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ABSTRACT

In this paper, we propose a new video Super-Resolution (SR) method by jointly modeling intra-frame
redundancy and inter-frame motion context in a unified deep network. Different from conventional
methods, the proposed Spatial-Temporal Recurrent Residual Network (STR-ResNet) investigates
both spatial and temporal residues, which are represented by the difference between a high resolution
(HR) frame and its corresponding low resolution (LR) frame and the difference between adjacent
HR frames, respectively. This spatial-temporal residual learning model is then utilized to connect
the intra-frame and inter-frame redundancies within video sequences in a recurrent convolutional
network and to predict HR temporal residues in the penultimate layer as guidance to benefit esti-
mating the spatial residue for video SR. Extensive experiments have demonstrated that the proposed
STR-ResNet is able to efficiently reconstruct videos with diversified contents and complex motions,
which outperforms the existing video SR approaches and offers new state-of-the-art performances on
benchmark datasets.

Keywords: Spatial residue, temporal residue, video super-resolution, inter-frame motion con-
text, intra-frame redundancy.

c© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Video super-resolution (SR) aims to produce high-resolution
(HR) video frames from a sequence of low-resolution (LR) in-
puts. In recent years, video super-resolution has been drawing
increasing interest from both academia and industry. Although
various HR video devices have been developed constantly, it is
still highly expensive to produce, store and transmit HR videos.
Thus, there is a great demand for modern SR techniques to gen-
erate HR videos from LR ones.

The video SR problem, as well as other signal super-
resolution problems, can be summarized as restoring the origi-
nal scene xt from its several quality-degraded observations {yt}.
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Typically, the observation can be modeled as

yt = Dtxt + vt, t = 1, . . . ,T. (1)

Here Dt encapsulates various signal quality degradation fac-
tors at the time instance t, e.g., motion blur, defocus blur and
down-sampling. Additive noise during observation at that time
is denoted as vt. Generally, the SR problem, i.e., solving out xt

in Eq. (1), is an ill-posed linear inverse problem that is rather
challenging. Thus, accurately estimating xt demands either suf-
ficient observations yt or proper priors on xt.

All video SR methods can be divided into two classes:
reconstruction-based and learning-based. Reconstructed-based
methods Liu and Sun (2014); Baker and Kanade (1999); He
and Kondi (2006); Kanaev and Miller (2013); Omer and Tana-
ka (2009); Farsiu et al. (2004); Rudin et al. (1992) craft a video
SR process to solve the inverse estimation problem of (1). They
usually perform motion compensation at first, then perform de-
blurring by estimating blur functions in Dt of (1), and finally re-
cover details by local correspondences. The hand-crafted video
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SR process cannot be applicable for every practical scenario of
different properties and perform not well to some unexpected
cases.

In contrast, learning-based methods handle the ill-posed in-
verse estimation by learning useful priors for video SR from
a large collection of videos. Typical methods include recent-
ly developed deep learning-based video SR methods Liao et al.
(2015a); Huang et al. (2015, 2017) and give some examples of
non-deep learning approaches. In Liao et al. (2015a), a funnel
shape convolutional neural network (CNN) was developed to
predict HR frames from LR frames that are aligned by optical
flow in advance. It shows superior performance on recovering
HR video frames captured in still scenes. However, this CN-
N model suffers from high computational cost (as it relies on
time-consuming regularized optical flow methods) as well as
visual artifacts caused by complex motions in the video frames.
In Huang et al. (2015, 2017), a bidirectional recurrent convo-
lutional network (BRCN) was employed to model the temporal
correlation among multiple frames and further boost the perfor-
mance for video SR over previous methods.

However, previous learning-based video SR methods that
learn to predict HR frames directly based on LR frames, suffer
from following limitations. First, these methods concentrate on
exploiting between-frame correlations and does not jointly con-
sider the intra- and inter-frame correlations that are both critical
for the quality of video SR. This unfavorably limits the capaci-
ty of the network for recovering HR frames with complex con-
tents. Second, the successive input LR frames are usually high-
ly correlated with the whole signal of the HR frames, but are
not correlated with the high frequency details of these HR im-
ages. In the case where dominant training frames present slow
motion, the learned priors hardly capture hard cases, such as
large movements and shot changes, where neighboring frames
distinguished-contributed operations are needed. Third, it is de-
sirable for the joint estimation of video SR to impose priors on
missing high frequency signals. However, in previous methods,
the potential constraints are directly enforced on the estimated
HR frames.

To solve the above-mentioned issues, in this work, we pro-
pose a unified deep neural network architecture to jointly model
the intra-frame and the inter-frame correlation in an end-to-end
trainable manner. Compared with previous (deep) video SR
methods Liao et al. (2015a); Huang et al. (2015, 2017), our
proposed deep network model does not require explicit compu-
tation of optical flow or motion compensation. In addition, our
proposed model unifies the convolutional neural networks (C-
NNs) and recurrent neural networks (RNNs) which are known
to be powerful in modeling sequential data. Combining the spa-
tial convolutional and temporal recurrent architectures enables
our model to capture spatial and temporal correlations jointly.
Specially, it models spatial and temporal correlations among
multiple video frames jointly. The temporal residues of HR
frames are predicted based on input LR frames along with their
temporal residues to further regularize estimation of the spatial
residues.

This architectural choice enables the network to handle the
videos containing complex motions in a moving scene, offering

pleasant video SR results with few artifacts in a time-efficient
way.

Fig. 1. The architecture of our proposed spatial-temporal recurrent resid-
ual network (STR-ResNet) for video SR. It takes not only the LR frames
but also the differences of these adjacent LR frames as the input. Some re-
constructed features are constrained to predict the differences of adjacent
HR frames in the penultimate layer.

More concretely, we propose a Spatial Temporal Recurrent
Residual Network (STR-ResNet) for video SR as show in
Fig. 1. As aforementioned, SRT-ResNet models spatial and
temporal correlations among multiple video frames jointly. In
STR-ResNet, one basic component is the spatial residual CNN
(SRes-CNN) for single frame SR, which has a bypass connec-
tion for learning the residue between LR and HR feature maps.
SRes-CNN is able to capture the correlation information among
pixels within a single frame, and tries to recover an HR frame
based on its corresponding LR frame through utilizing such cor-
relations. Then, STR-ResNet stacks multiple SRes-CNNs to-
gether with recurrent connections between them. The global
recurrent architecture captures the temporal contextual correla-
tion and recovers the HR frame using both its corresponding
LR frame and its adjacent frames. To better model inter-frame
motions, STR-ResNet takes not only multiple LR frames but
also the residue of these adjacent LR frames as inputs and tries
to predict the temporal residues of HR frames in the penulti-
mate layer. An HR frame is thus recovered by STR-ResNet
by summing up its corresponding LR frame and the predicted
spatial residue via the SRes-CNN component, under the guid-
ance of the predicted temporal residue from adjacent frames via
recurrent residual learning.

By separating the video frames into LR observations and the
spatial residue within a single frame, the low frequency parts of
HR frames and LR frames are untangled. Thus, the models can
only focus on describing high-frequency details. By consider-
ing the temporal residues, in both their prediction path from LR
temporal residues to HR temporal residues and their connection
to spatial residues, the proposed STR-ResNet models both the
spatial and temporal correlations jointly and achieves outstand-
ing video SR performance with relatively low computational
complexity.

In summary, we make the following contributions in this
work to solving the challenging video SR problem:

• We propose a novel deep convolutional neural network
architecture specifically for video SR. It follows a join-
t spatial-temporal residual learning and aims to predict
the HR temporal residues which further facilitate the pre-
dictions of spatial residues and HR frames. By embed-
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ding the temporal residue prediction, the proposed archi-
tecture is capable of implicitly modeling the motion con-
text among multiple video frames for video SR. It provides
high-quality video SR results on benchmark datasets with
relatively low computational complexity.

• To the best of our knowledge, the proposed STR-ResNet
is the first research attempt to incorporate the bypass con-
nection in a deep network to embed the joint spatial-
temporal residue prediction and model temporal correla-
tions in video frame sequences for video processing. The
incorporated residual architecture implicitly models inter-
frame motion context and is demonstrated to be beneficial
for video SR.

• We are also among the first to investigate and unify the
spatial convolutional, temporal recurrent and residual ar-
chitectures into a single deep neural network to solve video
SR problems. Extensive experiments on video SR bench-
mark datasets clearly demonstrate the contribution of each
component to the overall performance.

The rest of this paper is organized as follows. Related work
is briefly reviewed in Section 2. In Section 3, we introduce
our spatial-temporal residual learning. Then, we construct a
deep network to model it step-by-step and present the details
of the proposed STR-ResNet, which models both spatial and
temporal redundancies jointly in a unified network, as well as
its constituent SRes-CNN in Section 4. Experimental results
are presented in Section 5. More analysis and discussion on
our method are provided in Section 6. Concluding remarks are
given in Section 7.

2. Related Work

Single image super-resolution was first investigated by I-
rani and Peleg (1991). By now, it can be divided in-
to two categories: reconstruction-based and learning-based.
Reconstruction-based methods adopt regularizations, such as
gradient histogram Sun et al. (2011), nonlocal filter Mairal et al.
(2009); Zhang et al. (2013); Huhle et al. (2010) and total vari-
ation Marquina and Osher (2008), to guide the SR. Learning-
based methods learn the mapping function from the training da-
ta to model the spatial correlation of single images. These meth-
ods include neighbor embedding Chang et al. (2004), sparse
representation Yang et al. (2010), anchor regression Timofte
et al. (2013), random forest Salvador and Prez-Pellitero (2015),
tensor regression Yin et al. (2015), ramp transformation Singh
and Ahuja (2015) and deep learning Dong et al. (2014); Cui
et al. (2014); Zeng et al. (2016). Some recent works focus on
super-resolution on a specific kind of images, such as depth
image Joshi and Chaudhuri (2006); Ismaeil et al. (2016), mul-
tispectral image Aguena and Mascarenhas (2006) and multi-
resolution Lu and Li (2014). There are also some recent works
on the SR performance evaluation Ma et al. (2017) or bridging
the image SR to high-level computer vision tasks Timofte et al.
(2016); Nguyen et al. (2013).

Compared with the images where SR mainly relies on uti-
lizing the intrinsic spatial correlation Irani and Peleg (1991);

Freeman et al. (2002); Yuan et al. (2013); Sun et al. (2011), the
videos additionally present the temporal correlation among ad-
jacent frames that is valuable for their SR in particular. Thus the
attempts to effectively exploit such temporal correlation moti-
vate several recent video SR approaches Farsiu et al. (2004);
Protter et al. (2009); Huang et al. (2015, 2017); Baker and
Kanade (1999); Zhao and Sawhney (2002). Although it is con-
ceptually straightforward, exploiting the temporal correlation
immediately proposes several important challenges to modern
video SR techniques: e.g., how to estimate and model motion
across frames properly for video SR and how to establish the
correspondence between pixels from adjacent frames based on
the motion estimation.

Most of the existing video SR methods exploit motion in-
formation in the following two ways: explicitly aligning mul-
tiple frames according to estimated motion and implicitly em-
bedding motion estimation to regularize the process of recov-
ering HR frames. Accordingly these video SR methods can
be divided into two categories: the explicit motion-based meth-
ods that align LR frames according to either optical flow Liu
and Sun (2014); Fransens et al. (2007) or motion compensa-
tion Baker and Kanade (1999) and the implicit motion-based
methods that embed motion as a weighting term He and Kondi
(2006); Kanaev and Miller (2013); Omer and Tanaka (2009);
Farsiu et al. (2004) or a regularization term Rudin et al. (1992);
Yuan et al. (2013); Liu and Sun (2014); Zhang et al. (2015) for
tuning the HR estimation.

Explicit motion-based methods generally suffer from heavy
computational cost for motion compensation, and artifacts
caused by inaccurate registration of local irregular motions. To
overcome these deficiencies and get rid of explicit motion esti-
mation, implicit motion-based methods embed motion context
into the HR estimation. For example, the nonlocal similarity
and kernel regression among multiple frames can be employed
to model the temporal and spatial correlations implicitly Prot-
ter et al. (2009); Takeda et al. (2009a). Benefited from implicit
motion estimation, these methods avoid visual artifacts due to
inaccurate motion estimation and are able to handle local mo-
tions effectively. However, they may fail in dealing with large
motions.

Recently, several deep learning methods Liao et al. (2015a);
Huang et al. (2015) have been proposed to address the video
SR problem in both explicit and implicit ways. Compared with
conventional methods, in these works, CNNs and RNNs are
used to model some parts of the video SR pipeline, i.e. fea-
ture extraction, motion compensation, and multi-frame fusions,
achieving superior video SR performance.

Besides the video SR, many deep learning-based low lev-
el processing applications raised, with promising performance.
These applications include denoising Vincent et al. (2010);
Burger et al. (a,b); Jain and Seung (2009); Agostinelli et al.
(2013), completion Xie et al. (2012), super-resolution 201
(2016); Dong et al. (2014); Osendorfer et al. (2014), deblur-
ring Schuler et al. (2014), deconvolution Xu et al. (2014) and
style transfer Gatys et al. (2016); Yan et al. (2016). They focus
on exploiting a deep network to learn a mapping between the
source / degraded signal and the target / high-quality signal for
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(a) 34-th frame (b) 35-th frame (c) 36-th frame (d) Repetitiveness

Fig. 2. Top panel: (a)-(c) local regions in the Tractor sequence and (d) the
patch repetitiveness of the 35-th frame. Bottom panel: (a)-(c) local regions
in the temporal residues of the Tractor sequence and (d) the patch repeti-
tiveness of the spatial residue in the 35-th frame. Red signifies high values,
Blue signifies low values. It is clearly demonstrated that the spatial residue
domain across frames provides more patch repetitiveness than the original
image space.

a single image, by capturing the spatial correlation.

3. Spatial-Temporal Residual Learning

In this section, we illustrate our spatial-temporal residual
learning. Let X and Y be HR and up-sampled LR sequences
which have the same size to the HR sequences, respectively.
Then, the inverse mapping function for video SR can be repre-
sented by

X = f n(Y), (2)

where f n(·) is the process to predict the HR image X directly
based on the LR image Y.

An end-to-end learning following Eq. (2) will be trapped into
the difficulties mentioned in Section 1: (i) separation of intra-
and inter-correlations modeling, (ii) contamination from frames
due to treating neighboring frames equally and lack of con-
straints for adjacent predicted frames.

To address the issues (i) and (ii), we change to solve video
SR by learning to predict the spatial residue rt = xt − yt instead
of the whole xt as

X = f s(Y) + Y, (3)

where f s(·) is the process to predict the difference between the
HR image X and the LR image Y based on Y.

This change makes a learning-based method capable to fit the
high-frequency mapping between LR frames {yt} and the spatial
residue {rt} instead of the mapping between LR frames {yt} and
HR frames {xt}, where the low frequency mapping plays a dom-
inant role. In the degradation, the down-sampling operation
usually brings in aliasing effect that the local high-frequency
patterns change after the down-sampling operation. Following
the simplification in Liu and Sun (2014), we regard the aliasing
signal as structural noise. Thus, we do not model it explicitly
and expect the recovery process, i.e. f s(·), can automatically
model its removal.

Besides, from the perspective of patch statistic, Eq. (3) pro-
vides more structural correspondences than Eq. (2) as shown
in Fig. 2. We calculate “patch repetitiveness” across frames to

observe the structural correspondences via the average MSE be-
tween a local 5 × 5 patch and it most similar patches. We first
search the top-10 similar patches for each patch among three
successive frames and calculate the MSE between the patch and
its similar patches. Then, the average MSE of each patch is con-
verted into a probability based on Gaussian function. We cal-
culate this statistic in two domains – the original signal domain
and spatial residual domain, and visualize the results. The sub-
figure (d) in Fig. 2 is the heat map for the patch repetitiveness of
(b) across frames in the top panel – an normal 2D sub-image in
Eq. (2), that for the patch repetitiveness of (b) across frames in
the bottom panel – the difference image – in the spatial residue
space in Eq. (3), respectively. In these heat maps, red signifies
high values and blue signifies low values. From the result, the
third issue (iii) is clearly demonstrated that the spatial residue
domain across frames provides more patch repetitiveness than
the original image space across frames. This property is sig-
nificant for us to design a learning-based image SR approach,
especially when many previous works Wu and Zheng (2013);
Dong et al. (2013) have proved that the structural correspon-
dence in the target domain provides useful information to infer
and locate the manifold where the HR signal locate.

Then, to address the issue (iii) and impose effective con-
straints on the predicted HR frames, we build the connection
between spatial and temporal residues. We define HR frames t
and t + 1 as xt = rt + yt, (4)

xt+1 = rt+1 + yt+1, (5)

Let Eq. (5) subtract Eq. (4), we have
xt+1 − xt = (rt+1 − rt) + yt+1 − yt. (6)

Define the temporal residue for xt and yt. δx
t = xt+1 − xt and

δ
y
t = yt+1 − yt, then

δx
t − δ

y
t = rt+1 − rt. (7)

Although the derivation of Eq. (7) is straightforward, it
bridges the predictions of the spatial and temporal residues.
This connection is beneficial to video SR from two aspects.
First, it provides a more effective learning strategy – the pre-
diction for temporal residues δx

t is first learned and then pre-
cise predictions for δx

t will naturally lead to more precise spa-
tial residue estimations and finally more precise x̂t. Second,
with Eq. (7), the predictions for spatial residues rt+1 and rt are
regularized explicitly by that their differences are equal to the
differences of the temporal residue δx

t − δ
y
t . This provides ef-

fective side information to regularize a learning-based model,
leading to both fast convergence rate and higher accuracy.

4. Spatial-Temporal Recurrent Residual Networks for
Multi-Frame SR

In this section, a basic network structure – SRes-CNN for
spatial residual learning for single image SR is presented in
formulation. Then, motivated by our spatial-temporal residual
learning, we construct our proposed STR-ResNet step by step.
Finally, a new proposed STR-ResNet by stacking and connect-
ing the basic component – SRes-CNN for joint temporal learn-
ing is elaborated.
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Fig. 3. The bypass structure and spatial residual learning in the proposed
SRes-CNN. The feature bypass connection forwards the feature maps out-
put from a previous layer (1st / 4th) to a later one (4th / 7th). The LR
bypass from the LR frame to the last layer (9th) makes the network focus
on predicting the residue, the high frequency component of a frame.

4.1. Architecture of SRes-CNN

Single frame SR aims to reconstruct an HR frame from a
single LR frame. Some recent deep learning based SR meth-
ods Dong et al. (2014); Wang et al. (2015a); Yang et al. (2016)
propose to use a CNN model to extract features from LR frames
and then map them to HR ones. A typical CNN architecture
for single frame SR consists of three convolutional layers as
proposed in Dong et al. (2014) which jointly performs sparse
coding and reconstruction over the LR frames as shown in
Fig. 4 (a). However, striving for directly recovering the com-
plete HR frames may cause the CNN models to miss some im-
portant high frequency details. In contrast, separately modeling
LR signals and their residues with high-frequency details, as
shown in Fig. 4 (b)-(e), could recover high frequency details
better. Besides, we hope to construct an easy training network
and expect its training to converge fast and to a good state even
without advanced training skills.

Keeping such an idea in mind, we propose a new CNN ar-
chitecture – Spatial Residual CNN (SRes-CNN) – to learn spa-
tial residue between HR and LR frames as shown in Fig. 4 (c).
Specifically, SRes-CNN contains nice layers, including six con-
volutional layers, three bypass connections and three element-
wise summations, as shown in Fig. 3. The bypass connections
forward the feature maps output from the i-th layer (i = 1, 4 for
the SRes-CNN we use in the experiments) to the (i + 2)-th layer
directly. Then, the feature maps output from the (i + 2)-th and
i-th layers are fused as input to the next (i + 3)-th convolution
layer. To focus on predicting the high-frequency components,
SRes-CNN also establishes a bypass connection from the input
LR frame to the penultimate layer. Note that, these two kinds
of bypass connections play different roles in STR-ResNet. The
first “long-range”one directly forwards an input LR frame to its
penultimate layer (the 7th one). The other bypass connection-
s provide a coarse-to-fine refinement. For example, the feature
maps of the 1st layer correspond to the low-level features direct-
ly extracted from the LR image, and then the feature maps of
the 3rd and 5th layers therefore concentrate on capturing the en-
hanced details of HR features. Besides, the bypass connections
also make constructing a deeper network possible and speed up
the training process Dong et al. (2014).

We here provide more formal description corresponding to
Fig. 3 on the operations of each layer in SRes-CNN. The output

Fig. 4. Network architectures from vanilla SRCNN to our proposed spatial-
temporal residual network. (a) SRCNN. (b) SRCNN with LR bypass con-
nections. (c) SRes-CNN has both LR and feature bypass connections. (d)
Multiple SRes-CNNs connected by context and recurrent convolutions to
model inter-frame motion context. (e) In STR-ResNet, the differences of
LR images δy

t are inputed into the network and parts of features in the
penultimate layer aim to predict the differences of HR images δx

t , which
further regularize and benefit the joint estimation of

{̂
xt

}
. (Best viewed in

color.)

of each layer, denoted as Ci for i = 1, . . . , 9, is calculated as

C1 = max (0,W1 ∗ Yt + B1) ,
C2 = max (0,W2 ∗ C1 + B2) ,
C3 = W3 ∗ C2 + B3

C4 = max (0,C3 + C1) ,
C5 = max (0,W5 ∗ C4 + B5) ,
C6 = W6 ∗ C5 + B6,

C7 = max (0,C6 + C4) ,
C8 = Wh ∗ C7 + Bh,

C9 = yt + x̂h,t,

x̂h,t = C8,

x̂t = C9,

(8)

where Wi and Bi are the filters and biases associated with the
i-th layer respectively. Here we use the subscript h to indicate
the parameters and outputs that are related to high frequency
predictions. Regarding the network size, Wi consists of ni fil-
ters with a size of n(i−1) × fi × fi, and ni−1 is the number of input
feature maps of the i-th layer which also counts the output fea-
ture maps of the (i − 1)-st layer. We use fi to denote the kernel
size of convolution filters of the i-th layer. The bias Bi is an ni

dimensional vector. The outputs of each convolution layer (be-
sides the last convolution layer C8) also go through a Rectified
Linear Unit (ReLU). Particularly, n0 is the channel number of
an input frame, where n0 = 1 for the gray frame and n0 = 3 for
the color frame, respectively. The last convolutional layer is not
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connected with a ReLU unit. It is noted that, C4, C7 and x̂t have
bypass connections from C1, C4 and yt respectively. Taking the
single LR and HR frames as the input and output of the network
respectively, SRes-CNN is capable of predicting the HR frame
according to a single LR frame by utilizing the spatial corre-
lation. However, it does not capture the temporal correlation
among adjacent frames in videos.

4.2. Modeling Spatial-Temporal Residues: Step by step

We now proceed to illustrate how to construct SRes-CNN
and STR-ResNet step by step in details. The vanilla SRCN-
N Dong et al. (2014) models the learning paradigm of Eq. (2)
shown in Fig. 4 (a). The network learns to predict xt based on
yt directly. To model the learning paradigm of Eq. (3), a bypass
connection that forwards yt to the final prediction x̂t is added
as shown in Fig. 4 (b). Training this network needs addition-
al training constraints and a deliberate crafted hyper-parameter
tuning, i.e. adjustable gradient clipping Kim et al. (2016b),
thus, an improved version – the recurrent residue learning Yang
et al. (2016) with not only the LR forward path but also the
feature forward path is proposed as shown in Fig. 4 (c). With
bypass connections, the network converges faster and to a better
solution.

To utilize the temporal redundancy among different frames,
the relationship between different frames is modeled. We fol-
low a similar method as Huang et al. (2015) by adding recurrent
and context convolutions in each recurrence of the recurren-
t residual learning, as shown in Fig. 4 (d). To utilize temporal
residues to facilitate the SR network training and HR image
predictions, motivated by Eq. (7), we further propose a network
structure as shown in Fig. 4 (e), where the differences of LR im-
ages δy

t are inputed into the network and parts of features in the
penultimate layer aim to predict the differences of HR images
δx

t , which further regularize and benefit the joint estimation of{̂
xt
}
. We then focus on illustrating Fig. 4 (c) and (e) in formula-

tion.

4.3. Architecture of STR-ResNet

We now elaborate how the STR-ResNet exploits inter-frame
correlation by connecting multiple SRes-CNNs with convolu-
tions and how it incorporates temporal residual information for
multi-frame SR. The intuition of choosing the architecture is
to propagate information across multiple frames recurrently in
order to capture the temporal context. STR-ResNet uses recur-
rent units to connect several SRes-CNNs to embed the temporal
correlation. The STR-ResNet takes not only the LR frames but
also the differences of adjacent LR frames as inputs. It recon-
structs an HR frame through fusing its corresponding LR frame
and the predicted spatial residue, under the guidance of the pre-
dicted temporal residues among adjacent frames. As shown in
Fig. 5, STR-ResNet performs following six types of operations:

1. Forward convolution. The convolution operations in
each SRes-CNN component for single frame SR.

2. Recurrent convolution. To propagate information across
adjacent frames and restore lost information from the ad-
jacent frames, STR-ResNet performs recurrent convolu-
tions (the gray arrows between frames as shown in Fig. 5)

to propagate the features of the i-th layer of the adjacen-
t (t − 1)-st and (t + 1)-st frames (defined as Ca

(t−1,i) and
Ca

(t+1,i)) to the i-th layer of the t-th frame (defined as Cr,p
(t,i)

and Cr,n
(t,i).)

3. Context convolution. With the similar intuition of
transmitting complementary information among frames,
the context convolution (the light-green arrows between
frames as shown in Fig. 5) propagates the features of the
(i−1)-th layer of the adjacent (t−1)-st and (t+1)-st frames
(defined as Ca

(t−1,i−1) and Ca
(t+1,i−1)) to the i-th layer of the

t-th frame (defined as Cc,p
(t,i) and Cc,n

(t,i).)
4. Temporal residue embedding. In the 8th layer, we first

predict the temporal residues (the green rectangles be-
tween the 7-th and 8-th layers as shown in Fig. 5). In the
training, these outputs are constrained by the loss function
to regress the ground-truth temporal residues, which will
be presented more clearly in the next subsection. Then, we
concatenate the predicted temporal residues with the out-
put feature maps from the 7th layer to generate the output
feature maps of the 8th layer.

5. Feature bypass. The operation to transmit the features
output from the 1st/4th layers and combine them with the
output of the 3rd/6th layers respectively.

6. LR bypass. It bypasses the LR frames to the output of
the 8th layer, which generates the estimated HR details of
frame t.

7. Feed forward. The operation to propagate the feature
maps to the subsequent unit.

Among these operations, the recurrent and context convolutions
are only deployed in the 2nd, 3rd, 5th and 6th layers of SRes-
CNNs as shown in Fig. 5 (b). All the recurrent connections
transmit outputs of layers (2nd, 3rd, 5th and 6th) on the t-th
frame to their corresponding layers (2nd, 3rd, 5th and 6th) of
the adjacent (t−1)-th and (t +1)-th frames. All the context con-
nections transmit from a previous layer (1st, 2nd, 4th and 5th)
of the t-th frame to their corresponding next layer (2nd, 3rd, 5th
and 6th) of the adjacent (t − 1)-th and (t + 1)-th frames. After
all these convolutions, an element-wise summation operation is
employed to fuse these convolution outputs and produce a new
feature map. The outputs of the five convolutional operations
and the fusion operation are formulated as follows,

C f
(t,i) = W f

i ∗ Ca
(t,i−1) + B f

i ,

Cc,p
(t,i) = Wc,p

i ∗ Ca
(t−1,i−1) + Bc,p

i ,

Cc,n
(t,i) = Wc,n

i ∗ Ca
(t+1,i−1) + Bc,n

i ,

Cr,p
(t,i) = Wr,p

i ∗ Ca
(t−1,i) + Br,p

i , (9)

Cr,n
(t,i) = Wr,n

i ∗ Ca
(t+1,i) + Br,n

i ,

Ca
(t,i) = max

(
0,C f

(t,i) + Cc,p
(t,i) + Cc,n

(t,i) + Cr,p
(t,i) + Cr,n

(t,i)

)
,

where i = 2, 3, ..., 6, and W and B are filters and biases, re-
spectively. The superscripts f , c, r and a denote the unit type
– forward convolution, context convolution, recurrent convo-
lution and element-wise summation aggregation. The super-
scripts p, n denote the direction of the convolution, from the
previous frame or the next frame. The subscript (t, i) denotes
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Fig. 5. The architecture of the STR-ResNet. It has a two-layer structure, which includes spatial and temporal residuals jointly in a unified deep framework.
To model the inter-frame correlation, we construct a temporal residual RNN by piling up and connecting spatial residual CNNs. It takes not only the LR
frames but also the differences of these adjacent LR frames as the input. Some reconstructed features are constrained to reconstruct the differences of
adjacent HR frames in the penultimate layer. (Best viewed in color.)

that the operation is performed on the i-th layer of the t-th
frame. Consequently, C f

(t,i), Cc,p
(t,i), Cc,n

(t,i), Cr,p
(t,i) and Cr,n

(t,i) are the
outputs of the forward convolution, context convolution from
the previous frame, context convolution from the next frame,
recurrent convolution from the previous frame and recurren-
t convolution from the next frame in the i-th layer of the t-th
frame respectively. Ca

(t,i) performs an element-wise summation
overall all the five outputs, for combining the predictions from
the current frame and adjacent frames. A ReLU unit is then
connected subsequently. The responses of previous layers are
as follows,

Ca
(t,i) = C f

(t,i), for i = 1, 4, 7, 9. (10)

For the 8st layer, we try to predict the temporal residues of HR
frames and utilize them as parts of the features to estimate the
spatial residues,

δx
t = Wδ ∗ Ca

(t,7) + bδ,Ca
(t,8) =

[
Ca

(t,7), δ
x
t

]
. (11)

With the help of context and recurrent convolutions as well as
the temporal residue constraints, the STR-ResNet captures the
inter-frame motion context propagated from adjacent frames for
video SR.

4.4. Training STR-ResNet
To learn meaningful features and capture some consis-

tent motion contexts between frames, STR-ResNet shares
its parameters among different frames. That is, for al-
l C f

(t,i),C
c,p
(t,i),C

c,n
(t,i),C

r,p
(t,i), and Cr,n

(t,i), their parameters
{
W f

i ,B
f
i

}
,{

Wc,p
i ,Bc,p

i

}
,
{
Wc,n

i ,Bc,n
i

}
,
{
Wr,p

i ,Br,p
i

}
and

{
Wr,n

i ,Br,n
i

}
, are de-

cided by the unit type, denoted by superscript, and layer depth,
and have nothing to do with the frame number.

For training STR-ResNet, provided with LR video frames{
yg

t

}
and HR frames

{
xg

t

}
, we minimize the Mean Square Error

(MSE) between the predicted frames and the ground truth HR
frames:

min
Θ

9∑
t=1

λt ‖̂xt

(
yg

t ,Θ
)

+ yg
t − xg

t ‖
2
F + c

9∑
t=1

‖̂δx
t

(
yg

t ,Θ
)

+ xg
t − xg

t−1‖
2
F ,

(12)

where

Θ =
(
W f ,B f ,Wc,p,Bc,p,Wc,n,Bc,n,Wr,p,Br,p,Wr,n,Br,n

)
,

(13)

xg
0 = xg

1 and {λi, i = 1, 2, ..., 8, 9} are the weighting parameters
that control the relative importance of these terms. c is set to
0.1 to play a role but not the dominant one. We set nT = 9 as
the step/recurrence number because it is the maximum value of
temporal recurrences that can be affordable for the GPU memo-
ry when using a mini-batch of 6 samples for training. Besides, it
is also the default setting in the previous RNN-based video SR
method Huang et al. (2015). For the setting of λt, we propose to
use a coarse-to-fine strategy: 1) “scattered” pre-training, i.e.,
setting λt = 1 for all t forces the network to capture gener-
al motion trends and to learn the features that are good at re-
constructing a whole video clip instead of a single frame; 2)
“focused” fine-tune, namely associating the values of λt with
an exponential decayed weight from the center frame to other
frames to focus on the prediction of the center frame. The value
configuration of λt is illustrated as Table 1.

Table 1. The adopted values of λt in “focused” fine-tune.
#Frame 1 2 3 4 5 6 7 8 9

3 — — — 0.7 1 0.7 — — —
5 — — 0.5 0.7 1 0.7 0.5 — —
7 — 0.35 0.5 0.7 1 0.7 0.5 0.35 —
9 0.25 0.35 0.5 0.7 1 0.7 0.5 0.35 0.25

4.5. Image Degradation and Aliasing

In our work, we follow previous works Liao et al. (2015b);
Huang et al. (2015) and only evaluate on 4× enlargement, be-
cause it is considered as the most difficult case among the com-
monly used experimental settings usually with 2, 3 and 4 as
scaling factors. For the blur kernel, a comprehensive study has
been conducted in Bayesian video SR Liu and Sun (2014). We
follow its conclusion that, a point spread function kernel for
upscaling factor of 4 can be approximated by a Gaussian with
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standard deviation from 1.2 to 2.4, and use a Gaussian kernel
with standard deviation 1.6 in our degradation setting.

Besides, as discussed in Liu and Sun (2014), this blurring
operation brings in the aliasing effect. High frequency compo-
nents in the original signal present different local patterns after
down-sampling. This effect may lead to inaccurate motion es-
timations and raise the problem of inter-frame inconsistency.
However, in our STR-ResNet, we do not explicitly model it
because of two reasons: 1) STR-ResNet does not rely on an ex-
plicit motion estimation; 2) in such a degradation, the aliasing
can be modeled as random noise Liu and Sun (2014), because
the magnitude of the aliasing signal is relatively small com-
pared to the whole signal. Thus, the video SR with aliasing
can be regarded as a problem of joint denoising and SR, and is
expected to be addressed through an end-to-end learning.

5. Experiments

In this section, we evaluate the performance of the proposed
SR method and compare it with state-of-the-art single image
SR and video SR methods.

5.1. Comparison Methods

The compared single image SR baselines include Bicubic in-
terpolation, A+ Timofte et al. (2014) and super-resolution con-
volution neural network (SRCNN) Dong et al. (2014). The
compared video SR baselines include a commercial software
video enhancer (VE)1, 3DSKR Takeda et al. (2009b), Draft S-
R Liao et al. (2015a) and BRCN Huang et al. (2015). We im-
plement BRCN using Caffe Jia et al. (2014). Other baseline
methods are tested by the released executable or source codes
provided by the authors. For learning based methods, including
Timofte et al. (2014) and Dong et al. (2014), we retrain or fine-
tune the models on the training set in the given experimental
setting. For the pixel shifting case, such as VE, we first adjust
the input LR image by Bicubic interpolation before SR.

5.2. Parameter Setting

To evaluate the effectiveness of our method, we simulate the
degradation process and enlarge the generated LR images to
their original scales. Peak Signal to Noise Ratio (PSNR) is cho-
sen as the metric. The testing scaling factor is chosen as 4. In
the simulation of degradation, the LR frames are generated by
blurring HR frames with a 9× 9 Gaussian filters with blur level
1.6.

5.3. Datasets

For training our STR-ResNet, we use 300 collected video se-
quences, sampled uniformly from 30 high-quality 1080p HD
video clips as our training set23. We use 6 HDTV sequences

1http://www.infognition.com/videoenhancer/
2https://media.xiph.org/video/derf/. (Xiph.org Video Test Media [derf’s

collection])
3http://www.harmonicinc.com/resources/videos/4k-video-clip-center.

(Dataset from Harmonic Inc.)

downloaded from the Xiph.org Video Test Media2 as the test-
ing set, which are commonly used high quality video sequences
for video coding testing. The name and content of the six se-
quences are shown in Fig. 6. To reduce the memory storage
needed in the training phrase, we crop these frame groups into
75,000 overlapped patch groups as the input of training. Each
patch group contains 9 adjacent patches in the temporal domain
with the same location in the spatial domain. Similar to Dong
et al. (2014), the size of the spatial window of each patch group
is set to 33 × 33 and the spatial stride is set to 11.

5.4. Network Training

The proposed STR-ResNet uses the following parameters:
all convolutions have a kernel size of 3 × 3 and a padding size
1; the layer type and number are set as mentioned above; the
channel size of the intermediate layers is set to 64. We employ
stochastic gradient descent4 to train the whole network. The
training strategy is standard: learning rates of weights and bi-
ases of these filters are set to 0.0001 initially and decrease to
0.00001 after 2.5 × 105 iterations (about 37 epochs). We stop
the training in 3 × 105 iterations (about 44 epochs). In the first
step, we set λt = 1 and in the second step, we set λt as men-
tioned in Table 1. The batch size is set to 6.

5.5. Objective Evaluation

We evaluate these methods with PSNR. Tables 2 and 3 show
PSNR results of compared video super-resolution methods on
the testing image set. The proposed method and the BRCN
method are evaluated with 9 adjacent frames as inputs. For
Draft Learn, we report its results in two cases: 1) taking 31 ad-
jacent LR frames (Draft31) as its input; 2) taking 5 adjacent LR
frames (Draft5) as its input. For 3DSKR, the HR estimation is
generated based on adjacent 5 LR frames. From the result, one
can observe that even compared with the recent Draft Learning
and BRCN, our proposed STR-ResNet achieves a significan-
t performance gain over them. In particular, the average gain
over the second best BRCN is as high as 0.56dB. VE and 3D-
KR achieve better reconstructed results than Bicubic. However,
their PSNR results are lower than very recent single image S-
R methods, such as SRCNN and A+, which only make use of
the intra-frame spatial correlation. Due to exploiting the spa-
tial and temporal correlations jointly, the proposed STR-ResNet
achieves the best objective result. Draft learning shows inferior
performance to many methods in the objective evaluation be-
cause it suffers from the artifacts caused by inaccurate optical
flow estimation. However, it is worth noting that the subjective
evaluation hereafter will demonstrate its superiority on visual
quality for reconstructing salient features of images, where op-
tical flow estimation is reliable.

5.6. Subjective Evaluation

Figs. 7, 8 and 9 visualize the SR results of different method-
s. Bicubic generates blurred results. A+ and SRCNN generate

4http://caffe.berkeleyvision.org/tutorial/solver.html
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(a) Tractor (b) Sunflower

(c) Blue Sky (d) Station

(e) Pedestrian (f) Rush Hour

Fig. 6. The test HDTV sequences with their names as the captions.

Table 2. PSNR results among different methods for Video SR (scaling factor: 4). The bold numbers denote the best performance.
Video Bicubic NE+LLE A+ SRCNN VE

Tractor 31.10 32.04 32.07 32.13 31.27
Sunflower 37.85 38.75 38.87 38.69 37.55
Blue Sky 28.77 30.02 30.02 30.16 29.19
Station 33.35 34.20 34.26 34.38 33.36

Pedestrian 33.51 34.28 34.43 34.55 33.60
Rush Hour 38.17 39.17 39.15 38.90 37.96

Average 33.79 34.74 34.80 34.80 33.82
Video 3DSKR Draft5 Draft31 BRCN STR-ResNet

Tractor 32.27 31.73 30.34 33.23 33.85
Sunflower 37.57 35.62 36.43 39.28 40.02
Blue Sky 29.74 30.34 30.92 31.40 32.23
Station 34.80 32.99 33.22 35.20 35.63

Pedestrian 33.91 33.40 31.78 34.95 35.22
Rush Hour 37.49 36.93 36.22 39.86 40.30

Average 34.30 33.50 33.15 35.65 36.21
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(a) Part of Pedestrian (b) SRCNN (c) A+ (d) Draft5

(e) Details of HR (f) Details of SRCNN (g) Details of A+ (h) Details of Draft5

(i) VE (j) 3DSKR (k) BRCN (l) STR-ResNet

(m) Details of VE (n) Details of 3DSKR (o) Details of BRCN (p) Details of STR-
ResNet

Fig. 7. The reconstruction results of Pedestrian with different methods (enlarge factor: 4×).
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(a) Part of Tractor (b) SRCNN (c) A+ (d) Draft31

(e) Details of HR (f) Details of SRCNN (g) Details of A+ (h) Details of Draft31

(i) VE (j) 3DSKR (k) BRCN (l) STR-ResNet

(m) Details of VE (n) Details of 3DSKR (o) Details of BRCN (p) Details of STR-
ResNet

Fig. 8. The reconstruction results of Tractor with different methods (enlarge factor: 4×).
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(a) Part of Sunflower (b) SRCNN (c) A+ (d) Draft31

(e) Details of HR (f) Details of SRCNN (g) Details of A+ (h) Details of Draft31

(i) VE (j) 3DSKR (k) BRCN (l) STR-ResNet

(m) Details of VE (n) Details of 3DSKR (o) Details of BRCN (p) Details of STR-
ResNet

Fig. 9. The reconstruction results of Sunflower with different methods (enlarge factor: 4×).
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Table 3. SSIM results among different methods for Video SR (scaling factor: 4). The bold numbers denote the best performance.
Video Bicubic NE+LLE A+ SRCNN VE

Tractor 0.8315 0.8465 0.8496 0.8514 0.8307
Sunflower 0.9626 0.9650 0.9662 0.9658 0.9600
Blue Sky 0.8957 0.9092 0.9128 0.9150 0.9019
Station 0.8738 0.8716 0.8756 0.8781 0.8636

Pedestrian 0.8836 0.8918 0.8955 0.8980 0.8810
Rush Hour 0.9471 0.9499 0.9505 0.9496 0.9428

Average 0.8990 0.9057 0.9083 0.9097 0.8967
Video 3DSKR Draft5 Draft31 BRCN STR-ResNet

Tractor 0.8742 0.8221 0.8074 0.8745 0.8867
Sunflower 0.9653 0.9432 0.9566 0.9631 0.9673
Blue Sky 0.9197 0.9229 0.9332 0.9277 0.9349
Station 0.8953 0.8911 0.9045 0.8877 0.8952

Pedestrian 0.8971 0.8572 0.8309 0.8990 0.9024
Rush Hour 0.9471 0.9318 0.9266 0.9487 0.9521

Average 0.9165 0.8947 0.8932 0.9168 0.9231

sharper results. However, without exploiting the temporal cor-
relation, some visually important features are blurred, such as
the brand text in Fig. 7 and the long edge of the tractor sur-
face in Fig. 8. In contrast, video SR methods, such as 3D-
SKR and Draft Learning, generate results with richer details.
But 3DSKR may suffer from inaccurate motion estimation and
generate block artifacts, and Draft Learning produces granular
artifacts in smooth regions, where optical flow estimation is un-
reliable. Due to RNN’s strong capacity of modeling complex
motions, BRCN and our method present rather sharp results.
Especially, the proposed STR-ResNet recovers details with a
very natural look, such as the long edge of the tractor in Fig. 8
and the wings of the bee in Fig. 9.

We also visualize the SR results on a group of adjacen-
t frames from four real-time SR methods (A+, VE, BRCN and
STR-ResNet) in Fig. 10. A+ and VE generate over-smooth re-
constructed results, e.g., a wider railtrack. The result of BRCN
contains obvious ring artifacts. The proposed STR-ResNet pro-
duces a clean estimation, with a long direct railtrack and the
sharpest Letter B.

5.7. Time Cost

We report the time cost of our STR-ResNet and compare its
efficiency with other state-of-the-art methods. Table 4 presents
their running time (in secs.) in 4× enlargement on input images
with two resolution input settings (50× 50 and 495× 270, Sun-
flower). The BRCN is implemented by ourselves. Other com-
pared methods are tested based on the public available codes
from the authors. We implement BRCN and our STR-ResNet
using Caffe with its Matlab wrapper. We evaluate the running
time of all the algorithms with the following machine config-
uration: Intel X5675 3.07GHz and 24 GB memory. For A+,
NE+LLE, NE+NNLS, 3DKR, and Draft, their publicly avail-
able CPU versions are tested. For BRCN and STR-ResNet,
their GPU versions are tested. For SRCNN, both versions are
evaluated.

We present the running time in Table 4 and for better visu-
alizing the trade-off between the effectiveness and efficiency of
these methods, we also present Fig. 10. As shown in Table 4,
two single image SR methods, A+ and NE+LLE, are the most
time-efficient. Our method, with GPU support, costs 2.797 and

124.945 seconds for performing SR on an input image with in-
put sizes of 50×50 and 480×270 and the corresponding output
sizes of 200 × 200 and 1920 × 1080. BRCN is faster than SR-
ResNet because it owns a lighter framework. SR-ResNet and
BRCN keep the same in orders as the CPU version of SRCNN,
NE+NNLS in running time. Comparatively, two effective video
SR methods, 3DKR and DraftLearn, suffer from high compu-
tational complexity, with more than 3 hours to reconstruct one
HR frame. That is because they suffer from the computational
burden of steering kernel computation and regularized optical
flow estimation, respectively.

Table 4. The time complexity of STR-ResNet compared with state-of-the-
art methods.

Input Resolution SRCNN (C) SRCNN (G) A+ (C) NE+LLE (C)
50×50 2.465 0.005 0.141 0.662

480×270 137.950 0.816 11.760 40.696
Input Resolution 3DKR (C) Draft (C) BRCN (G) STR-ResNet (G)

50×50 134.169 625.222 1.206 2.797
480×270 10693.080 31431.126 48.497 124.945

Fig. 10. The performance of our STR-ResNet compared with state-of-the-
art methods, including the effectiveness and time complexity, in 4× enlarge-
ment on sunflower (the input spatial resolution: 480 × 270). (C) and (G)
denote the speeds of the CPU and GPU version, respectively.
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6. More Discussions

STR-ResNet addresses the problems of video super-
resolution implicitly. Now, we explain the configuration about
them and how the network handles the related factors.

6.1. Degradation Factors

The capacity of STR-ResNet to handle the restoration is de-
cided by the paired training data synthesized from a certain kind
of degradation conditions. It is also flexible for STR-ResNet
to extend to deal with different degradation conditions in com-
monly used ways: 1) one model for one degradation condition
as shown in Fig. 11 (a), such as SRCNN 201 (2016), A+ Tim-
ofte et al. (2014) and BRCN Huang et al. (2015); 2) one model
for all cases as shown in Fig. 11 (b), such as VDSR Kim et al.
(2016b) and DRCN Kim et al. (2016a); 3) a cascaded or re-
current model to handle different cases at different stages as
shown in Fig. 11 (c), such as CSCNWang et al. (2015b) and
deep Laplacian pyramid network Lai et al. (2017).

Fig. 11. Different ways to deal with various super-resolution factors. (a)
One model for one degradation condition. (b) One model for all cases. (c)
A cascaded or recurrent model to handle different cases at different stages.

Fig. 12. The convolutional paths that propagate the information of the (t −
2)-th frame to the t-th one, denoted in orange color.

6.2. Modeling Motion Context

We use RNNs to model the temporal dependency between
adjacent frames. The information is propagated by inter-frame
connections, i.e. context convolution and recurrent convolu-
tion, through every direct adjacent frame pairs gradually. For
example, as shown in Fig. 12, to predict the t-th HR frame,
the information of the (t − 2)-th frame is first propagated to the
(t − 1)-th sub-network which aims to estimate the (t − 1)-th HR
frame. Then, the information in the (t−1)-th sub-network pass-
es to the t-th sub-network. In this process, the feature transfor-
mation, alignment and fusion between the adjacent frames are
modeled end-to-end.

Some works Kim et al. (2016b,a) on related fields have
proved that, a convolutional network has the capacity to auto-
matically estimate motions. For a single convolutional layer, it
can both model the geometric transformation and carry on filter
processing. Using the kernels in Figs. 13 (a) and (b), the convo-
lutions could shift pixels in the left-top direction and carry on
Gaussian filter, respectively.

By cascading several inter-frame convolutional connections
among adjacent frames, STR-ResNet embeds motions implicit-
ly and equally carries on filters on the motion trajectories. Be-
sides, to better model inter-frame motions, STR-ResNet further
takes not only multiple LR frames but also the residues of these
adjacent LR frames as inputs and tries to predict the temporal
residues of HR frames in the penultimate layer. It is clearly
shown that, in the ablation analysis of the supplementary ma-
terial, adding temporal residue prediction boosts the SR perfor-
mance.

Fig. 13. The convolutional layers for (a) shifting the pixel locations and (b)
carrying on Gaussian filter, respectively.

6.3. Occlusions and Large Displacements

Because the t-th sub-network is constrained to estimate the
t-th HR frame, only useful information from adjacent frames
for that purpose is aggregated to the t-th sub-network. The in-
formation flow between the adjacent frames where occlusions
and large displacements happen will be cut off. For example,
as shown in Fig. 14, if the (t − 2)-th frame has a large displace-
ment to the (t − 1)-th one, the (t − 1)-th sub-network may fuse
less information from the (t − 2)-th sub-network. Therefore,
when estimating the t-th HR frame, the information propagated
from the (t − 1)-th sub-network contains less information from
the (t − 2)-th sub-network. Then, the t-th frame prediction is
influenced little by the large displacement.

We provide a video supplementary material5 to show the ro-
bustness of STR-ResNet when occlusions and large displace-
ments exist. In the supplementary material, the SR results of
Pedestrian and Tractor sequences clearly demonstrate that our
method presents naturally looking results.

6.4. Motion Compensations

We compare the versions with/without motion compensa-
tions. The results are shown in Table 5. The limits and ad-
vantages of STR-ResNet in an implicit way to model motions
are observed. The STR-ResNet without motion compensation-
s is capable to handle complex motions robustly and achieves

5http://www.icst.pku.edu.cn/struct/att/STR-Video-SR.mp4
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Fig. 14. The large displacement makes it hard for the information of the
(t − 2)-th frame to be transported to the (t − 1)-th sub-network.

superior performance in Sequences Sunflower, Blue Sky and
Rush Hour. Comparatively, when the motions in the sequences
are consistent and there are available salient geometric features,
motion compensation significantly boosts the SR performance.

Table 5. The PSNR results of STR-ResNet with and without motion com-
pensations.

Video No-compensation Compensation
Tractor 33.85 33.92

Sunflower 40.02 39.99
Blue Sky 32.23 32.12
Station 35.63 36.01

Pedestrian 35.22 35.31
Rush Hour 40.30 40.11

Average 36.21 36.24

6.5. Temporal Consistency
Most learning-based SR approaches, including STR-ResNet,

by nature are good at keeping temporal consistency. These
methods, trained solely with MSE loss, they usually “regression
to mean” Timofte et al. (2016). Namely, the network tends to
predict the mean of several HR signals. Thus, based on the sim-
ilar LR inputs, the network will reconstruct similar HR results.
Our video supplementary material demonstrates that, compared
with Video Enhancer, the implicit methods BRCN and STR-
ResNet provide more temporally consistent SR results.

7. Conclusion and Future Work

In this paper, we proposed a novel Spatial-Temporal Re-
current Residual Network (STR-ResNet) for video super-
resolution. This network simultaneously models high frequen-
cy details of single frames, the differences between high res-
olution (HR) and low resolution (LR) frames, as well as the
changes of these adjacent detail frames. To model intra-frame
correlation, a CNN structure with bypass connections is con-
structed to learn spatial residual of a single frame. To mod-
el inter-frame correlation, STR-ResNet estimates the temporal
residue implicitly. Extensive experiments have demonstrated
the effectiveness and efficiency of our method for video SR.
However, the recurrence step of STR-ResNet to model frames
is limited by available GPU memory and the convolutional re-
current connections cannot have a long-term memory. In the
future work, we aim to overcome such limitations and imple-
ment a longer-term memorized video SR method, which makes
use of longer LR video clips to reconstruct one HR frame.
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