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SODA: Similar 3D Object Detection Accelerator
at Network Edge for Autonomous Driving
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Chuwen Zhang1, Wei Hu3, Yi Wang4,5∗, Bin Liu1,5∗

1Tsinghua University, China 2Futurewei Technologies, USA 3Peking University, China
4Southern University of Science and Technology, China 5 Peng Cheng Laboratory, China

Abstract—Offloading the 3D object detection from autonomous
vehicles to MEC is appealing because of the gains on quality,
latency, and energy. However, detection requests lead to repetitive
computations since the multitudinous requests share approximate
detection results. It is crucial to reduce such fuzzy redundancy by
reusing the previous results. A key challenge is that the requests
mapping to the reusable result are only similar but not identical.
An efficient method for similarity matching is needed to justify
the use case. To this end, by taking advantage of TCAM’s ap-
proximate matching capability and NMC’s computing efficiency,
we design SODA, a first-of-its-kind hardware accelerator which
sits in the mobile base stations between autonomous vehicles and
MEC servers. We design efficient feature encoding and partition
algorithms for SODA to ensure the quality of the similarity
matching and result reuse. Our evaluation shows that SODA
significantly improves the system performance and the detection
results exceed the accuracy requirements on the subject matter,
qualifying SODA as a practical domain-specific solution.

I. INTRODUCTION

Autonomous vehicles are gaining momentum and set to
revolutionize the transportation industry in the near future.
The autonomous driving system integrates several key sub-
systems including sensing, perception, and decision making.
The massive volume of data produced by the sensing sub-
system, amounting to multi-gigabytes per second [1], need to
be timely processed by the perception subsystem to ensure
safe decision making. The computation workload for object
detection, localization, and tracking is intensive, which poses
a huge challenge for autonomous vehicles. The limited on-
board resource hampers the perception accuracy and breadth,
and the high energy consumption incurred reduces the cruising
time of the battery-powered electrical vehicles [2].

The emerging Mobile Edge Computing (MEC) equipped
with advanced wireless communication technologies (e.g., 5G)
enables the Connected Autonomous Vehicles (CAV) to tap
the edge computing resources [3]. While the critical control
loops are still kept on board, certain computing tasks can be
offloaded to MEC which helps produce higher quality results
faster. Taking the 3D object detection as an example, the deep
learning model inference for a frame of point cloud takes
60 to 200ms [4] on a general GPU (e.g., GTX 2080 Super),
which would take longer on other on-board platforms [5] (e.g.,
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NVIDIA Jetson TX2). If the task is instead offloaded to edge
servers, more advanced and accurate models can be applied
and the overall detection latency can be reduced [5].

However, the MEC offloading for object detection raises
some new challenges. Since both the networking and com-
puting resources are shared, the huge amount of data and
detection requests from a large number of vehicles can jam the
communication channels and overload the edge servers, which
in turn leads to unpredictable latency, rendering the detection
results unreliable. The key to address such challenges lies in
two often entangled aspects: reducing the data quantity and
reducing the total number of detection requests.

LiDAR point clouds are the most representative formats of
3D sensory data, and the target of point cloud object detection
is to estimate a 3D bounding box with a type for each object.
The detection process comprises three steps: object partition,
feature extraction, and result inference. Among these steps,
the third step, relying on complex deep learning models, is
the most time-consuming. As shown in Table I, the common
point cloud detection models (i.e., VoxelNet [6], Second [7], F-
PointNet [8], F-ConvNet [9], and Point-RCNN [10]) take more
than 90% of the overall processing time for just the result
inference. The good news is that the feature vectors passed
from the second step to the third step are orders of magnitude
smaller in size than the original point clouds. Thus, it makes
sense to only offload the third step to MEC and keep the first
two steps on board.

The data reduction per request only relieves the bandwidth
pressure on networks. We still need to reduce the total number
of requests to relieve the computation pressure on edge servers.
Fortunately, we have the opportunity to reuse the historically
completed computation results for new requests by identifying
and taking advantage of the request similarity rooted in the
temporal and spatial locality. First, the sensing data per object
does not necessarily change fast, which exposes significant
temporal detection similarity from the same vehicle. Second,
the vehicles in the vicinity of the same geographic location
often issue similar detection requests for the same objects, and
these requests tend to be relayed by the same base station or the



TABLE I: 3D detection model processing time.
Time (ms) VoxelNet Second F-ConvNet F-PointNet PointRCNN
Step 1+2 4.13 3.56 7.22 6.19 11.87

Step 3 223.65 53.24 165.32 126.19 178.59

Road Side Unit (RSU) and then processed by the same edge
servers. Therefore, reusing the previous computation results
can be effective in reducing the edge server load and detection
latency. Here resides our key contribution.

Fig. 1 exhibits the statistics of data similarity on the
KITTI dataset [11], the most popular dataset in the field
of autonomous driving. By dividing all data into different
similar groups by their Intersection over Union (IoU)—IoU
is a vital metric measuring the accuracy of a 3D object
detection model [6, 8], where a detection result is judged to
be correct if its IoU with ground truth is greater than 70%
for vehicles, and 50% for pedestrian and cyclist, according
to KITTI benchmark [4]—the results show a significant data
similarity: the number of groups is only 5% of the number of
data, among which 70% of groups covers more than 90% of
data, and each group has similar results greater than 10.

Although repetitive requests are evident, the reuse of pre-
vious computation results is not so straightforward, mainly
because the feature vectors for the same object generated by
different vehicles or by the same vehicle at different time
are different. The conventional exact-key hashing schemes
are of no use in this case. Fortunately, as shown in Fig. 2,
the feature vectors sharing the approximate reusable result
have smaller Euclidean distance than features with unreusable
results, implying that we can quantify result reusability by fea-
ture distance. However, direct feature distance computing and
comparison are time-consuming, given the number of vectors
to compare is large (e.g., >70K) and each high-dimensional
vector is composed of more than 1K floating-point values. We
need an efficient approach for similar vector matching with
high confidence (e.g., high precision and recall ratios) to make
the computation reuse practical. To this end, we develop a
hardware-based similar object detection accelerator, SODA,
using TCAM and an associated Near Memory Computing
(NMC) module. Specifically, SODA uses TCAM’s ternary
matching specialty to realize the approximate matching and
narrows down the candidate feature vectors to just a few similar
ones, and then quickly compares the query vector with these
candidates to retrieve a reusable result through NMC. To fit
high-dimensional feature vectors in TCAM, we develop an
algorithm to transform feature vectors into short binary codes
while preserving the feature similarity. To improve TCAM
matching precision and hit rate simultaneously, we design
a greedy algorithm to aggregate the code words to ternary
bit strings. Moreover, to improve the quality of the reusable
results, we develop a novel culling strategy for NMC.

Architecturally, the best location for SODA is at the base
station or the RSU. The previous object detection results can be
cached here. Once a detection request is identified as similar
enough with a previous one, the preserved result is directly
returned; otherwise, the request is forwarded to an edge server
for complete model inference. In this way, we achieve: (1)
a large number of requests from vehicles are intercepted and
served on the base station, leaving only a light detection load
to MEC servers; (2) a vast number of requests can get results

1.2 Motivation
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with very low latency, greatly improving user experience; (3)
the network bandwidth consumption is also reduced.

In summary, we make the following major contributions: (1)
we are the first to apply the in-network similar object detection
accelerating technique to the autonomous driving scenario and
address its unique challenges; (2) we design a specialized dual-
loss encoding algorithm to encode high-dimensional feature
vectors to short binary codes while preserving the feature
similarity, which is also applicable to other scenarios; (3)
we propose a novel TCAM plus NMC architecture, in which
TCAM performs coarse-grained approximate matching and
NMC conducts fine-grained feature qualifying, ensuring fast
and accurate reusable result search and retrieval.

In the remainder of the paper, Sec. II briefs the related work,
Sec. III details SODA’s architecture and algorithms, Sec. V
evaluates the performance, and Sec. VI concludes the work.

II. RELATED WORK

Research on MEC-assisted autonomous driving is emerging
but previous works have different focuses: survey the oppor-
tunities and challenges [12, 13], design models [5, 14, 15],
support cross-vehicle cooperative perception [16–18], or con-
struct a data analytic platform [19]. All these works directly
rely on MEC servers and none of them considers applying
in-network accelerators to improve the performance of critical
tasks such as 3D object detection.

Edge-based detection result reuse has been proposed in
other application scenarios. Cachier [20] first presents result
reuse for recognition applications with a focus on cache entry
optimization. Potluck [21] implements a cache service to share
processing results between applications on individual devices
for Augmented Reality (AR). Foggycache [22] proposes to
perform cross-device approximate computation reuse on the
edge server, where A-LSH is used to conduct content lookup
and H-kNN for high-quality result retrieval. However, A-LSH
has low efficiency in precision and recall, and H-kNN incurs
large latency for high-dimensional point cloud data, making
these methods inapplicable for autonomous driving.

For the first two steps of 3D object detection (i.e., partition
and feature extraction), some works [6, 7] divide a point
cloud frame into many uniform cubes called voxel and extract
features from them, which however easily break the structure
of each object; some other works [8–10] utilize a learned
network (e.g., PointNet [23] and PointSIFT [24]) to segment
point cloud into different objects with perfect structure. For
the last step (i.e., 3D bounding-box estimation), it is common
to adopt various complex models based on some deep neural
networks such as CNN.



TCAM is widely used in high-speed networking devices
mainly for IP lookup and packet classification [25, 26]. In
recent years, TCAM finds its application in other compute-
intensive tasks. In [27], TCAM is used as an augmented
memory to accelerate neural network training, and the work is
extended with improved accuracy in [28]. In [29], TCAM is
used to implement LSH, which improves searching accuracy
for similar content. In [30], TCAM is also used for similarity
search where the range encoding on binary reflected gray code
is adopted to realize similar content matching.

NMC, as a Processing-In-Memory (PIM) technology, em-
bedding dedicated computation logic alongside the memory,
can greatly reduce the data I/O latency and boost computation
speed. NMC has been widely used to accelerate data-intensive
tasks (e.g., machine learning) [31–33], which can achieve up
to 320 GB/s throughput based on 3D-stacked memories (e.g.,
HMC [34] and HBM [35]).

III. DESIGN OF SODA MODEL AND ALGORITHMS

A. Overall System Structure

As illustrated in Fig. 3, different from the traditional MEC-
based system in which all computing tasks are offloaded
to the edge, we deploy a TCAM-NMC sub-system on the
base station or RSU between vehicles and MEC to identify
repetitive similar 3D object detection requests for approximate
result reuse. We first build a knowledge database using the
previously computed detection results to populate the TCAM
and NMC tables. As a result, the TCAM-NMC sub-system can
quickly detect if a query feature from a vehicle matches any
existing result so unnecessary remote server computation can
be avoided.

This process is expressed by two functions, namely
DB_build and DB_query, as shown in Algorithm 1.
DB_build has two stages: build a code matching table for
TCAM, and build a reusable result database in NMC. In the
first stage, we train a binary encoder (line 2) by leveraging
Algorithm 2 in Sec. III-B, and obtain the binary codes of the
dataset features by the encoder (line 3), which are aggregated
to improve the storage and matching efficiency (line 4) using
the aggregation strategy discussed in Sec. III-C. In the second
stage, we leverage the culling strategy discussed in Sec. III-C
to refine the dataset features to ensure reusability (line 5), and
store the code table and the result database in TCAM and
NMC respectively (line 6).
DB_query supports the query process. We first encode

the query feature x coming from a vehicle into binary code
using the trained encoder (line 9), and then perform code
match in TCAM (line 10). The successful matches return
indicators to guide the query feature x to search the reusable
results in NMC (line 14). In case the TCAM miss-match
occurs or the NMC search fails, x is delivered to MEC
for object detection computing; otherwise, the locally stored
similar result is directly returned to the requesting vehicle.

B. Dual-loss Supervised Encoding for TCAM

We claim two features are similar if they yield the reusable
object detection result. Due to the limited depth and width of
TCAM, a compact and accurate encoding scheme is needed
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Algorithm 2 in Sec. III-B, and obtain the binary codes of the
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to improve the storage and matching efficiency (line 4) using
the aggregation strategy discussed in Sec. III-C. In the second
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to refine the dataset features to ensure reusability (line 5), and
store the code table and the result database in TCAM and
NMC respectively (line 6).
DB_query supports the query process. We first encode

the query feature x coming from a vehicle into binary code
using the trained encoder (line 9), and then perform code
match in TCAM (line 10). The successful matches return
indicators to guide the query feature x to search the reusable
results in NMC (line 14). In case the TCAM miss-match
occurs or the NMC search fails, x is delivered to MEC
for object detection computing; otherwise, the locally stored
similar result is directly returned to the requesting vehicle.

B. Dual-loss Supervised Encoding for TCAM

We claim two features are similar if they yield the reusable
object detection result. Due to the limited depth and width of
TCAM, a compact and accurate encoding scheme is needed
to transform the high-dimensional features to short binary
codes while preserving their similarity relationships. We use a
supervised method to learn a binary encoder.

Problem Formulation: Let X = {xi}Ni=1 ⊂ Rd denote the
set of training features, and their corresponding label is Y =
{yi}Ni=1 ⊂ R. Based on Y , we have the similarity matrix S ⊂
RN×N , in which sij = 1 if yi = yj , or sij = −1 otherwise.
The task is to learn a group of K encoding functions H(·) =

Algorithm 1: System functional process
Input: feature set X , detection results Y , query feature q, and new

insertion result x.
1 Function DB_build(X , Y ):
2 Encoder ← call Algorithm 2;
3 B ← Encoder(X);
4 T ← call Algorithm 3 to aggregate B;
5 <Xnew,Ynew >← Culling(X,Y );
6 add <Xnew,Ynew > in NMC, add T in TCAM;
7 return Encoder, Ynew;

8 Function DB_query(q, Encoder):
9 b← Encoder(q);

10 Addr ← TCAM −match(b);
11 if Addr == Null then
12 Offload q to MEC;
13 else
14 Result← Calc NMC(q);
15 if Result == Null then
16 Offload q to MEC;
17 else
18 return Result;

{hk(·)}Kk=1 to map X to K-bit binary codes B={bi}Ni=1 ⊂
{−1, 1}N×K (i.e., h(xi) 7→ {−1, 1}). Here we use -1 to denote
0 in B due to the need of subsequent inner product calculation.

Supervised Encoding: The learned binary code should
preserve the similarity of X (i.e., the codes for the similar
features should have small Hamming distance). Typically, the
supervised encoding can be done in one or two steps. The one-
step approach (e.g., KSH, SDH [36, 37]) learns the encoding
functions under the similarity information, which is hard to
optimize as the code for each bit is interdependent and unable
to share a common loss function during training. The two-
step approach (e.g., [38, 39]) enjoys a higher accuracy as it
infers a binary code by the given label first, and then learns
the encoding functions according to the binary code.

To ensure real-time encoding, we design a new two-step
learning strategy. In step 1, the Block Graph Cut method [38,
40] is used to infer binary codes B={bi}Ni=1 under the hinge
loss function

∑N
i=1

∑N
j=1

(
1
2 (1 + sij)Dh(bi, bj) + 1

2 (1 −
sij)max( 1

2K − Dh(bi, bj), 0)
)
, where Dh(·, ·) is the Ham-

ming distance between two binary codes, sij ∈ {−1, 1}
indicates the similarity between xi and xj , and K is the width
of the target binary code. For each bit binary code of B, in
step 2, we construct a corresponding encoder (i.e., a binary
classifier) to label the features as ‘-1’ and ‘1’.

For the binary classification problem, the existing solutions,
such as kernel-based SVM [39, 41] and boosted decision
trees [38, 40], cannot meet the demand of high-speed for
high-dimensional data processing. The former incurs long
training and testing time due to the complex kernel calculation;
the latter is inefficient for high-dimensional data due to the
recursive feature segmentation and subtree establishment.

Instead, we adopt Linear Discriminant Analysis (LDA) [42]
with a combined simple linear classifier, where LDA is used
for projection and the classifier for quantization. Specifically,
for a high-dimensional feature vector x ∈ R1×d, we establish
a projection matrix P ⊂ Rd×m to extract its effective dis-
criminative feature as a new compact m-dimensional vector,

to transform the high-dimensional features to short binary
codes while preserving their similarity relationships. We use a
supervised method to learn a binary encoder.

Problem Formulation: Let X = {xi}Ni=1 ⊂ Rd denote the
set of training features, and their corresponding label is Y =
{yi}Ni=1 ⊂ R. Based on Y , we have the similarity matrix S ⊂
RN×N , in which sij = 1 if yi = yj , or sij = −1 otherwise.
The task is to learn a group of K encoding functions H(·) =
{hk(·)}Kk=1 to map X to K-bit binary codes B={bi}Ni=1 ⊂
{−1, 1}N×K (i.e., h(xi) 7→ {−1, 1}). Here we use -1 to denote
0 in B due to the need of subsequent inner product calculation.

Supervised Encoding: The learned binary code should
preserve the similarity of X (i.e., the codes for the similar
features should have small Hamming distance). Typically, the
supervised encoding can be done in one or two steps. The one-
step approach (e.g., KSH, SDH [36, 37]) learns the encoding
functions under the similarity information, which is hard to
optimize as the code for each bit is interdependent and unable
to share a common loss function during training. The two-
step approach (e.g., [38, 39]) enjoys a higher accuracy as it
infers a binary code by the given label first, and then learns
the encoding functions according to the binary code.

To ensure real-time encoding, we design a new two-step
learning strategy. In step 1, the Block Graph Cut method [38,
40] is used to infer binary codes B={bi}Ni=1 under the hinge
loss function

∑N
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∑N
j=1

(
1
2 (1 + sij)Dh(bi, bj) + 1

2 (1 −
sij)max( 1

2K − Dh(bi, bj), 0)
)
, where Dh(·, ·) is the Ham-

ming distance between two binary codes, sij ∈ {−1, 1}
indicates the similarity between xi and xj , and K is the width
of the target binary code. For each bit of B, in step 2, we
construct a corresponding encoder (i.e., a binary classifier) to
label the features as ‘-1’ and ‘1’.

For the high-dimensional binary classification problem, the
existing solutions, such as kernel-based SVM [39, 41] and
boosted decision trees [38, 40], cannot meet the demand of
high-speed processing. The former incurs long time due to
the complex kernel calculation; the latter is inefficient for the
recursive feature segmentation and subtree establishment.



Instead, we adopt Linear Discriminant Analysis (LDA) [42]
with a combined simple linear classifier, where LDA is used
for projection and the classifier for quantization. Specifically,
for a high-dimensional feature vector x ∈ R1×d, we establish
a projection matrix P ⊂ Rd×m to extract its effective dis-
criminative feature as a new compact m-dimensional vector,
with the purpose of keeping the similarity structure of original
data points in Euclidean space. That is, we expect the projected
vectors of the similar features are close in the projection space,
while keeping those dissimilar ones distant. To achieve this, we
apply LDA to learn the effective projection matrix P under the
label Y : LDA computes the intra-class scatter matrix Sw and
inter-class scatter matrix Sb according to label Y , and learns
the optimal projection matrix by maximizing the target:

max
P

J(P ) = tri(
P TSbP

P TSwP
) s.t. P TP = I, (1)

where tri(·) indicates the trace operator. We obtain the optimal
projection matrix P ∗ = argmax

P
J(P ). This way, x is

projected into a discriminative m-dimensional vector xP ∗.
Next, we adopt simple linear binary classifiers as encoding

functions. Especially, to improve accuracy, we train a group
of H linear classifiers, among which we select the high-
performance classifiers by using a confidence coefficient vector
α ⊂ RH . Thus, the encoding function for each bit of the target
code is defined as:

h(x) = sgn
(∑H

h=1
αhCh(xP ∗)

)
(2)

where sgn(·) is the sign function, C = [C1, C2, · · · , CH ] are
the simple linear classifiers which can be denoted as C(x′) =
sgn(x′wT + b), and α = [α1, α2, · · · , αH ] is the confidence
coefficient vector for balancing the classifiers. The confidence
coefficient α, weights w = [w1, w2, · · · , wm], and bias b =
[b1, b2, · · · , bH ] are the parameters we need to learn for each
bit encoding function by minimizing the following loss Qk:

Qk = exp(−bk
∑H

h=1
αhsgn(xP ∗wT

h + bh)), k ∈ [1,K].

(3)
The loss Q in Eq. (3) only considers the inferential binary

code but ignores the similarity information contained in label
Y which is informative for the classifier training. To amend
this, we entail the pairwise similarity matrix S in encoding
function learning, and introduce the loss R = ‖KS−BBT ‖2F ,
where ‖·‖F represents the Frobenius norm, and BBT =∑K
k=1 hk(X)hk(X)T . We adopt a greedy method similar to

that in [36, 38] to sequentially optimize R one bit a time,
conditioning on the previously solved bits. Specifically, when
dealing with the k-th bit, we have learned the optimal k-1 bits,
and the cost for k-th bit is:

Rk = ‖kS −
∑k−1

t=1
h∗t (X)h∗t (X)T − hk(X)hk(X)T ‖2F

= −2hk(X)T (kS −
∑k−1

t=1
h∗t (X)h∗t (X)T )hk(X) + const

(4)
where h∗(·) is the learned optimal encoding function for
previous bits, and h(·) is the encoding function needs to be
learned. Next, we get the final loss Lk = Qk + λRk with
the balancing weight λ. During the optimization, as sgn(·) is

Algorithm 2: Dual-loss Encoding
Input: feature set X , pairwise similarity S, projection dimension

m, the width of binary codes K, iteration number Tmax,
and parameter λ.

Output: projection matrix P ∗, and K encoders Φ.
1 Step 1: apply Graph cut to get K-bits binary code B;
2 Step 2: get the optimal projection matrix P ∗ by LDA;
3 for k ← 1 to K do
4 randomly initialize αk, wk and bk;
5 compute loss Lk = Qk + λRk by Eq. (3) and (4);
6 use gradient descent to minimize the loss Lk with Tmax budget

iterations, achieving α∗
k, w∗

k, b∗k;
7 h∗k ← sgn(

∑H
h=1 α

∗
hsgn(xP ∗w∗T

h + b∗h));

with the purpose of keeping the similarity structure of original
data points in Euclidean space. That is, we expect the projected
vectors of the similar features are close in the projection space,
while keeping those dissimilar ones distant. To achieve this, we
apply LDA to learn the effective projection matrix P under the
label Y : LDA computes the intra-class scatter matrix Sw and
inter-class scatter matrix Sb according to label Y , and learns
the optimal projection matrix by maximizing the target:

max
P

J(P ) = tri(
P TSbP

P TSwP
) s.t. P TP = I, (1)

where tri(·) indicates the trace operator. We obtain the optimal
projection matrix P ∗ = argmax

P
J(P ). This way, x is

projected into a discriminative m-dimensional vector xP ∗.

Next, we adopt simple linear binary classifiers as encoding
functions. Especially, to improve accuracy, we train a group
of H linear classifiers, among which we select the high-
performance classifiers by using a confidence coefficient vector
α ⊂ RH . Thus, the encoding function for each bit of the target
code is defined as:

h(x) = sgn
( H∑

h=1

αhCh(xP ∗)
)

(2)

where sgn(·) is the sign function, C = [C1, C2, · · · , CH ] are
the simple linear classifiers which can be denoted as C(x′) =
sgn(x′wT + b), and α = [α1, α2, · · · , αH ] is the confidence
coefficient vector for balancing the classifiers. The confidence
coefficient α, weights w = [w1, w2, · · · , wm], and bias b =
[b1, b2, · · · , bH ] are the parameters we need to learn for each
bit encoding function by minimizing the following loss Qk:

Qk = exp(−bk
H∑

h=1

αhsgn(xP ∗wT
h + bh)), k ∈ [1,K]. (3)

The loss Q in Eq. (3) only considers the inferential binary
code but ignores the similarity information contained in label
Y which is informative for the classifier training. To amend
this, we entail the pairwise similarity matrix S in encoding
function learning, and introduce the loss R = ‖KS−BBT ‖2F ,
where ‖·‖F represents the Frobenius norm, and BBT =∑K
k=1 hk(X)hk(X)T . We adopt a greedy method similar to

that in [36, 38] to sequentially optimize R one bit a time,
conditioning on the previously solved bits. Specifically, when
dealing with the k-th bit, we have learned the optimal k-1 bits,

and the cost for k-th bit is:

Rk = ‖kS −
k−1∑

t=1

h∗
t (X)h∗

t (X)T − hk(X)hk(X)T ‖2F

= −2hk(X)T (kS −
k−1∑

t=1

h∗
t (X)h∗

t (X)T )hk(X) + const

(4)

where h∗(·) is the learned optimal encoding function for
previous bits, and h(·) is the encoding function needs to be
learned. Next, we get the final loss Lk = Qk + λRk with
the balancing weight λ. During the optimization, as sgn(·) is
discrete and hard to train, we relax the problem in Eq. (3)
and (4) by replacing sgn(x) with a sigmoid-shaped function
ψ(x) = 2

1+e−x − 1. Then we conduct the gradient descent
method to optimize α,w, and b simultaneously by minimizing
the loss Lk. Finally, we get the optimal K-bits encoding
functions as Φ = [h∗1, h

∗
2, · · · , h∗K ]. The complete algorithm

is described in Algorithm 2.

C. High Speed TCAM-NMC Accelerator

As aforementioned, SODA uses TCAM to perform approx-
imate matching and NMC to evaluate the quality of matched
results to seek reuse opportunities. We partition the original
data pairs, <feature, result>, so that the data pairs having
similar detection results are grouped together and labeled with
a partition ID. The partitions are stored in NMC. The feature
lookup in TCAM returns one or more partition IDs, which are
used to trigger searches in corresponding NMC partitions.

Weighted Patricia trie: Assume we have M sets binary
codes B = {bi}Mi=1, and each code set bi corresponds to a
partition of similar results stored in NMC with partition ID
denoted as {li}Mi=1. As a preparation of code aggregation, we
first construct a weight Patricia trie for binary codes B, where
each leaf node of the existing code will be set a weight to
denote its proportion in code set bi, as shown on the left
side of Fig. 4. Then we represent original codes B by more
compact codes B∗ which is composed of the discriminant bits
(e.g., ‘100110’ can be denoted as ‘00’ by the 3rd and 6th bits).
Finally, Fig. 4 shows the complete binary trie of new code B∗,
where we express the non-existing codes by virtual leaf node
called empty code which plays a vital role during aggregation.

Code aggregation for TCAM: The binary code aggregation
has two purposes: (1) reduce the number of binary codes to
fit in TCAM; (2) take advantage of the wildcard match ‘∗’
for approximate matching in TCAM to increase the correct
query hit rate. The first purpose can be achieved by aggregat-
ing existing codes with similar detection results; the second
purpose is based on the finding that, due to limited encoding
accuracy, the difference between the binary codes of similar
features makes some queries fail to find a match in TCAM
even though the similar features exist in NMC. To address
this issue, besides the aggregation between two existing codes,
we especially allow the existing code to aggregate with empty
code so as to construct a code coverage space within hamming
distance h, where h is the number of aggregation bit ‘∗’ (e.g.,
aggregating an existing code ‘1011’ with an empty code ‘1000’
to get the aggregated code ‘10∗∗’, which covers a space with
the hamming distance of 2).

discrete and hard to train, we relax the problem in Eq. (3)
and (4) by replacing sgn(x) with a sigmoid-shaped function
ψ(x) = 2
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the loss Lk. Finally, we get the optimal K-bits encoding
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imate matching and NMC to evaluate the quality of matched
results to seek reuse opportunities. We partition the original
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similar detection results are grouped together and labeled with
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lookup in TCAM returns one or more partition IDs, which are
used to trigger searches in corresponding NMC partitions.

Weighted Patricia trie: Assume we have M sets binary
codes B = {bi}Mi=1, and each code set bi corresponds to a
partition of similar results stored in NMC with partition ID
denoted as {li}Mi=1. As a preparation of code aggregation, we
first construct a weight Patricia trie for binary codes B, where
each leaf node of the existing code will be set a weight to
denote its proportion in code set bi, as shown on the left
side of Fig. 4. Then we represent original codes B by more
compact codes B∗ which is composed of the discriminant bits
(e.g., ‘100110’ can be denoted as ‘00’ by the 3rd and 6th bits).
Finally, Fig. 4 shows the complete binary trie of new code B∗,
where we express the non-existing codes by virtual leaf node
called empty code which plays a vital role during aggregation.

Code aggregation for TCAM: The binary code aggregation
has two purposes: (1) reduce the number of binary codes to
fit in TCAM; (2) take advantage of the wildcard match ‘∗’
for approximate matching in TCAM to increase the correct
query hit rate. The first purpose can be achieved by aggregat-
ing existing codes with similar detection results; the second
purpose is based on the finding that, due to limited encoding
accuracy, the difference between the binary codes of similar
features makes some queries fail to find a match in TCAM
even though the similar features exist in NMC. To address
this issue, besides the aggregation between two existing codes,
we especially allow the existing code to aggregate with empty
code so as to construct a code coverage space within hamming
distance h, where h is the number of aggregation bit ‘∗’ (e.g.,
aggregating an existing code ‘1011’ with an empty code ‘1000’
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Fig. 4: The weighted patrcia trie (left) and the extended trie (right),
where ‘S1’, ‘S2’ and ‘S3’ denotes code node of dissimilar groups.

to get the aggregated code ‘10∗∗’, which covers a space with
the hamming distance of 2).

Assume each bi ∈ B∗ contains numi different binary codes
and each code is associated with a size denoted by c. We define
the gain of the aggregation strategy f as:

G(f) = ht(f)− µhe(f) s.t. C(f) ≤ Ω, (5)

where hf is the frequency of correctly matched queries under
the aggregation strategy f , ef is the frequency of wrongly
matched queries, µ is the adjustable parameters to balance hf
and ef , C(f) =

∑M
i=1 c · numi is the total storage cost for

all code entries, and Ω is the capacity of TCAM. The target
problem can be stated as follows.
Definition 1. Aggregation gain maximization problem: From
all the possible aggregation strategies F , find f∗ ∈ F such that
for any aggregation strategy f ∈ F , the conditions G(f∗) ≥
G(f) and C(f∗) ≤ Ω hold.

The problem is NP-hard, as the aggregation does not enlarge
C(f), and if the constraint in Eq. 5 were satisfied, the problem
can be transformed into a non-prefix aggregation problem
targeting for minimizing the storage cost, which has been
proved NP-hard [43].

For the aggregation process, we have the following observa-
tions. Each aggregation operation can only lead to three results:
(1) aggregation expands covering range, which increases both
hf and ef ; (2) aggregation overlaps the other dissimilar codes,
which increases ef ; (3) the number of codes is reduced, which
reduces C(f). We have the gain ∆G(a) and the cost ∆C(f)
for each aggregation operation a ∈ f as:

∆G(a) =





n1∑
i=1

K∑
k=1

Sik∑
j=1

(−µ)εP (lj)ωjp
k
b (1 − pb)

K−k, if 1

−
n2∑
i=1

µP (li)ωi, if 2

∆C(a) = −n3c. if 3

(6)

For the case 1, the positive gain ∆ht(a) is derived from
the possibility that similar queries with non-existing codes
covered by aggregation hit the TCAM, which cannot occur
before the aggregation a. Meanwhile, the aggregation a also
brings in negative gain ∆he(a) when the dissimilar queries hit
aggregation code. Hence we compute the probability for the
above two cases to evaluate ∆ht(a) and ∆he(a). The com-
putation requests with non-existing codes are two kinds (i.e.,
either similar with preserved results or not), and we approxi-
mately estimate the probability of the two cases as: probability
Pq(be|l) denotes a query with non-existing empty code be has
the similar request with group bl. Specifically, we assume each
binary code can be transformed to be in a probability Pt(k),
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Assume each bi ∈ B∗ contains numi different binary codes
and each code is associated with a size denoted by c. We define
the gain of the aggregation strategy f as:

G(f) = ht(f)− µhe(f) s.t. C(f) ≤ Ω, (5)

where hf is the frequency of correctly matched queries under
the aggregation strategy f , ef is the frequency of wrongly
matched queries, µ is the adjustable parameters to balance hf
and ef , C(f) =

∑M
i=1 c · numi is the total storage cost for

all code entries, and Ω is the capacity of TCAM. The target
problem can be stated as follows.
Definition 1. Aggregation gain maximization problem: From
all the possible aggregation strategies F , find f∗ ∈ F such that
for any aggregation strategy f ∈ F , the conditions G(f∗) ≥
G(f) and C(f∗) ≤ Ω hold.

The problem is NP-hard, as the aggregation does not enlarge
C(f), and if the constraint in Eq. 5 were satisfied, the problem
can be transformed into a non-prefix aggregation problem
targeting for minimizing the storage cost, which has been
proved NP-hard [43].

For the aggregation process, we have the following observa-
tions. Each aggregation operation can only lead to three results:
(1) aggregation expands covering range, which increases both
hf and ef ; (2) aggregation overlaps the other dissimilar codes,
which increases ef ; (3) the number of codes is reduced, which
reduces C(f). We have the gain ∆Ga for each aggregation
operation a ∈ f as:

∆G(a) =





∑n1
i=1

∑K
k=1

∑Sik
j=1(−µ)εP (lj)ωj

pkb
Ck

K

, if 1

−∑n2
i=1 µP (li)ωi, if 2

∆C(a) = −n3c. if 3

(6)

For the case 1, the positive gain of aggregation ∆ht(a)
is derived from the possibility that similar queries with non-
existing codes covered by aggregation hit the TCAM, which
cannot occur before the aggregation a. Meanwhile, the ag-
gregation a also brings in negative gain ∆he(a) when the
dissimilar queries hit aggregation code. Hence we compute the
probability for the above two cases respectively to evaluate
∆ht(a) and ∆he(a). The computation requests with non-
existing codes are two kinds (i.e., either similar with preserved
results or not), and we approximately estimate the probability
of the two cases as: probability Pq(be|l) denotes a query
with non-existing empty code be has the similar request with
group bl. Specifically, we assume each binary code can be
transformed to be in a probability Pt(k), which is inversely
related to the number of different bits k. We define the

Algorithm 3: Greedy Aggregation
Input: the M sets of binary codes B = {bi}Mi=1, balancing

parameter µ, and TCAM capacity Ω.
Output: the desired aggregation codes.

1 B∗,E,ω ← construct weighted patricia trie(B);
2 G← ∅, C ← cost(B∗);
3 for i← 1 to M do
4 t← B∗[i];
5 for s1 ← 1 to length(t) do
6 for s2 ← s1 + 1 to length(t) do
7 add pair < t[s1], t[s2] > to G[i];

8 for s3 ← 1 to length(E) do
9 add pair < t[s1], t[s3] > to G[i];

10 while max(calc gain(G)) > 0 or C > Ω do
11 if C ≤ Ω then
12 i, < x, y >← arg max<x,y> calc gain(G);
13 else
14 for pair in G do
15 if ∆C(pair) < 0 then
16 add pair to Pr;

17 i, < x, y >← arg max<x,y> calc gain(Pr);

18 t code← aggregate(x, y);
19 Mcode ← find match(t code,B∗[i]);
20 for code in Mcode do
21 remove pair < code, ∗ > from G[i];

22 remove Mcode from B∗[i];
23 for code in B∗[i] do
24 add pair < code, t code > to G[i];

25 add t code to B∗[i];

26 return B∗;

probability of a one-bit change (‘1’ to ‘0’ or the reverse)
as pb, and thus Pt(k) =

pkb
Ck

K

, where CkK = (K−k)!
k! , and K

is the bit width of binary code b. Then we can approximate
Pq(be|l) =

∑
b∈bl

P (l)ωbPt(kb), where P (l) (detailed in the
next part) is the probability of an arbitrary query having the
similar computation request with the l-th group bl, and ωb
is the weight of b in Patricia trie. Correspondingly, we have
∆ht(a) =

∑n1

i=1 Pq(bei|li), ∆he(a) =
∑n1

i=1 Pq(bei|l 6= li),
and ∆G(a) =

∑n1

i=1

∑K
k=1

∑Sik

j=1(−µ)εP (lj)ωj
pkb
Ck

K

, where n1
is the number of empty codes covered by the aggregation, Sik
is the number of binary codes having k different bits compared
with the i-th empty code, and ε ∈ {0, 1} is 0 when lj equals
to the label of group bi and 1 otherwise.

The case 2 only involves negative gain. Each covered code
b that has the dissimilar computation request with the aggrega-
tion code will wrongly hit the aggregation code with a proba-
bility of P (lb)wb. Thus similarly, ∆G(a) = −∑n2

i=1 P (lb)wb,
where n2 is the number of dissimilar codes covered by the
aggregation. The case 3 reduces the needed storage, and thus
∆C(a) = −n3c, where n3 is the number of reduced entries.
Now we can rewrite ∆G(a) in Eq. 6 as:

∆G(a) =

n1∑

i=1

K∑

k=1

Sik∑

j=1

(−µ)εP (lj)ωj
pkb
CkK
−

n2∑

i=1

µP (li)ωi (7)

Based on Proposition 1 and Eq. 7, we develop a greedy
aggregation algorithm as described in Algorithm 3, where in
each step we greedily select two codes with maximum gain
∆G to aggregate among all codes if the storage constraint

which is inversely related to the number of different bits k.
We define the probability of a one-bit change (‘1’ to ‘0’ or
the reverse) as pb, and thus Pt(k) = pkb (1−pb)K−k, where K
is the bit width of be. Then we can approximate Pq(be|l) =∑
b∈bl

P (l)ωbPt(kb), where P (l) (detailed in the next part) is
the probability of a query having the similar request with the
group bl, and ωb is the weight of b in Patricia trie. Thus, we
have ∆ht(a) =

∑n1

i=1 Pq(bei|li), ∆he(a) =
∑n1

i=1 Pq(bei|l 6=
li), and ∆G(a) =

∑n1

i=1

∑K
k=1

∑Sik

j=1(−µ)εP (lj)ωjp
k
b (1 −

pb)
K−k, where n1 is the number of empty codes covered by

the aggregation, Sik is the number of binary codes having
k different bits compared with the i-th empty code, and
ε ∈ {0, 1} is 0 when lj equals to the label of group bi and 1
otherwise.

The case 2 only involves negative gain. Each covered code
b that has the dissimilar computation request with the aggrega-
tion code will wrongly hit the aggregation code with a proba-
bility of P (lb)wb. Thus similarly, ∆G(a) = −∑n2

i=1 P (lb)wb,
where n2 is the number of dissimilar codes covered by the
aggregation. The case 3 reduces the needed storage, and thus
∆C(a) = −n3c, where n3 is the number of reduced entries.
Now we can rewrite ∆G(a) in Eq. 6 as:
n1∑

i=1

K∑

k=1

Sik∑

j=1

(−µ)εP (lj)ωjp
k
b (1− pb)K−k −

n2∑

i=1

µP (li)ωi (7)

Based on Eq. 7, we develop a greedy aggregation algorithm
as described in Algorithm 3, where in each step we greedily
select two codes with maximum gain ∆G to aggregate among
all codes if the constraint C(f) ≤ Ω is satisfied, or from those
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code pairs with ∆C < 0 otherwise. To be specific, line 1
in Algorithm 3 constructs a Patricia trie to generate the new
compressed binary codes set B∗, the empty codes set E, and
the weights ω; line 2 obtains the initial storage cost C of all
binary codes; line 3-9 list all possible aggregation code pairsG
on ω and E; all the aggregation decisions are made in the loop
from line 10 to line 25, where line 11-17 select the appropriate
code pair <x, y> based on whether C ≤ Ω is satisfied, and
line 14-16 extract code pairs from G with ∆C < 0. Next, line
18 aggregates the selected code pair into a new ternary code,
and line 19-22 remove the codes and pairs covered by the
aggregation code from Bnew and G. At last, line 26 returns
Bnew as the final codes to be stored in TCAM.

Query distribution. For the probability P (l) of a query
having the similar computation request with bl, we derive an
estimation model based on the real data distribution. Fig. 5(a)
shows the statistics on the frequency distribution of KITTI
dataset by similarity of group labels that measured in Sec-
tion I, and Fig. 5(b) shows their logarithmic relationship. The
observation confirms our assumption that the P (l) obeys the
power-law distribution with the probability density function
P (l) = λl−α, on which we take logarithm on both sides and
get: lg(P (l)) = −αlgl+lgλ. Assume we have observation data
of logarithmic group labels {xi = lg(li)}Mi=1 and logarithmic
frequency {yi}Mi=1. We apply the least squares method to
estimate k = −α and b = lgλ by minimizing the sum of
squared errors

∑M
i=1(yi − ŷi), where ŷi = kxi + b is the

predicted value of yi. We get:

k =

∑M
i=1(xi − x)(yi − y)
∑M
i=1(xi − x)2

, b = y − kx,

where x and y are average observation values. Finally we get
the estimation values α̂ = −k and λ̂ = 10b.

Homogeneity-based Culling for NMC: The match in
TCAM may be false positive for the following reasons: (1)
some impure data with dissimilar features may result in the
false match; (2) the similarity in the feature cannot guarantee
the reusability of the detection result due to detection error,
feature error, etc. Therefore, we need to determine a qualified
result for reuse. Naively, one can traverse all the matched data
to find a result with similar feature to the query, which solves
only the first issue, and also incurs large search latency. The
work in [22] applies kNN to search k results having the closest
feature with the query returns a result with high proportion,
which addresses both issues but still suffers high latency when
performing kNN on all high-dimensional features.

To tackle the issues with low cost, we propose an offline
homogeneity-based culling strategy for NMC. On the one
hand, we qualify each stored result and eliminate redundant,
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Fig. 6: Homogeneity-based culling: (a) all similar key-value pairs in
a partition are first categorized into different groups via K-means on
keys; (b) each group is then qualified based on composition frequency
and the sufficient groups vote for high-quality dominant pairs.

insufficient results during NMC construction; on the other
hand, we derive a quality-first search scheme to further reduce
the search time. As illustrated in Fig. 6, we denote the contents
to be stored in NMC as <key,value> pairs, where key is
the high-dimensional feature and value is the corresponding
detection result. For each partition of similar pairs, we first
utilize the K-means to cluster them into K groups by keys.
Then for the contents in each group, we define homogeneity
level β to quantify the result reusability.

Specifically, for the p-th group contents, we assume there
are z distinct kinds of values, and correspondingly we can
obtain a value frequency vector Fp = [fp1, fp2, · · · , fpz],
where each element fpq (q ∈ [1, z]) records the frequency of
q− th distinct value. Then, we define βp = max(fpq)/‖Fp‖2.
As a toy example illustrated in Fig. 6, the group 1 has 4
<key,value> pairs with 2 distinct values, and thus F1 = [3, 1]
and β1 = 3/

√
32 + 1. Then we determine whether the content

is reusable according to the homogeneity level β. The group
with β exceeding a predefined threshold βth indicates a high-
quality result, which should be preserved; otherwise, the group
is discarded. Then for each reusable group, the voting is
performed to acquire dominant pairs with high confidence (i.e.,
take the voted results as value, and take the central feature as
key), as illustrated in Fig. 6. We use these dominant pairs to
rebuild the partitions with higher quality and smaller size, and
store them in NMC in the order of decreasing β.

During the query process, each query feature compares
with the feature of dominant data pairs by computing their
Euclidean distance to find the desired result in the order of
β (i.e., reusability). If the distance is lower than the expected
threshold, the corresponding value is returned.

IV. SYSTEM IMPLEMENTATION

First, we introduce the complete architecture of our line-
speed accelerator engine in general. As demonstrated in
Fig 7, the whole system has two functional part, i.e., multi-
match logic and parallel search logic. For an incoming high-
dimensional feature to be calculated, it will first be encoded
into a binary code by encoder, and then be delivered to
multi-match logic for a matching operation. The multi-match
logic will return a set of partition numbers indicating which
subsequent memories and which block inside each memory
may contain the result if the query feature is matched by
TCAM. Otherwise, the multi-match logic will return an enable
signal to forward the feature to remote MEC for conventional
object detection calculation. Then according to those returned



message by TCAM, the parallel search logic will deliver the
original query feature into different NMC units for further
parallel result retrieval. Considering that TCAM has a much
faster speed than NMC in search logic, we adopt multiple
independent NMCs to pursue a parallel search for different
queries that matched by TCAM, and especially we apply a
load-balanced strategy to allocate the data partitions among
different NMCs with a uniform traffic load. Correspondingly,
we store the aggregated binary codes of data features in TCAM
and the data location messages in SRAM for fast match.

1) The Multi-match logic:
Conventional TCAM only return a single matched result

with the highest priority, which is not appropriate for our
approximate matching where the purpose is to match similar
content as much as possible. To enable TCAM with multi-
match function, there are two approaches: (1) design a new
TCAM by replacing the inside priority encoder with a multi-
match encoder; (2) equip the existing TCAM with a peripheral
function circuit to achieve multi-match. The former approach is
not practical for no available commercial product support and
not flexible due to fixed matching number. Thus, we adopt the
latter approach by designing an extra multi-match logic.

We divide the code entries in TCAM into different clusters
where any two clusters have no overlap, and then we can draw
an obvious conclusion that for an any query code, all codes
that can be matched only exist in the one of above clusters.
Therefore, we assign each code in above non-overlap cluster
with a discriminator index (the code in different cluster can
have same index), as shown in Fig 7 where each ternary code is
associated with a cluster-level discriminator filed (with length
of dlog2 Ce where C is the number of code entries of the
largest cluster).

To well balance the matching accuracy and search over-
head, we design a two-stage multi-match logic. In stage-1,
we iteratively match m times (if the number of code that
can be matched by a query is less than m, we can stop
iteration directly) for a query where we set m a relatively
small value by statistic data to attain an acceptable accuracy.
The detailed process is similar in [44], for the first round
match, the query code q in ”FIFO1” will be concatenated
with a mask postfix composed of wild characters ‘∗’ of length
dlog2 Ce, and so that the first query can match any codes in
TCAM without limitation of discriminator field. For cluster
matched by q, we suppose all discriminator index are from
range [s, e] (we let the index sequence same with priority
sequence in TCAM, i.e., e has the highest priority.), and the
fist matched code is a ∈ [s, e], then for the subsequent match
of q, we can concatenate it with a mask with range [s, a) 1

by feedback logic ((a, e] should not be considered). In stage-
2, the query code with a mask from stage-1 will be delivered
to the ”buffer1”, where it will wait until the output signal of
parallel search logic to determine whether to be matched by
TCAM again or to be dropped. During the waiting period,
subsequent other queries still can be delivered to ”FIFO1”
and perform first stage matching of TCAM, and the switching

1E.g., suppose [s, e] = [0, 7] and a = 5, and then the range [0, 4] can be
divided as [0, 3] = 0 ∗ ∗ and [4] = 100, and the mask for the next round
match is 100 that has a higher priority than the other one.

between the two stage matching is controlled by a selector.
According to [? ], the time for matching continuous m results
is (1 + dlog2 Ce+ (m− 2) ∗ (dlog2 Ce − 1)) cycle.

2) The parallel search logic: In the parallel search logic,
the FIFOs denoted as ”FIFO3” in Fig 7 for each NMC consist
of two parts, i.e., a long queue to be processed with low priority
and a short queue with high one. For the results returned in
the first stage match of TCAM, we deliver them with query
feature to the long queue, and the short queue is specially
designed for results from the second stage match which should
be processed with high priority to compensate the time cost
for failing to retrieve result in the first stage. During search
process, the query feature will be delivered to corresponding
NMC unit to compute the euclidean distance with each feature
of matched similar results. The above calculation for high-
dimensional features will incur very high latency in traditional
von Neumann architecture for there existing high volumes
data transfer from the memory to processor. To break the
“memory wall” [45], processing-in-memory (PIM) [46, 47]
architecture has been proposed to reduce the above latency
by embedding the calculation logic inside the memory, which
cater the growing demand for large-scale data analytic. PIM
has two category: (1) near-memory computing (NMC) places
calculation logic near large-volume memory array, which has
been widely used in [31–33] based on products of HMC [34]
and HBM [35] 2; (2) in-memory computing (IMC) redesigns
the memory array with inside calculation logic, which has low
capacity and is unavailable at present.

NMC greatly reduces the latency from n ∗ (tIO + tcalc)
of traditional memory to tIO + n ∗ (tintra + tcalc) where
n is the number of entries to be calculated, tIO is the I/O
latency between CPU and memory, tintra is the intra latency
involved by data transfer between stacked memory and logic
layer, and tcalc is the calculation time. Although NMC has
much lower latency than traditional CPU-memory structure,
it still has speed gap with TCAM 3. Therefore, we adopt
multiple independent NMCs which are allocated with different
partition of results to achieve parallel search for different
features. According to the query distribution derived from
statistics results in section III-C, we apply a load-balanced
strategy proposed in [48] to evenly distribute the partition-
based result groups into different NMC chips with at most
25% duplication of results to pursue high throughput of search
logic with balanced traffic load among all NMCs. Then for
each result matched by TCAM, the scheduler will parse it and
concatenate it with the corresponding original feature insured
by ordering unit, and then send the concatenated result to the
proper NMC according to the returned information of TCAM
and the FIFO status of NMC.

3) The match and search process:
In order to explain the system logic clearly, we present the

data lookup process in the form of state transition diagram, as
illustrated in Fig 9(a) and Fig 9(b). There are both 4 states for

2Hybrid Memory Cube (HMC) and High Bandwidth Memory (HBM) are
products from different companies, which consist of a logic die stacked with
several DRAM devices that has at most 320 GB/s bandwidth between stacked
DRAM and logic die connected by through-silicon vias (TSV).

3For TCAM, the average time for a match is only (1 + dlog2 Ce+ (m−
2) ∗ (dlog2 Ce − 1))/m = 7.25 cycle if m = 4 and C = 1024.
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multi-match logic and parallel search logic. For multi-match
logic, the functions of 4 states are exhibited below:
• State-0 concatenates the query code either in FIFO (stage-

1) or buffer (stage-2) with a postfix mask according
to signal from feedback unit. If the update signal is
active, state-0 transits to state-3 for update. Then unless
the scheduler sends back a ”blocking” signal indicating
congestion in parallel logic, the state will transits to state-
1. Otherwise, the state will remain state-0.

• State-1 performs the match in TCAM for concatenated
query code, and the state will transits to state-2 directly.

• State-2 parses the output of TCAM by scheduler, and
if TCAM matches a result, the scheduler will send the
result to the corresponding NMC for searching. Then if
the number of iterations is less than m, the scheduler will
send the matching index back to feedback unit, and state-
2 transits state-1 for next stage-1 matching on the same
query, and otherwise, state-2 transits to state-1 to directly
start new matching on new query.

• State-3 performs update on TCAM and transits to state-0.
And the states of parallel search logic are shown as:

• State-0 iteratively check the status of FIFO and NMC.
If update signal is active, state-0 transits to state-3 for
update. Then if the NMC is idle and FIFO is not empty,
selector will deliver feature from short queue and long
queue to NMC for searching, and state-0 transits state-1.

• State-1 does searching on NMC and transits to state-2.
• State-2 parses the output of NMC, and if a satisfied result

is found, the result will be returned. Otherwise, a failure
signal is fed back to start stage-2 matching in multi-match
logic. State-2 transits to state-0.

• State-3 carries update on NMC and transits to state-0.

V. EVALUATION

We conduct the function simulation to compare SODA with
the state-of-the-art approaches, and then prototype the system
on an FPGA platform to demonstrate its resource consumption
and timing performance.

A. Function simulation

We first evaluate the encoding algorithm, TCAM matching
module, and NMC searching module respectively, and then
verify the performance of the integrated system.

1) General setup:
Dataset. We use KITTI 3D object detection benchmark [11]

as the primary dataset. It contains 7,481 labeled training point
clouds and 7,518 unlabeled test point clouds, covering three
categories: Car, Pedestrian, and Cyclist. For each frame of
point cloud data, we leverage pointnet [23] to further partition
it into different independent segments (a common operation
as in [8–10]), and extract 1,024-dimensional feature vectors,
to obtain 73,408 object feature-result pairs in total. We divide
these objects into different groups based on their similarity
measured by IoU, and get 4,093 different similar groups
(named similar-group types).

Parameter setting. We split the 73,408 labeled object
dataset in the ratio of 7:3 into a train set and a validation set for
encoder training. We set the LDA projection dimension m and
the number of linear classifiers H to 300 and 12 respectively.
For TCAM and NMC, we use the train set for database
construction and the validation set for computation querying.
Furthermore, we assume the query type of computation request
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has a power-law distribution P (x) = cx−α, in which c and α
are set to the empirical value 0.536 and 0.018 respectively.

2) Result analysis:
Encoder performance. We compare the performance of

our Dual-Loss Encoding (DLE) algorithm with the state-of-
the-art KSH [36], SDH [37], and FastH [38] in terms of
mean average precision on hamming ranking (mAP), hamming
distance, and encoding time. The average precision is defined
as AP = 1

n

∑n
i=1

i
ranki

, where n is the number of similar
items in the results of top 100 shortest Hamming distance with
a query feature, and ranki is the rank number of i-th similar
item. The mAP is the mean AP among all queries.

Fig. 10 and Fig. 11 exhibit the comparison of mAP on
varying code width and similar-group types respectively. In
the bit width range in Fig. 10, while all approaches have an
increasing mAP, DLE remains the best. DLE and FastH lead
the other two by almost twice, and the gap keeps widening. The
prominent performance of DLE corroborates the superiority
of dual-loss supervision. In Fig. 11, all approaches however
encounter an mAP decline as group types increase, showing
that a fixed code width cannot sustain a growing number of
types. Nevertheless, DLE still shows the best scalability.

Fig. 12 and Fig. 13 illustrate the distribution of intra-group
and inter-group hamming distances, where DLE and FastH
achieve lower intra-group hamming distance and higher inter-
group distance than KSH and SDH, which is due to the
two-step learning. However, the two-step learning adopting
the independent classifiers for each bit binary code may
incur a serious problem: it focuses on bit-level code fitting
while ignoring the feature-level similarity, which leads to high
variance on intra-group hamming distance, as shown in Fig. 12.
DLE addresses this issue by taking feature similarity loss in
each bit-classifier, making for a much lower variance.

TABLE II: Execute time for per-query feature encoding
Approaches KSH SDH FastH DLE
Time (us) 16 3.8 230 7.43

In addition to accuracy, Table II compares the per-query
encoding time on an Intel Core i7-10710U CPU. DLE is close
to SDH and much better than the decision tree-based FastH. In
SODA, DLE will be implemented in hardware and we expect
at least 10x speedup [49].

TCAM matching performance. Using the validation set
as queries, we evaluate the matching performance of our
Aggregated TCAM (A-TCAM) in terms of precision and
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recall, against Rene [30], Hierarchical Clustering tree (HC-
tree) [50], and LSH [51].

In Fig. 14, we reduce the proportion of the train set (for
constructing the TCAM matching database) from 0.7 to 0.14
and verify the robustness of A-TCAM. As shown in the figure,
both the recall and the compression ratio decrease with the
reduction of database proportion while the precision keeps al-
most 100%. Especially, the recall has a slow decrease on a wide
database range. This is mainly attributed to our gain-oriented
greedy aggregation strategy which maintains the balance be-
tween TCAM matching range and storage occupation while
minimizing the loss of precision. The precision degradation
in Fig. 15 is because the decreasing TCAM capacity breaks
the recall-precision balance. In Fig. 15, A-TCAM has a high
precision comparable to naive-TCAM (with no aggregation)
when TCAM depth is 9,000. However, as TCAM capacity
reduces further, most similar codes are aggregated to one code,
leading to a recall and precision loss. Fig. 16 exhibits the
performance of A-TCAM on varying bit width. As shown
in Fig. 16(a), the precision of both A-TCAM and naive-
TCAM increases with bit width due to the improving encoding
accuracy illustrated in Fig. 10. When the bit width is low, both
naive-TCAM and A-TCAM have a high recall because most
of the codes are the same. As bit width grows, the recall of
naive-TCAM decreases while that of A-TCAM still holds as
the improved encoding accuracy make aggregation work fine.
This matches the line trend in Fig. 16(b), where A-TCAM and
naive-TCAM both reveal a high number of matches and low
top1-priority match accuracy when the bit width is low, but
high matching accuracy when the bit width is high.

Fig. 17 presents the precision and recall of A-TCAM and
the other state-of-the-art approaches with similar-group types
varying from 200 to 4,000. In Fig. 17(a), the increasing
similar-group type makes codes hard to differentiate and thus
decreases all approaches’ precision, while Rene shows the
smallest precision loss. Its precision even exceeds A-TCAM
when the number of similar-group type is greater than 3,500,
because Rene adopts the accurate binary reflected Gray code
(BRGC) for each floating-point value which makes codes eas-
ily differentiable, albeit suffering the curse of dimensionality
(e.g., a 1K-dimensional vector corresponds to a more than
12,000-bit code in Rene). As for recall, HC-tree searches the
near point for a query along the hierarchical clustering tree
and thus has a 100% recall but pays extra computation cost
as well. A-TCAM has higher recall than the other two at the
beginning but the recall decreases as the group types increases
and eventually becomes lower than Rene and LSH. Since
the limited 48 bit-code is hard to cover increasing content,
A-TCAM needs to balance the trade-off between precision
and recall. For matching speed, A-TCAM and Rene both
can complete a query in a few clock cycles, while HC-tree
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Fig. 17: The performance on varying similar-group types.

needs 10x more calculation for Euclidean distance on 1K-
dimensional vectors, requiring thousands of clock cycles on
a 64-bit CPU, let alone the huge data I/O time. As for LSH,
the average bucket size mapped by a query is 84 which needs
even longer calculation time. For storage overhead, A-TCAM
only occupies 91KB TCAM storage while Rene needs 264MB,
or 2,900x more storage than A-TCAM.

NMC searching performance. We evaluate the NMC
searching performance and compare it with linear-exhaustive
search (linear-ex), linear-thresholded search (linear-th), and the
state-of-the-art method H-kNN [22]—linear-ex exhaustively
searches the nearest result for a query among all results in
a partition matched by TCAM, and linear-th sequentially
searches a result until a result’s distance with the query is
less than a threshold—in the metrics of reuse precision, hit
ratio, IoU, and search time (number of searches). Especially,
to verify the effect of culling strategy, we add 10% fake
feature-result pairs in the database that have close features with
existing data but combining with completely wrong results.

Fig. 18 exhibits the trade-off for precision, hit ratio, IoU,
and search time on different distance thresholds. As illustrated
in Fig. 18(a), for small thresholds, only the results with very
close features to the query will be selected, so the precision is
high while the hit ratio is low. As threshold increases, more
results meet the distance condition and the hit ratio quickly
increases, but meanwhile, some queries are wrongly matched
by unrelated features which degrades the precision. linear-
th preserves all stored results without culling and thus finds
results easier while some results are wrong, making for a larger
hit ratio than culling-NMC but a reduced precision. In con-
trast, culling-NMC keeps a high precision because the culling
strategy prevents incorrect queries. This also conforms to the
trend in Fig. 18(b) where culling-NMC has a much higher IoU
and lower number of searches for a query. For linear-ex, the
exhaustive searches cause plenty of errors especially due to
the added fake data, As a result, linear-ex has a 100% hit ratio
but much lower precision and IoU, and a long search time.

Fig. 19 compares culling-NMC with H-kNN and linear-th
when the train set proportion is reduced from 0.7 to 0.14.
As shown in Fig. 19(a), H-kNN has an almost constant hit
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Fig. 18: NMC performance on distance threshold, where precision is
the ratio of correct search results over all queries. A result is judged
correct if its 3D bounding box IoU over ground-truth is greater than
the threshold (70% for vehicles and 50% for pedestrians and cyclists).
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Fig. 19: The performance comparison on varying database

ratio but a large decline in precision, while the other two are
opposite and especially culling-NMC keeps the precision stable
at over 90%. This is because H-kNN always chooses the major
result from K nearest neighbors of the query without distance
limitation, causing mismatches and precision loss. linear-th
and culling-NMC select a result under distance threshold, so
they can keep a relatively stable precision, but the decreasing
train set reduces the satisfied results and the hit ratio. The
problem of linear-th is that it has a large possibility to match
a query to a wrong result with a close feature (e.g., the added
fake results). Culling-NMC selects a result with the constraint
of both distance threshold and homogeneity level, resulting in a
more stable and higher precision than the others. This explains
why culling-NMC has higher IoU and shorter search time than
linear-th in Fig. 19(b), where H-kNN achieves the highest IoU
but with much longer search time.

TABLE III: System performance comparisons.
Approaches precision recall IoU-0 IoU-1 Latency

SODA 94.60% 86.74% 88.68% 61.89% 2.76∗tcalc
FoggyCache 75.68% 92.95% 85.96% 59.95% 168.14∗tcalc

Detection Model 85.88% 83.23% 93.27% 65.09% >50 ms

Overall system. First, we evaluate the overall system per-
formance as the function of the number of matches m per
query from TCAM. As exhibited in Fig. 20, the system has
an increasing recall and keeps a high and stable precision
with the growing number of matches. This is because the
increasing number of matches improves the matching precision
of TCAM and enlarges the probability of successful searches
in NMC. Linking to the conclusion drawn from Fig. 18, this
indicates that the levels of system precision, hit rate, and search
period are tunable through the parameters m and the threshold
of NMC. Correspondingly, we describe the trade-off between
precision, hit rate, and search rounds (proportional to search
latency) in Fig. 21, where improving any two metrics will
degrade the performance of the third.

Next, we compare the system performance with foggycache
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(LSH+H-kNN) [22] and the ground-truth level of state-of-the-
art 3D-object detection models [8–10] in Table III. While the
IoU of SODA is lower than the state-of-the-art 3D object
detection model (e.g., PointRCNN [10]), SODA keeps the
sub-microsecond level search latency (the time for calculating
Euclidean distance on about 2.76 1024-d floating-point vectors
per query plus one I/O latency) and higher precision. Moreover,
culling-NMC only consumes 29.7 MB memory while Foggy-
Cache needs five times more. Although the recall of SODA is
lower than FoggyCache, FoggyCache suffers precision loss and
long searching time. Furthermore, for the about 5% precision
loss of SODA, the stats on all false-positive (fP) results show
that no one mistakes a wrong object type (e.g., recognize
a pedestrian as a car), and all errors are derived from low
IoU. The distribution of IoU-0 (for vehicles) and IoU-1 (for
pedestrian and cyclist) of all fP results is shown in Fig. 22 and
Fig. 23 respectively. IoU-0 of the most results is between 0.5
and 0.7, and IoU-1 between 0.2 and 0.5, meaning that even if
fP occurs, the error is still in the acceptable safe range.

TABLE IV: FPGA resource consumption.
Module LUTs Registers Block Ram DSPs
TCAM 360, 071 441, 275 8 0
NMC 413, 065 370, 628 1112.5 5118

Control logic 3833 1373 14 0
Percentage 56.38% 28.9% 56.73% 44.47%

B. Prototype synthesis and timing analysis

To verify the system implementation feasibility and evaluate
the throughput and latency performance, we implement SODA
on a Xilinx Alveo U250 FPGA platform. The size of the on-
chip TCAM is 8K×48b, and each entry’s associated SRAM
is 32b. The NMC memory contains 10K 1033×32b entries
(each entry includes a 32b partition ID, a 256b result, and a
1024×32b feature vector). Two FIFOs with a depth of 10 are
added between TCAM and NMC for asynchronous adaption.
The data communication is carried by AXI bus [52].

We synthesize the design on Vivado [53]. The FPGA re-
source consumption is summarized in Table IV. Both TCAM
and NMC need a large amount of LUTs and registers, which
are used by TCAM for building the parallel matching memory,
and by NMC for the calculation units. NMC also consumes
Block Ram for data storage and DSPs for calculation.

Fig. 24 exhibits the core throughput and latency of SODA
with different number of TCAM matches for each query,
where the maximum core throughput is approaching 1.4M
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search per second (Msps) for a single TCAM match with
the minimum latency of 0.74µs (I/O accounts for almost
twice processing time). As the number of TCAM matches
increases, the performance degrades but is still far beyond
the system demand for assisting autonomous driving in high
speed (i.e., a vehicle needs a tail latency lower than 100ms
at a frame rate of higher than 10 frames per second [2, 54]).
Besides, to address the system bottleneck on NMC, we can
deploy multiple modules to support parallel search where all
results are uniformly distributed on different NMC modules.
The result is illustrated in Fig. 25. When the query has a
uniform distribution, the throughput improves linearly with the
number of NMC modules; when the query follows a power-law
distribution, the throughput improvement is sluggish. Specif-
ically, the throughput is decreasing with α of the power-law
distribution ranging from -0.5 to -0.9, as shown in Fig. 26,
which indicates the throughput can be improved by parallel
NMC if the results are well distributed (e.g., adopt a well-
designed load-balance algorithm [48]).

VI. CONCLUSION
SODA accelerates the MEC-assisted similar 3D object de-

tection for autonomous driving. We designed efficient algo-
rithms by leveraging TCAM’s approximate matching capabil-
ity and NMC’s computing efficiency. The extensive evaluations
confirmed the architecture feasibility and performance superi-
ority on the subject matter.
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