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Abstract

This supplementary material provides more empirical analysis and discussions

on STR-ResNet for video SR.
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1. More Analysis and Discussions

1.1. Ablation Analysis

We here perform ablation studies to investigate the individual contribution

of each component in our model to the final performance. We use following

notations to represent each version of our proposed STR-ResNet as shown in15

Fig. 1,

• BRCN. A three layer recurrent convolution network in [1] which is used

as our baseline.
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Figure 1: The network architectures of the compared versions in ablation anal-
ysis.

• S. A six layer recurrent convolution network with only spatial residual

learning, modeled by bypass connections.20

• T. BRCN with only temporal residual learning, modeled by LR difference

frame inputs. Without the aid of spatial residual and bypass connection,

we could only set the depth of the network as 3.

• ST1. S with both spatial and temporal residuals but in only one direction.

• ST2. S with both spatial and temporal residuals in two directions.25

• FOFT. A finetuned version of ST2, with the centric exponential decayed

weighted loss, as shown in Table 1 of the main body.

Their performances and parameter numbers are presented in Table 1. Note

that, the parameter numbers of all methods are presented on the basis of that of

S. The versions BRCN, T, ST1 and ST2 can output 9 HR frames at a time, thus30

their parameter numbers are divided by 9. It is observed that, adding spatial

and temporal residues individually contributes little to the performance of the

network. It shows that without a joint consideration of both kinds of residues,

adding a single term into the model only brings limited performance gain. Sim-

ply increasing the depth of the network only leads to slight performance gain of35
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0.09dB (S). Also, without a deeper structure, introducing inter-frame informa-

tion does not significantly boost the performance (T) – the average performance

gain is only 0.02dB. Modeling both spatial and temporal residuals (ST1) over-

comes these deficiencies, leading to significantly boosted performance (0.42dB).

Adding two-way connections (ST2) also improves the network performance than40

the version with one-way connection, with an average performance gain of 0.12d-

B. The finetuning (FOFT) with the centric exponential decayed weighted losses

also benefits SR estimation, with an average performance gain of 0.02dB .

Table 1: The ablative analysis results for each component of STR-ResNet.

Versions BRCN T S ST1 ST2 FOFT

#Para 5 3 1 3 5 45

Tractor 33.23 33.32 33.32 33.74 33.84 33.85
Sunflower 39.28 39.30 39.35 39.60 39.96 40.02
Blue sky 31.40 31.50 31.50 32.13 32.24 32.23
Station 35.20 35.23 35.28 35.61 35.61 35.63

Pedestrian 34.95 34.88 35.01 35.18 35.18 35.22
rush hour 39.86 39.81 39.96 40.15 40.28 40.30

Average 35.65 35.67 35.74 36.07 36.19 36.21

Table 2: PSNR results among different methods for video SR (scaling factor:
4).

Versions FOFT ST2 S-P9 S-128
#Para 5 45 45 4

Tractor 33.84 33.85 33.41 33.38
Sunflower 39.96 40.02 39.52 39.43
Blue Sky 32.24 32.23 31.75 31.57
Station 35.61 35.63 35.43 35.34

Pedestrian 35.18 35.22 35.08 35.03
Rush Hour 40.28 40.30 40.12 40.11

Average 36.19 36.21 35.89 35.81

1.2. Comparing with Larger Networks with Single Frame Input

To demonstrate the source of our gains, we further compare ST2 and FOFT45

with another two versions of our methods: S-P9 and S-128. S-P9 owns the same

network structure to ST2, but its 9 sub-networks take the center LR frame as

their inputs. S-128 has only one sub-network, and its convolutional layers in

the middle have 128 channels. The PSNR results among these four methods are

presented in Table 2. It is clearly demonstrated that, increasing parameters can50

boost the performance. However, the gains are limited, compared with those

brought by using adjacent frames via the joint spatial-temporal structure.
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Figure 2: The architecture of STR-ResNet that exploits the adjacent frames in
two temporal directions.

1.3. Video SR without Future Frames

We first need to mention that, the network structure in Fig. 5 of the main

body is not the exact final network structure of STR-ResNet. The temporally55

backward convolutions are omitted for a clearer illustration. The final network

structure of STR-ResNet that exploits the adjacent frames in two temporal

directions are presented as shown in Fig. 2.

Without using future frames, STR-ResNet can be simplified via three steps

as shown in Fig. 3:60

1. We remove the convolution connections from the future frames and only

enable the information flow from the past frames to the current frame;

2. The network takes only LR frames and the temporal residue between the

past LR frame and the current LR frame as its input;

3. In the penultimate layer of the network, only the temporal residue between65

the past HR frame and the current HR frame is predicted.

Figure 3: The architecture of STR-ResNet that exploits the information of
adjacent frames in two temporal directions.

Therefore, STR-ResNet can predict the current HR frame solely relying on

the past frames and the processing delay will be reduced.

4



1.4. Handling Color Videos

Our method is flexible to handle color video super-resolution. We achieve70

that in two ways : 1) using single-channel input/output STR-ResNets to process

each channel separately; 2) using a three-channel input/output STR-ResNet to

process three channels jointly. The results are presented in Table 3. B-STR-

ResNet denotes the version where chromatic channels are processed by Bicubic

interpolator. C-STR-ResNet denotes the version where three channels of YCbCr75

are processed separately by single-channel input/output STR-ResNets, respec-

tively. JC-STR-ResNet denotes the version where three channels of YCbCr

are processed jointly by a three-channel input/output STR-ResNet. Comparing

B-STR-ResNet and C-STR-ResNet, it is clearly demonstrated that, replacing

Bicubic interpolator by single-channel input/output STR-ResNets in processing80

chromatic channels slightly improves the reconstruction quality. A joint process-

ing for luminance and chrominance in JC-STR-ResNet leads to no significant

gain compared with C-STR-ResNet. The joint training of JC-STR-ResNet in

RGB space leads to a large performance drop.

Table 3: PSNR results in RGB color space among different methods for video
SR (scaling factor: 4).

Video B-STR-ResNet C-STR-ResNet JC-STR-ResNet JC-STR-ResNet
Color Space YCbCr YCbCr YCbCr RGB

Tractor 30.63 30.85 30.82 30.21
Sunflower 34.01 34.24 34.29 33.76
Blue Sky 29.86 30.11 30.12 29.45
Station 32.40 32.56 32.52 32.01

Pedestrian 33.11 33.24 33.29 32.80
Rush Hour 36.92 37.21 37.23 36.30

Average 32.82 33.04 33.05 32.42

1.5. Benefits of Residual CNNs85

The usage of residual CNNs for single frame image processing tasks has been

proved effective in many research topics, including image super-resolution [2],

image denoising [3], and single image rain removal [4]. For the reasons of its

outstanding performance, we give our understandings as follows,

• Network training is a non-convex optimization problem. With the same90

input and expected output, the performance of a network in practice is

decided by many factors, including network structure, optimization meth-

ods, training data et al.

• Residual CNNs faces fewer chances to stop at local minima. Comparing

with CNNs that model full images, Residual CNNs only need to fit the95

residual signal with lower energy, and the information through the network

5



is reduced. Thus, the network training converges faster and to a better

solution, as the empirical evaluations illustrated in [5, 2].

• Better decorrelation. Usually, the HR image x is highly correlated to the

LR one y. Especially at pixel level, x(i, j) is highly correlated to not only100

y(i, j) but also y(k, l) where (k, l) ∈ ε (i, j), the neighbors of (i, j). Thus,

when regressing x(i, j), many pixels in the same region of y contribute to

it. This is usually harmful for the network training [6]. Residual CNN gets

rid of this issue by only learning to restore the residual signals. In fact,

similar ideas have been proved effective in many conventional methods,105

such as ScSR [7] and A+ [8]. In these methods, the image patches are

also preprocessed to remove the redundant low frequency signals for better

modeling high-frequency details.

• More structural correspondences. Conventional and residual CNNs can be

regarded as filters. It is usually beneficial for a filter to work on a domain110

where more structural correspondences are provided. We have discussed

this point more clearly as shown in Fig. 2 and in Section 3 of the main

body.

Table 4: The effect of number of time/recurrence steps of STR-ResNet on video
SR performance and computational cost.

Video 3 5 7 9

Tractor 33.63 33.76 33.78 33.85
Sunflower 39.53 39.64 39.76 40.02
Blue Sky 31.93 32.11 32.15 32.23
Station 35.40 35.54 35.59 35.63

Pedestrian 35.10 35.11 35.15 35.22
Rush Hour 40.25 40.27 40.27 40.30

Ave. PSNR (Db) 35.97 36.07 36.12 36.21

Ave. Time (s) 47.1472 71.9190 108.4440 124.9450

1.6. Analysis on Time/Recurrence Step Number

We investigate how the number of time or recurrence steps in the STR-115

ResNet influences the SR performance. We vary the number of steps from 3 to

9 and evaluate the performance of corresponding models. Table 4 shows that,

increasing recurrence steps to model adjacent frames consistently improves the

reconstruction performance which also introduces reasonably higher computa-

tional cost as expected. The step number of 9 gives the best performance and120

the computational cost is still acceptable.
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Figure 4: The performance comparison of BRCN and two versions of the pro-
posed STR-ResNet on the validation set during training.

1.7. Validation Performance in Training Process

To investigate the training behavior of STR-ResNet, we use the sequence

blue sky as the validation set and present its validation performance during

the training for BRCN and the proposed STR-ResNet, including both one-125

direction and two-direction versions, as shown in Fig. 4. It shows that, adding

spatial and temporal residuals speeds up the convergence of STR-ResNet. STR-

ResNet converges faster than BRCN and achieves better SR performance. It is

very interesting to see that, PSNRs of three methods increase very fast in the

first 50000 iterations (first 6 epochs). STR-ResNet1 and STR-ResNet2 achieve130

almost the same evaluation performance in the first 20000 iterations (first 3

epochs). After that, STR-ResNet2 achieves better performance benefiting from

receiving information in two directions.

1.8. Situations of Temporal Residues Being Useful

To observe the performance of SR methods with / without temporal residues135

in each situation, we design a metric to visualize their performance comparison.

We first calculate the Mean Square Errors (MSE) between the patches of the

SR results with / without temporal residues and the corresponding patches of

the HR image. Then, we use the patch MSE ratio to signify the regions where

adding temporal residues leads to a performance gain or not. The results are140

presented in Fig. 5.

The regions where adding temporal residues leads to a performance gain

are denoted in blue and the regions where adding temporal residues leads to a

performance loss are denoted in red. It is clearly shown that, in texture abun-

dant regions of Tractor, Blue Sky and Rush Hour sequences, adding temporal145
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Figure 5: Analysis on the situations of adding temporal residues being useful.
The regions where adding temporal residues leads to a performance gain are
denoted in blue and the regions where adding temporal residues leads to a
performance loss are denoted in red.

8



residues has an overwhelming advantage. Comparatively, in the smooth regions,

i.e. the bag in Pedestrian and the sky in Blue Sky, the version without tempo-

ral residues has an advantage. In all, as shown in Tables 2 and 3 of the main

body, adding temporal residues provides overall performance gains in PSNR

and SSIM.150
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