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ABSTRACT

Image and video super-resolution (SR) has been explored
for several decades. However, few works are integrated into
practical systems for real-time image and video SR. In this
work, we present a real-time deep video SpaTial Resolution
UpConversion SysTem (STRUCT++). Our demo system
achieves real-time performance (50 fps on CPU for CIF se-
quences and 45 fps on GPU for HDTV videos) and provides
several functions: 1) batch processing; 2) full resolution
comparison; 3) local region zooming in. These function-
s are convenient for super-resolution of a batch of videos (at
most 10 videos in parallel), comparisons with other approach-
es and observations of local details of the SR results. The
system is built on a Global context aggregation and Local
queue jumping Network (GLNet). It has a thinner and
deeper network structure to aggregate global context with
an additional local queue jumping path to better model lo-
cal structures of the signal. GLNet achieves state-of-the-art
performance for real-time video SR.
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1 INTRODUCTION

Nowadays, it has gradually become a common demand to
embrace high quality video displays. Due to the limitation
in current hardware, super-resolution for images and videos
by software methods is prevalent and promising. It enlarges
a low-resolution (LR) video to a high-resolution (HR) one
only employing software techniques. In the past decades, as
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Figure 1: STRUCT++ supports real-time video
super-resolution. It provides three functions, includ-
ing batch processing (the left half and Fig. 4), full
resolution comparison (the right half) and local re-
gion zooming in (Fig. 5).

a scientific research topic, SR methods have been explored
widely. Many models are proposed to build the mapping
between LR and HR space, i. e. Markov random field [4, 7],
neighbor embedding [1], sparse coding [6, 11], and anchor
regression [10], etc. Their results present impressive visual
quality. However, most of these works are still far from prac-
tical use because of the low time efficiency. Fortunately, the
development of deep learning is changing the situation. With
deep models proposed in [2, 5, 8], researchers have obtained
more promising results with higher time efficiency. To accel-
erate the SR process, feature extraction and transformation
are performed in LR space [9]. Faster super-resolution neu-
ral network (FSRCNN) [3] provides the observations that,
decreasing the channel number effectively reduces the pa-
rameter number of the network, and thus the SR process
can be accelerated. Therefore, FSRCNN embeds network
shrinking and expanding steps, to save a large part of model
parameters and reduce the running time. However, these
works have not been integrated into a real-time system for
practical image and video SR.

To address this challenge, we construct a practical demo
system STRUCT++ capable of running on both CPU and
GPU in real-time manner (50 fps on CPU for CIF sequences
and 45 fps on GPU for HDTV videos), supporting three func-
tions including: 1) batch processing; 2) full resolution
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Figure 2: GLNet adopts a thiner and deeper network
structure for global context aggregation. An addition-
al local queue jumping connection helps better model
local signals.

comparison; 3) local region zooming in. To the best of
our knowledge, STRUCT++ is the video SR system that
achieves the best evaluation performance comparing with
existing approaches and provides very convenient accesses to
batch processing and visual comparison.

2 GLNET FOR REAL-TIME VIDEO SR

STRUCT++ is built on an effective network structure –
Global context aggregation and Local queue jumping Network
(GLNet), as shown in Fig. 2. Following real-time SR par-
adigm, it goes through five steps for image and video SR:
feature representation, shrinking, nonlinear mapping, expand-
ing and reconstruction. Comparing with existing real-time
SR methods, GLNet has two distinguished characteristics:

• A thiner and deeper network structure for global
context aggregation. Each layer has fewer channels,
leading to a deeper network with the same number
of parameters. With dilation convolutions as parts
of its units, GLNet has a very large receptive field.

• An additional local queue jumping connection be-
tween the first and penultimate layers enables the
network to better describe the local signal structures.

These two properties jointly help GLNet achieve superior
performance to state-of-the-art real-time image and video
SR. Fig. 3 demonstrates the relationship between super-
resolution quality and running time. As can be observed,
GLNet achieves higher response curve, which indicates that
GLNet spends less time while generates better results.

3 VIDEO SR RESULT DISPLAYING

In addition to batch processing (as shown in Fig. 4), full
resolution comparison (illustrated in the right half of Fig. 1),
our demo also provides the third function “Local Region
Zooming In”. After clicking the “start” button, the input
video will be shown (Fig. 5). User can select a marquee by
clicking on the video, and the super-resolved version of the
marquee is shown in line on the right side. Multiple marquees
are allowed and can be removed by clicking the “selection
removal” button.

Figure 3: GLNet achieves the best response curve
for pairs (PSNR, Running time) in 3× enlargement
on Set5.

Figure 4: Interface for “Batch Processing”.

Figure 5: Interface for “Local Region Zooming in”.

4 CONCLUSIONS

This paper demonstrates the functions of STRUCT++ and
briefly introduces the algorithm in the system. With the
efficient GLNet, the system provides convenient operations
to super-resolve a batch of videos. The friendly interfaces
allow users to compare different methods visually and look
into detailed regions of interest in real-time.
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