 as follows:

Si`1 “ fpDave,i, P pS,Dqq (1)

where f is the rate decision function based on Bayesian
theorem, with Dave,i being the average OWD at i-th epoch and
P pS,Dq representing the joint probability density of sending
rate S and OWD D.

Therefore, to build the rate decision function f , LCC first
uses Delay-Rate Tracker to estimate and record historical
sending rate and OWD, then employs Probability Density
Fitter to obtain the joint probability density of sending rate
and OWD. Finally, it constructs f with Bayesian Controller.

A. Delay-Rate Tracker

The Delay-Rate Tracker aims to estimate and record the
sending rate and average OWD at each epoch. OWD is
calculated by the timestamp difference between receiver and
sender, which helps to avoid the influence caused by reverse
cross-traffic.

Within the i-th epoch, Delay-Rate Tracker keeps track of all
received OWDs, then figures out the temporary average value
Di. In order to avoid abrupt changes, the average OWD Dave,i

is weighted by an Exponential Weighted Moving Average
(EWMA) as follows:

Dave,i “ p1´ αqDave,i´1 ` αDi

where 0 ă α ă 1
(2)

Besides, the sending rate Si at i-th epoch is also recorded
by Delay-Rate Tracker. Finally, all such pairs of Dave,i and
Si are passed to Probability Density Fitter.

B. Probability Density Fitter

In a bottleneck link, the sending rate Si can be viewed
as an ”action” and Dave,i is the corresponding ”result”. The
pair of Si and Dave,i implicitly reflects the channel state.
Employing many such pairs, the Probability Density Fitter
aims to describe the latest channel status in probabilistic terms.
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Fig. 1: Probability Density Estimation for Dave,i and Si.

The Probability Density Fitter sets a sliding window to store
the latest N pairs of S and D, to establish the joint probability
density. In addition, the recent pairs are given more weight
than the old. For 1 ď i ď N , the weight of the i-th pair is
computed as follows:

wi “ ei{N´1 (3)

The rationality of the weight is obvious that the more recent
the data is, the better it is for demonstrating the channel state.

Based on above sampled datas, bivariate weighted Kernel
Density Estimation (KDE) is used to fit the joint probability
density of S and D. The probability density function P pS,Dq
is estimated as follows:

P pS,Dq “
1

W

N
ÿ

i“1

wiKpS ´ Si, D ´Dave,iq

where W “

N
ÿ

i“1

wi

(4)

In equation 4, K represents the kernel function and the
normal kernel is adopted in this paper.

The joint probability density captures the relationship be-
tween OWD and sending rate, describing the latest channel
state in probabilistic terms. To show its function intuitively,
we collected data based on the test-bed built in Section III-B,
where N is set to 300. The resulting probability density
estimation displayed in Figure 1 is logical, where larger
sending rate will cause higher delay. The region with the
largest probability is exactly the area LCC converges to.

Considering the computational complexity, the probability
density update interval is set to 1 second. Finally, P pS,Dq is
passed to Bayesian Controller to decide the next sending rate.

C. Bayesian Controller

Bayesian Controller employs OWD information and joint
probability density P pS,Dq to decide the next sending rate. In
order to adapt quickly to channel changes, the update interval
of sending rate is set to a small ε milliseconds.

In order to effectively constrain the packet delay, we set a
low delay target TA as the goal of following OWDs. Through
grid search technique, the minimum OWD plus 25ms is proved
to be a suitable value for TA. Delay control parameter Tc is
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used as the reference delay to adjust sending rate. Within i-th
epoch, Tc,i is expressed as follows:

Tc,i “ Tc,i´1 ` δpTA ´Dave,iq (5)

where δ is a positive increment/decrement parameter.
Then, Bayesian Controller aims to find the suitable sending

rate corresponding to the delay control parameter Tc,i. It is
based on Bayesian theorem and the law of total probability:

P pS|D “ Tc,iq “
P pS,D “ Tc,iq

P pD “ Tc,iq

P pD “ Tc,iq “

ż

P pS,D “ Tc,iqdpSq

(6)

The expectation of the sending rate which caused OWD
equal to Tc,i is chosen as the next sending rate:

Si`1 “

ż

S ¨ P pS|D “ Tc,iqdpSq (7)

In addition, LCC deals with the exorbitant delays (i.e. larger
than Rˆ TA ) by a multiple parameter M :

Si`1 “M ¨ Si if Dave,i ą R ¨ TA (8)

The rationality of Bayesian Controller is obvious: if the
average OWD estimate Dave,i is higher than delay target TA,
Tc,i should be decreased to choose a lower sending rate, and
vice versa.

III. ALGORITHM PERFORMANCE

We implemented LCC in WebRTC framework∗ and con-
ducted extensive experiments to evaluate the performance of
LCC. In [15], it is revealed that NADA and GCC have similar
performance. Thus we only compared LCC with the native
WebRTC congestion control GCC.

A. Experiment Setup

To verify our proposed algorithm experimentally, we set up
experimental test-bed over a real network consisting of two
Windows machines connected through Ethernet. Machine-1 is
used as a sender while Machine-2 is a receiver, and they both
have a private IP address. The WebRTC clients we used are
compiled from native code in branch M60. To generate video
flows, Machine-1 runs the peerconnection client.exe as a client
and peerconnection server.exe as a server, while Machine-2
runs the peerconnection client.exe as a client. To support the
experiments reproducibility, we used the same video sequence
for every emulation, employing the virtual webcam VCam.
Besides, Network Emulator is used to set network parameters,
such as available bandwidth, link loss rate and so on. The
one-way propagation delay was set to 50 milliseconds on the
forward path. To emulate the deep queue in wireless networks,
we did not limit the queue size. Finally, Wireshark is used to
capture packets.

∗https://webrtc.org/
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Fig. 2: Average throughput and OWD for each flow of
LCC and GCC under different stochastic loss rate, over the
1000Kbps link.

We consider the following metrics to evaluate the perfor-
mance of algorithms: 1) Channel Utilization U “ x̄{b, where
b is the known available bottleneck bandwidth and x̄ is the
average throughput; 2) Queuing delay Tq , estimated by the
average of the difference between OWDs and propagation
delay.

B. Single flow in scenarios with different loss rate

This experiment aims to investigate the performance of
single LCC and GCC over a lossy link. To emulate real-world
wireless environment, the bottleneck link is configured with
different packet loss rate li P r0, 2%, 5%, 10%s, with available
bandwidth b equal to 1Mbps. Each experiment is repeated ten
times and the duration of each test is 100 seconds.

TABLE I: Average channel utilization U and queuing delay
Tq over the link with different stochastic loss rate.

Loss Rate 0% 2% 5% 10%

U (%) GCC 69.2% 59.5% 47.8% 14.6%
LCC 82.4% 77.3% 70.6% 61.6%

Tq(ms) GCC 9.95 8.11 4.14 1.87
LCC 25.5 23.3 17.6 13.3

Figure 2 shows the average throughput and OWD for each
of the flows across all tests. It demonstrates that LCC always
performs better than GCC under different stochastic loss rate.
Although the queuing delay of GCC is exactly low, it wastes
too much available bandwidth and always keeps the channel
underutilized. Table I displays the statistical average value
of channel utilization U and queuing delay Tq for every
scenario. It clearly shows that LCC achieves more than 18%
throughput than GCC at the cost of only a dozen milliseconds
queuing delay. Even when the stochastic loss is up to 10%,
the throughput enhancement is more than 3.2 times.
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Fig. 3: Throughput dynamics in the case of a single GCC or LCC flow with variable link capacity.

C. Single flow with variable link capacity

This scenario investigates the dynamics of the bitrate con-
trolled by GCC or LCC to a step-like variation of the link
capacity. To the purpose, we set the link capacity to 1Mbps
for the fist 100s, then we increase it to 1.5Mbps for 50s and
decrease it to 800Kbps for another 50s. The following link
capacity is set to 1.3Mbps for 100s and back to 1Mbps for
the last 100s. Besides, the packet loss rate is set to 0%.

Figure 3 displays the dynamic throughput of GCC and LCC.
It intuitively shows that, in the face of varying link capacity,
LCC quickly adapts its sending rate to channel dynamics,
while the response of GCC is so conservative that it wastes
too much available bandwidth. The bad performance of GCC
is caused by the long adjustment interval and sensitive delay
threshold. On the contrary, LCC acts over the small epoch
to adapt quickly to network changes. In wireless networks,
the channel changes more violently, where GCC will perform
much worse. Besides, the throughput of LCC is also more
stable than GCC.

D. Intra-protocol fairness

The aim of this scenario is to investigate the intra-protocol
fairness of our proposed LCC. To the purpose, we have
considered three concurrent LCC flows over a 2Mbps link.
Each flow is started 100 seconds after the previous one. The
emulation lasts 300 seconds in total. Besides, the stochastic
loss rate is set to 0% and the one-way propagation delay is
still 50 milliseconds.

Figure 4 shows the overlapping dynamics of LCC through-
put and OWD. We can notice that LCC is not affected by other
competitors and nicely shares the bandwidth among the flows.
As far as delay is concerned, OWDs are always kept around
75ms, i.e. 25ms queuing delay. Only when a new comer enters,
the queuing delay increment is somewhat large, which is a
normal phenomenon.

IV. CONCLUSION

In this paper, we have designed a novel end-to-end conges-
tion control algorithm named LCC, specialized for the real-
time video communication over wireless networks. Instead
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Fig. 4: Throughput and OWD dynamics in the case of three
LCC flows sharing a bottleneck link with 2Mbps.

of attempting to predict the unpredicted wireless channel
dynamics, LCC bases on a probability density model, which
captures the relationship between one-way delay and sending
rate, to quickly adapt sending rate to the changing channel. We
implement LCC in WebRTC framework and evaluate it under
several experimental scenarios, by comparing with the native
WebRTC congestion control (GCC). The results show that
LCC has great improvements: 1) Higher channel utilization
than GCC is achieved, even up to 4.2ˆ throughput when
packet loss rate is high; 2) The delay is constrained well,
around 20ms; 3) The great ability to adapt to the changing
channel is obtained, which is much better than GCC; 4) A
fair share of bandwidth is achieved in the case of several
concurrent LCC flows over a link.
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