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Abstract—As real-time multimedia streaming thriving, For-
ward Error Correction (FEC) methods have been studied and
applied extensively these years. Most of researchers paid their
attention to the coding algorithms, attempted to balance the trade
off between recovery ratio and delay with fewer redundance.
However, when packet loss pattern changes dynamically, the
redundance waste is too serious to be ignored. In this work,
we propose a novel algorithm which adjusts the redundance
ratio of FEC encoder according to the prediction of packet loss.
Receivers are additionally required to feedback observed packet
loss pattern. Streaming sender collects the feedbacked packet loss
pattern and predicts the number of packet loss in the incoming
short period. As for implementation, we adopt long short-term
memory (LSTM) network as our deep learning algorithm, and
exquisitely embed it in our adaptive FEC system. With the
extensive experiments, our proposed scheme outperforms other
FEC methods greatly both in the simulations and evaluations on
traces observed from the real world.

Index Terms—Deep-learning, Network-adaptive streaming,
Forward error correction (FEC)

I. INTRODUCTION

Real-time video streaming is getting more and more preva-
lent in these years. Network video streaming is expected to
account for 82% of Internet traffic by 2022. In the meanwhile,
a growing share of network video will take the form of live
streaming video [1], and Real-time Video Communication
(RTC) is drawing increasing attention of users and researchers.
However, packet loss is proved to be a critical problem for
RTC, because it could cause distortion and decoding error, thus
degrading users’ Quality of Experience (QoE). Considering
the demand of RTC applications like video conferences that
one way delay is limited to no more than 200ms according
to the standard of International Telecommunication Union
(ITU), it is challenging to recover packet losses via restrans-
mission on Internet. Automatic Repeat-reQuest (ARQ) is a
traditional error correction method, but its recovery delay is
longer than an RTT. In order to solve this problem efficiently,
application-layer Forward Error Correction (FEC) [2] has been
proposed. Application-layer FEC applies error-resilient coding
algorithms to source packets to generate redundant packets,
which can recover the ever lost source packets with relatively
low latency when packet loss happens. It is validated that
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Fig. 1. The framework of deep-learning based adaptive FEC. DeepRS collects
delayed feedback from receiver, makes prediction on future packet loss using
LSTM model, and adjusts the parameters of RS encoder.

application-layer FEC is an effective technique to achieve low-
latency packet transmissioin, but it is still a big challenge for
application-layer FEC to improve the efficiency under time-
varying packet loss pattern.

There are two main categories of the existing works ad-
dressing the issue: coding scheme and adaptive FEC.

• Coding scheme focuses on devising new FEC coding
algorithms to enhance the efficiency of packet loss recov-
ery. For instance, fountain code [3], Raptor code [4], [5]
and Reed-Solomon (RS) code [6], [7] have been studied.
Moreover, Xiao et.al. put forward the expanding window
approach to apply unequal protection to different packets
of video/audio data on the basis of their importance, so
as to improve QoE in RTC [8]. However, these works are
based on the hypothesis that network packet loss pattern
is regular or fixed, which is not practical on real Internet.
It is often the case that the redundant packets of some
blocks are wasted due to the absence of packet loss, or
they can not help owing to the overfull packet loss.

• Adaptive FEC is first suggested to cope with the chal-
lenge of dynamic loss pattern by Padhye et.al [9]. Atiya
et.al came up with a nonlinear prediction approach to
realize automatic feature selection [10], and Fong et.al.
combined an ingenious coding scheme along with a
network adaptive algorithm for parameter update [11].
Nevertheless, all of them simply take the historical net-
work pattern as the prediction of future pattern, ignoring
the possible complicated relationship between history and
future. When network conditions change frequently, these
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Fig. 2. The diagram of LSTM Module. LSTM takes the vector of historical
pattern as input and predicts future pattern, then the Loss Counter accumulates
number of lost packets in the future pattern and generate the output.

techniques will not work well as expected.
To make good use of the contextual relationship between

history and future, we propose DeepRS, a novel FEC algo-
rithm which predicts network packet loss with deep neural net-
work, dynamically adjusts the redundancy ratio, and improves
the efficiency of FEC scheme markedly. The framework of
deep-learning based adaptive FEC is shown in Fig. 1. DeepRS
predicts the packet loss based on the feedback from receiver,
determines the amount of redundant packets and applies RS
coding algorithm to encode this video block. In order to make
the best of the contextual relevance of network loss pattern,
we propose a prediction method of packet loss based on
Long Short-Term Memory (LSTM) network. A large number
of experiments on simulation and real Internet traces show
that the recovery ratio of DeepRS is 70% higher than the
compared algorithms in the case of a fixed total redundancy
rate, and DeepRS can realize adaptive FEC redundancy in any
network dynamic. To the best of our knowledge, this is the first
time to verify that the deep-learning FEC is able to improve
FEC efficiency significantly. It may open a new door to error
correction coding research.

The main contributions of this paper are listed as follows.
1) Design an LSTM model to solve the problem of pre-

dicting dynamic network packet loss.
2) Come about the packet loss counting method to solve

the problem of predicting loss pattern accurately.
3) Propose the block gap prediction method to solve the

problem of delayed feedback.
The remainder of this paper is organized as follows. Section

II covers concrete definition and construction of DeepRS. In
Section III, we present the setup of our experiments as well
as the evaluations. And eventually we come to the conclusion
in Section IV.

II. SYSTEM DESIGN

DeepRS consists of two main modules, LSTM network and
RS encoder. At the every beginning of encoding procedure,
after collecting information from receiver, the LSTM module
predicts the incoming network packet loss, and then the RS
encoder generates redundant packets according to the results
of LSTM.

A. DeepRS Packet Loss Prediction

DeepRS takes advantage of LSTM model to predict network
packet loss. LSTM [12] is a very popular category of deep

Fig. 3. Gap resides between the input vector and the output vector. This
design makes DeepRS adapted for real-time video streaming.

learning model, which has been proven to have powerful
capability to process sequenced data, for example, the word
sequences in natural language. An LSTM cell mainly contains
three gates: forget gate, input gate and output gate. These gates
are responsible for eliminating useless historical information,
updating the current state of cell according to the input and
generating output separately. The particular structure enables
LSTM to unearth the contextual relevance of sequential data
more efficiently.

The contextual correlation between historical packet loss
pattern and future packet loss pattern is a natural idea.
Historical packet loss pattern implicitly indicates the state
of the network, which plays a leading role in future packet
loss. This intuition inspires us that applying LSTM model
can be a wonderful method to make prediction on network
packet loss. Moreover, It has been clarified that network
conditions do not change drastically in a short period [13] and
packets share similar states under the same network conditions
[14], which indicates that network fluctuation possibly has
regularity to some extent. These conclusions are firm support
that encourages us to use learning based method, or rather,
LSTM model, to predict the packet loss of next sending block
by learning from the historical loss pattern.

The structure of LSTM module is shown in Fig. 2. LSTM
takes the historical loss pattern as input and outputs the
predicted packet loss pattern. In the training step, a large
amount of historical packet loss sequences are collected and
split into blocks containing 6 packets. Each sample of data
set contains packet loss pattern of 5 blocks as input and the
loss pattern of the next block as label. In the reference stage,
LSTM module predicts the packet loss pattern of incoming
coding block based on the feedback of 5 blocks from receiver.

B. Unpredictable Loss Pattern

General LSTM network is used to learn a mapping from a
sample vector to a target vector, but the form of output is not
suitable for solving the problem of packet loss. According
to the network conditions, the amount of lost packets in
an incoming block can be predicted by learning from the
historical pattern, but the loss state of each packet is harder
to be exactly determined because of randomness. What the
LSTM model learns from is the historical loss pattern, which
is mainly influenced by the network conditions, so that it can
reflect the future packet loss to some extent. Nevertheless,
the loss position does not have certain relationship with the
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Fig. 4. Prediction error distribution of DeepRS under simulation traces
indicates the majority of predictions are completely accurate.

historical loss pattern. In a word, the future loss pattern is
sometimes unpredictable, which makes it improper to be the
final output.

Fortunately, from the perspective of FEC, actually we do
not need to know the loss state for each packet accurately.
This character enables us to avoid the difficulty of directly
predicting loss pattern. We use Loss Counter to predict the
number of packets lost in each block based the loss pattern as
the final output. Since it is directly affected by the network
conditions just like the historical loss pattern, the count of
packet loss can be exactly derived by the fully trained LSTM
network.

As is shown in Fig. 2, we attach Loss Counter after LSTM,
transforming the loss pattern into number of lost packets.
According to the predicted number of lost packets, DeepRS
decides how many redundant packets ought to generated in
this block.

C. Delayed Feedback

Because of the existence of RTT, the packet loss pattern
feedback from receiver is delayed. DeepRS is not able to
obtain the newest network status when a video block is about
to be sent. Therefore, we need to make prediction on incoming
packet loss pattern according to packet loss an RTT ago.

To handle this problem, we propose the block gap method
for prediction and inference, which is shown in Fig. 3. In the
training step, we insert a Prediction Gap between the historical
loss pattern and the blocks to be predicted. The Prediction Gap
contains some blocks, whose sending time is an RTT in total,
to analog the effect of network delay. In the inference step,
DeepRS can still work in spite of the existence of RTT thanks
to the design of Prediction Gap in the training step.

III. EXPERIMENTS AND EVALUATIONS

To validate the efficiency of DeepRS, we carry out trace-
based evaluations, both on simulation traces and real Internet
packet loss traces.

A. Setup

1) Dataset: Gilbert-Elliot (GE) channel is acknowledged as
a common simulation environment of network packet delivery.
In Section III-B, we carry out experiments on simulation traces
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Fig. 5. Performance comparison under different loss rate shows that DeepRS
keeps its performance stable by adjusting its redundancy ratio.
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Fig. 6. Performance comparison under different burst length also shows the
stable performance and the adaptive redundancy ratio of DeepRS.

generated by GE channel and evaluate the performance of
DeepRS.

Real Internet packet loss traces published by Fu et.al [15]
contains transmission meta data of tens of thousands of packets
in 802.15 WPAN network. The performance of DeepRS on the
Internet packet loss dataset is evaluated in Section III-C.

2) Underlying FEC algorithm: As the name of DeepRS in-
dicates, RS code is selected as the underlying FEC algorithm.
In our implementation, b source packets are grouped as a
block and the encoder generates k redundant packets based on
these source packets. Once b or more packets, including both
source and redundant packets, are collected by the receiver, the
original data can be recovered by solving a matrix equation.
For simplicity, we assume redundant packets will not be lost.

We choose naive RS methods as the contrast algorithms,
since they are widely used in multimedia streaming. We use
Fix-* RS to represent these algorithms, while the redundancy
ratio is static. * indicates the fixed redundancy ratio.

3) Metrics: In performance comparison, we take the fol-
lowing measurement metrics into consideration:

• Recovery Ratio. The ratio of recovered packets to all
lost packets. For instance, recovery ratio is 1 when all
lost packets are recovered. Conversely, recovery ratio is
0 if all lost packets cannot be recovered.

• Redundancy Ratio. The ratio of redundant packets to
source packets. For instance, if RS module generates k
FEC packets with a block including b source packets, the
redundancy ratio is k

b .

B. Experiments on Simulation

Simulation traces contain 10,000 samples generated from
the output of GE channel. For each sample, we collect the
output vector of length 7b, then take the front part of length
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Fig. 7. Prediction error distribution under real Internet traces also shows high
prediction accuracy of DeepRS.

5b as input vector, ignore the Prediction Gap whose length is
b, and take the last part of length b as label.

1) Analysis of Prediction Error Distribution: In this sec-
tion, experiments are demonstrated on a GE channel given
a group of fixed parameters. Simulation traces are split into
training set, validation set and test set which account for 60%,
20%, 20% of whole data set separately. Finally, results on test
set are illustrated in Fig. 4 after the loss function converges
on validation set.

According to the results shown in Fig. 4, DeepRS pre-
dicts the number of packet loss accurately (zero error) with
70%∼80% probability. This result validates our insight pre-
liminarily.

2) Performance under Different Loss Rate: In this section,
we evaluate the performance of DeepRS with diverse average
loss rate given fixed average burst length. We choose fix-16%
RS and fix-32% RS as contrast algorithms. Let average burst
length be 10 packets, average loss rate 1%, 5%, 10%, 20%,
30% are selected. The trend of recovery ratio and redundancy
ratio are shown in Fig. 5.

According to the results, DeepRS is able to alter redundancy
ratio under distinct average loss rates. As a result, its recovery
ratio stays relatively stable while the performance of fixed
redundancy methods plummet as average loss rate grows up.
In a word, DeepRS outperforms contrast algorithms greatly.

3) Performance under Different Burst Length: Similar to
Section III-B2, experiments are made under several average
burst lengths given a fixed average loss rate. Average loss rate
is set to 10%, and average burst length varies from 1 to 30,
while the same contrast algorithms are selected.

The results in Fig.6 show that the behavior of DeepRS is
similar to Section III-B2. According to Fig. 6(b), it is clear that
DeepRS adjusts its redundancy ratio dynamically under GE
channels with different average burst lengths. Fig. 6(a) shows
that DeepRS keeps high recovery ratio while the contrast
algorithms work worse if average burst length is getting longer.

C. Experiments on Real Internet Traces

In this section, we extract packet loss information from the
Internet traces. In total, we split 20192 traces into training
part, validation part and test part, which account for 60%, 20%
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Fig. 8. Performance evaluation. DeepRS applies different redundancy ratio
for each trace, so the results are shown as discrete points. For each fixed RS
method, the 95% confidence interval is plotted.

and 20% of original data separately. Next, we apply sliding
window approach to generate samples from each part of data.
The same standard machine learning process is carried out as
mentioned in Section 4. Prediction error distribution is shown
in Fig. 7, which indicates that DeepRS is prone to predict
number of packet loss accurately with approximately 70%
probability. This figure implies that DeepRS also works well
in real Internet environment.

What’s more, the trade off between recovery ratio and
redundancy ratio is explored and the performance of DeepRS
and fix-RS are shown in Fig.8. In this experiment, 7 distinct
fix-RS methods are selected as contrast algorithms. As is re-
vealed in Fig. 8, DeepRS significantly outperforms traditional
RS code methods with fixed redundancy. DeepRS recovers
approximately 80% packets while fix-RS methods help little
on packet recovery. Notice that the recovery ratio of DeepRS
is multiple of fix-RS method when redundancy ratio is equal,
which means that DeepRS is able to achieve higher recovery
ratio with much less extra bandwidth.

In conclusion, we make experiments on data set generated
by simulation as well as dataset from real world, and the
evaluation of these experiments further proves the superiority
of DeepRS.

IV. CONCLUSION

In this paper, we propose DeepRS, a deep learning based
FEC system for real-time video streaming which mainly
consists of two parts, LSTM model and RS encoder. DeepRS
embeds an LSTM model inside and solves the problem of
predicting the number of lost packets in the near future
according to the historical packet loss pattern. With the help
of LSTM model, DeepRS is able to automatically reduce
redundancy ratio so as to prevent bandwidth waste under
low packet loss rate, and increase redundancy ratio when
packet loss is happening frequently. As for implementation,
we have modified the LSTM model, thus adapting it to real
scenarios in application. According to the results of experi-
ments and evaluation, DeepRS achieves far better trade off
between redundancy ratio and recovery ratio than traditional
fix-redundancy FEC schemes.
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