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ABSTRACT 

Global motion estimation (GME) is widely used in image/video processing and various applications. But the accuracy of 
estimation results is badly influenced by local motion and noises. Furthermore, the conventional GME algorithms in 
spatial domain usually need a large number of iteration times, which makes computational complexity extremely higher. 
In this paper, we propose an efficient and fast GME algorithm based on motion vector field, which adaptively selects 
input pixels for solving transform models. More characteristics of the image are considered, such as the difference 
between global motion and local motion, the distribution of motion vectors, and macroblock partition modes. The 
proposed algorithm includes three steps: First, we obtain several sets of pixels by merging similar bins in the histogram 
of motion vectors and generate a weight map. Second, we choose the cluster with the minimum distribution variance in 
the image as the cluster representing the global motion. The pixels with higher weights in this cluster are chosen as the 
input pixels for solving transform models. Finally, we employ the 6-parameter affine model as the transform model and 
calculate the parameters. Experimental results show that the proposed algorithm is effective and fast.  
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1. INTRODUCTION 

Motion estimation and compensation is a core technology of in video processing. Motion in video can be classified into 
two categories: global motion and local motion. The former refers to the camera motion, while the latter refers to the 
motion of the objects. Most motion estimation techniques do not distinguish these two kinds of motion, and the motion 
vectors of the blocks are the mixture of the two. However, separating global and local motion not only results in a more 
reasonable and compact representation of the motion information, but also leads to many other extended applications 
besides video compression, such as video mosaicing [1], content based video classification [2], camera motion tracking.  

Conventional GME algorithms are mainly classified into the following three categories: feature based methods, 
frequency domain methods and spatial domain methods. Other methods like spatio-temporal are also developed [7]. 
Feature based methods rely on extraction and tracking of feature points, which are very difficult especially when dealing 
with some appearing or disappearing features. Frequency domain methods [8], based on affine theorem of Fourier 
Transformation and phase correlation techniques, cannot be extended in natural way to higher order motion models. 
Spatial domain methods are used widely, but most spatial domain methods are iterative and usually involve image 
warping [3][4][6], which makes it computationally intensive and slow.  

Motion models are used to depict global motion no matter what the global motion estimation method is. There are 
different motion models [5], which can be classified based on the parameters’ number. Generally, the model’s 
complexity increases with the number of its parameters. For example, the common practical motion models include 2-
parameter translational model, 4-parameter geometric model, 6-parameter affine model, and 8-parameter perspective 
model. But the ability to describe motion is also increased with the parameter number. The 2-parameter translational 
model only describes translation, while the 8-parameter perspective model can represent isotropic magnification, 
translation and rotation. Because of the existence of disappearing pixels and reappearing pixels, even the most complex 
motion models are not able to represent the actual motion completely. But usually the models are sufficient to the 
requirements of practically usage. The lower order models are seen as special cases of higher order models. In these 
models, the 8-parameter perspective model is the most general one, and the 6-parameter affine model provides good 
tradeoff between generality and ease of estimation.  
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Theoretically, only 3 pairs of pixels in reference frame and current frames are needed for solving the 6-parameter affine 
model, and 4 pairs for 8-parameter perspective model, but these pixels must only participate in global motions. Since we 
are usually not sure whether a pixel is involved with local motion at the same time, the whole image area is assumed.  

Taking account of the chosen model, we calculate the parameters of the model by minimizing the error function via 
Newton-Raphson method. It is computational costly, thus several speed-up strategies have been suggested in literature 
[9]-[13]. Szeliski et al. used multi-resolution framework [4]. Keller et al. proposed selective integration and warp free 
formulation [9]. These methods reject outliers by using fixed threshold or selecting pixels with greatest gradient. 
However, the complexity of these algorithms is still high, because the selected pixels do not indicate the essential 
characteristic of the image.  

Only a few pixels are needed to solve models, which means most of the pixels with pure global motion are redundant for 
solving models and only increase the computational cost. On the other hand, outliers have great influence in the 
estimation process, and the accuracy of the result does not necessarily increase with the amount of input pixels for 
solving models. Though various methods are used to reject outliers, most of them deal with it in the iterative process of 
solving models, thus increase the computational cost. It is advantageous to reject outliers before solving models rather 
than in the process of solving models. To sum up, it is not only important but also necessary to carefully select the input 
pixels for solving models. The carefully selected pixels should verily represent the global motion, which demands 
synthetically consideration in characteristics of the motion and the image. 

The rest of the paper is organized as follows. Section 2 reviews the conventional GME algorithm on spatial. Section 3 
introduces the proposed novel algorithm based on motion vector field, which adaptively selects input pixels. 
Experimental results are given in Section 4. Finally, concluding remarks and discussion are given in Section 5. 

 

2. CONVENTIONAL GME ALGORITHM ON SPATIAL 

Given the motion model, global motion estimation on spatial becomes an optimization problem to minimize the error 
function, which is the sum of squared differences (SSD) between the current frame I and the motion compensated 
previous frame I , 
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where ( , )i iI x y  denotes the spatial coordinates of pixel i in the current frame, and ( , )i iI x y    denotes the coordinates of 

the corresponding pixel in the motion compensated previous frame. n is the total number of pixels. 

Conventional GME algorithm rejects outliers mainly in iterative model-solving process. One of the most popular 
algorithm, which is called M-estimators [14], removes the influence of outliers by minimizing  
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where   is a symmetric positive-definite function with a unique minimum at 0ie  . Instead of the original quadratic 

error function 
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A truncated quadratic is used. 
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where t is the threshold. The algorithm is based on the following reason: the error function (see Equation (1)) takes the 
assumption that the error terms are assumed to be independent and identically distributed zero-mean Gaussian random 
variable in both the horizontal and the vertical directions, so minimization of the error function is equivalent to 



 
 

 

 

maximum-likelihood estimation with independent Gaussian noises with a constant standard deviation. But it is not 
applicable in practical because of many outliers. So a binary mask is used in M-estimator algorithm. 

 

3. GME ALGORITHM WITH ADAPTIVELY SELECTING INPUT PIXELS 

In this section, we present a GME algorithm, which adaptively selects input pixels considering the motion and image 
characteristics synthetically. The algorithm includes the following 3 stages. First, we get several sets of candidate pixels 
which are called pixel clusters, and generate some weight maps which are fused into one later. Second, we decide which 
cluster is more probable to represent the global motion. Finally, we employ the 6-parameter affine model as the 
transform model, calculate the parameters of the model and make global motion compensation to the reference frame. 
Figure 1 shows the block diagram of our algorithm. 

 

Fig. 1. Block diagram of proposed algorithm. 

3.1 Pixel Clustering 

A large number of experimental observations indicate that different objects usually have different motion (Figure 2). The 
2-D histogram of motion vectors on both horizontal and vertical direction shows this clearly. When employing the 1-D 
histogram, either of the motion direction or of the magnitude of the motion vector, the difference shown is obvious 
enough to separate different kinds of pixels. We choose 1-D histogram instead of 2-D histogram, because the former is 
less complex while is good enough for separating pixels. As to the problem of choosing the 1-D feature, though the 
amplitude and the argument of a vector take different and irreplaceable characteristics respectively, the histogram of 
motion direction is more suitable. Because the motion vectors are depicted in Cartesian coordinates, and the argument is 
not too sensitive to the spatial coordinates of the pixel compared with the amplitude.  

             
(a)                                      (b)                                 (c)                                         (d) 

Fig. 2. M e. (a) The intensity image. (b) Motion vectors. The lengths are 4 times of original 
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t a histogram to separate different pixels into clusters. Histogram segmentation is widely used in image 
 data analysis. It is one subject of clustering in pattern classification. Several classical algorithms have been 
 literature, such as k-means algorithm, hierarchical algorithm, Gauss Mixture Models. These methods are 
many ways. But the difference is not that important in our algorithm since the pixel clustering in our 

 not a standard clustering problem. In fact it is much easier than clustering problem. This is because the goal 
tering in our algorithm is not to cluster each pixel; we just need to select representative pixels for different 
cording to observations, though the amount of pixels with local motion may be larger than pixels only with 
n, yet clusters representing global motion are usually more significant in the histogram. This is because 
ect usually have different local motion, and the density is dispersed. If it is not under extreme circumstances, 
ly involved in global motion always make up of clusters, which are obvious and significant in the histogram. 



 
 

 

 

So the first significant 4~6 clusters in the histogram is enough for finding clusters representing global motion. The 
differences between clustering in our algorithm and in pattern classification include the following four aspects. 

1. In our algorithm, it is unnecessary to cluster all pixels. We employ pixel clustering in our algorithm in order to get 
some representative pixels, so it does not matter if some pixels do not belong to any clusters. While for clustering 
problems in pattern classification, any pixel should belong to a certain cluster.  

2. In our algorithm, it is unnecessary to get all clusters. Only significant clusters are needed. Compared with 
clustering in pattern classification, this condition is very loose. 

3. Though exact segmentation which has no over and under segmentations is very good for our algorithm, slight over 
segmentation is also tolerable, while under segmentation may bring into some drawbacks and should be avoided. 

4. In our algorithm, if two bins are not adjacent, they must not belong to the same cluster, while histogram 
segmentation in pattern classification does not have this restrict. In fact, the same global motion may indeed have 
different motion direction, for example, the global motion of zoom in/out has motion directions covering degrees 
from 0 to 360. But as mentioned above, over segmentation is tolerable while under segmentation should be avoided, 
thus the restriction is reasonable and guarantees that different motions are differentiated. 

Since the differences between different clustering algorithms are not that important for our application, we simply 
choose the k-means method to segment 1-D histogram. The k-means algorithm works like this: each cluster in the 
partition is defined by its member objects and by its centroid, or center. The centroid for each cluster is the point to 
which the sum of distances from all objects in that cluster is minimized. The result is a set of clusters that are as compact 
and well-separated as possible.  
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We use squared Euclidean distances as similarity/dissimilarity evaluation. The Euclidean distances are calculated 
according to Equation (5), where kx  is a sample point belonging to cluster i and ˆi  is the centroid of cluster i. Each 

centroid is the mean of the points in that cluster. For more details, please refer to [15]. 

To generate the 1-D histogram, arguments of motion vectors are normalized into the degree range of [0, 360]. The 
density histogram of arguments is generated with an interval of 10 degrees; therefore there are 36 bins in the histogram. 
The sample data includes the bins’ number and the number of data in the bin. The k-means algorithm demands that the 
cluster number should be given before. As mentioned above, the pixel clustering in our algorithm is not a standard 
clustering problem, so we simply set the cluster number to 4. Notice the clustering results cannot be used directly. In our 
algorithm only adjacent bins may belong to the same cluster, so we re-cluster the result of clustering algorithm, simply 
let bins which are not adjacent while belonging to the same cluster belong to different clusters. Thus the number of 
clusters we actually get is often more than 4. And since we only need the first few significant clusters, we select the first 
4~6 significant clusters that have higher peaks and larger densities. 

The complexity of k-means algorithm is O(ndcT), where d is the number of features, which is also called the dimension 
of samples. c is the number of clusters. T is the iteration times, which is usually less than the samples’ number. Because 
both the samples’ number and dimension are very small, the algorithm works very fast. An example of corresponding 
segmented image example is shown in Figure 2 (d). 

In the above process, we do not consider that there is no global motion in the image. But it should not be neglected. We 
also generate a cluster representing no motion. Pixels of this cluster do not have motion vectors. 

3.2 Map Generation 

Weight map is useful for treating pixels based on their levels of importance. Pixels have different levels of importance in 
global motion estimation. On one hand, there may be some pixels, which do not belong to any cluster. It means that the 
pixels belong to unstructured areas and should be regarded as outliers. On the other hand, a cluster covers certain range 
of arguments, and data have different distances from the centroid, which means pixels have different levels of similarity 
within the cluster. In addition, pixels also vary in other aspects. For example, two pixels with the same motion vector 
belong to the same cluster while one’s surrounding area is smooth while the other’s is delicate, and the former is more 
probably to be a background pixel. Usually motion vectors of the edge pixels are regarded as more reliable than the 
inside pixels. These factors should be taken into consideration. 



 
 

 

 

             
(a)                                      (b)                                 (c)                                         (d) 

Fig. 3. MOBILE sequence, 116th frame. (a) The intensity image. (b) Similarity map. Different gray scales represent different 
weights.  (c) Partition of the frame. (d) Fused Map. Different gray scales represent different weights. 

We generate a similarity map (Figure 3 (b)) for treating pixels of the same cluster differently. If a pixel belongs to a 
certain cluster, its weight is calculated based on Equation (6), where ,k ix  represents the motion vector argument of pixel 

k in cluster i, and î  is the argument centroid of cluster i. Other weight is set to 0. 

, ,
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The texture information of an image is helpful in analyzing the image content. The partition modes map (Figure 3 (c)) of 
an image contains some simple information of image texture. The partition mode of a block reflects the characteristic of 
the area. For example, background tends to be smooth area with less details and it is more probable to be partitioned into 
larger blocks, such as 16x16, 16x8, and 8x16, while objects with details are tend to be partitioned into smaller blocks, 
such as 8x4, 4x4. Thus we generate a map based on the partition mode of the block, with smaller weight for smaller 
blocks. Pixels of larger blocks are preferred to have greater weights. 

After obtaining these maps, we fuse them into one simply by adding. The weight of the pixel means its 
representativeness of the cluster it belongs to. The weight map will be used in later stage. 

3.3 Candidate Cluster Selection 

In the above process, different clusters are treated equally, because the information used above to obtain clusters and 
generate weight maps does not indicate whether the motion is global or local. But if we take some prior knowledge and 
observation facts into consideration, generally the two kinds of motion have different characteristics, which can be used 
to separate them. For example, the local motion is often restricted in a small area, while the global motion spreads 
around the whole image. To certain extent, this difference is one of the reasons why motions are seen as global or local. 
It is not always right to distinguish global and local motion by the amount of pixels. And distinguishing them by their 
spatial distribution is more reasonable. Uniform distribution means wide spread in the image. 

To evaluate the spatial distribution difference between the two kinds of motion, we calculate the spatial distribution 
variance for each cluster. First, we divide the image into several circle-like areas corresponding to the clusters. Then we 
calculate the density function and variance for each cluster. Suppose the circle-like areas are Ω1, Ω2, ..., Ωm from the 
image center to margin. The spatial distribution density of cluster i in area k is calculated as this: 

, , / , 1i k i k kp M N k m,        (7) 

where  denotes the pixel number in the circle-like area k, while kN ,i kM  is the number of pixels belonging to cluster i in 

area k. And the spatial distribution variance of cluster i in the whole image is calculated as， 
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where  k  is the weight of circle-like areas k which satisfies the following condition: 

t ,k if s t.         (9) 

We set different weights for these areas, based on the prior knowledge that outer areas are more probably to be 
background and mainly involve in global motion while inner areas are more probably to be foreground and involve both 



 
 

 

 

local and global motion. So the density functions of outer areas are more important in evaluating the spatial distribution 
of a cluster and should be assigned larger weights. 

The distribution variance of a cluster reflects its distribution uniformity in the whole image of the cluster. We choose the 
cluster with the minimum variance as the cluster representing the global motion. If there are two or more clusters with 
the same minimum variance, which is a rare situation, we choose the one having more pixels. 

Pixels with larger weights in this cluster are more convincing than the others. We sort the pixels of the cluster in 
descending order according to their weights and choose the first few pixels. In our algorithm the number is given as this. 

min( ,2048),q         (10) 

where  is pixel set of the cluster. q is not larger than 2048. For a CIF format (352x288) sequence, the input pixels for 
solving models are only 2% of the original size. Thus the computational complexity is greatly decreased. 
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4. EXPERIMENTAL RESULTS 

The proposed algorithm was implemented with Matlab in our experiments, compared with the conventional methods 
without adaptively selecting input pixels for solving transform models. All the experiments were done on the following 
standard test sequences in CIF format: VECTRAN, COASTGUARD, MOBILE, FOREMAN, STEFAN. The resolution 
of these sequences is 352 by 288. The H.264/AVC reference software JM86 is used to encode these sequences. The 
configuration is listed in Table 1.  

Table. 1. H.264/AVC encoder configuration 

Video Format YUV 4:2:0, 8 bits 
Profile / Level 66 (baseline profile) / 30

Number of Reference Frames 10 
Hadamard in Sub-pel Search Yes 

Search Range 16 
Sub-pel ME Enabled 

Backward Search No 
Inter Search 8x4, 4x8, 4x4 Enabled 

Joint Estimation No 
Weighted Prediction No 

GOP Structure IPPP 
QP 28 

 

For each sequence, we pseudo-randomly selected 10 P-frame. Both subjective quality and objective quality are compared. 
The PSNR of the current frame to compensated reference frame using proposed algorithm and conventional algorithm is 
calculated respectively. And the PSNR of the current frame to reference frame without global motion compensation is 
also calculated as a contrast. Table 2 shows the results.  

We notice that the objective quality may not be consistent with the subjective quality, especially in global motion 
estimation and compensation. The local motion will not be compensated. So if there are many moving objects in an 
image, the PSNR of the current frame to compensated reference frame may be worse than that of the current frame to 
reference frame without compensation even if global motion estimation and compensation is explicit. Large structured 
areas in local motion are excluded from the calculation of PSNR for impartiality in our experiment. Removing 
unstructured areas needs manual work and these areas are reserved in our experiment. In addition, after being 
compensated, the reference frame often moves away from its original place, leaving vacancies which we know nothing 
about and have to pad with value like 0 or 1. This often happens in the margins of the image. Vacancy areas should also 
be excluded from the calculation of PSNR for impartiality. 



 
 

 

 

Table. 2. The average PSNR of the frame with global motion compensation to the current frame. 

Sequence 
Average PSNR 

(without compensation)
Average PSNR 

(without selection)
Average PSNR 

(proposed algorithm) 
PSNR
gain 

COASTGUARD 27.08 30.32 31.54 1.22 
VECTRA 20.00 22.76 24.39 1.63 
MOBILE 21.00 18.47 19.85 1.38 
STEFAN 19.50 19.09 19.05 -0.04
FOREMAN 24.79 27.09 27.04 -0.05

 

It is seen from the table that our proposed algorithm is effective in general. The average PSNR gain of the result reaches 
more than 1 dB for some sequences such as COASTGUARD, VECTRA and MOBILE. But for STEFAN and FORMAN 
sequences our algorithm shows less superiority in objective quality. Because in STEFAN there are large areas of 
unstructured but detailed background which tend to lower the PSNR. This can be seen from the low PSNR of the current 
frame to reference frame without global motion compensation. And for FOREMAN, the reason is probably that there are 
too many homogeneous areas especially in background, and the camera motion is slight in many frames. Thus our 
algorithm is less accurate in selecting pixel cluster representing global motion. Nevertheless, the PSNR results of these 
two sequences only have a slight decrease.  

             
(a)                                      (b)                                   (c)                                       (d) 

Fig. 4. VECTRA sequence. (a) Current frame (71th frame). (b) Reference frame. (c) Difference image between (a) and 
compensated reference frame without selecting pixels. (d) Difference image between (a) and compensated reference 
frame with proposed algorithm. 

             
(a)                                      (b)                                   (c)                                       (d) 

Fig. 5. MOBILE sequence. (a) Current frame (116th frame). (b) Reference frame. (c) Difference image between (a) and 
compensated reference frame without selecting pixels. (d) Difference image between (a) and compensated reference 
frame with proposed algorithm. 

             
(a)                                      (b)                                   (c)                                       (d) 

Fig. 6. COASTGUARD sequence. (a) Current frame (73th frame). (b) Reference frame. (c) Difference image between (a) 
and compensated reference frame without selecting pixels. (d) Difference image between (a) and compensated 
reference frame with proposed algorithm. 



 
 

 

 

As to subjective quality, the difference images between current frame and reference frame with or without global motion 
compensation are shown in Figure 4 and Figure 5. Besides the pseudo-randomly selected frames, we also tested some 
special frames. For example, the camera strongly shakes in COASTGUARD from frame 65 to frame 75. The typical 
global motion is well estimated. The result is shown in Figure 6. 

 

5. CONCLUSION AND FUTURE WORK 

In this paper, we propose an efficient and fast global motion estimation algorithm based on motion vector field. By 
considering the distribution characteristics of motion vectors and the area smoothness, the algorithm selects pixels 
mainly involved in global motion. Thus the accuracy of the estimation gets improved, and the computational complexity 
is lowered. The effectiveness of the method is proved by experiments on standard test sequences. The average PSNR 
gain of the result reaches more than 1 dB for some sequences, while the proposed method only uses a small subset of the 
original pixels, which greatly decreases the computational cost. Future work will focus on getting more information from 
the image and extend them to other applications such as tracking of regions of interest. 

ACKNOWLEDGEMENTS 

This work is supported by National Basic Research Program (973 Program) of China under contract No.2009CB320907. 

REFERENCES 

[1] R. Szeliski, “Image mosaicing for tele-reality,” Proc. IEEE Workshop on Applications of Computer Vision, 44-53 
(1994). 

[2] E. Ardizzone, M. La Casica, D. Molinelli, “Motion and color-based video indexing and retrieval,” Proc. ICPR, 135-
139 (1996). 

[3] J.R. Bergen, P. Anandan, K.J. Hanna, and R. Hingorani, “Hierarchical model-based motion estimation,” Proc. 
ECCV,  237-252 (1992). 

[4] R. Szeliski and J. Coughlan, “Hierarchical splinebased image registration,” Proc. CVPR, 194-201(1994). 
[5] Glasbey, C. A. andMardia, K. V., “A review of image warping methods,” Journal of Applied Statistics. Papers 3, 

155-171 (1998). 
[6] F. Dufaux and J. Konrad, “Efficient, robust, and fast global motion estimation for video coding,” IEEE Trans. Image 

Processing. Papers 9, 497-501 (2000). 
[7] C.-W. Ngo, T.-C. Pong, and H.-J. Zhang, “Motion analysis and segmentation through spatio-temporal slices 

Processing,” IEEE Trans. Image Processing. Papers 12, 341-355 (2003). 
[8] S. Kumar, M. Biswas, T. Q Nguyen, “Global motion estimation in frequency and spatial domain,” Proc. of IEEE 

ICASSP. Papers 3, 333-336 (2004). 
[9] Y. Keller and A. Averbuch, “Fast gradient methods based on global motion estimation for video compression,” 

IEEE Trans. CSVT. Papers 13, 300-309 (2003). 
[10] A. Smolic and J.-R. Ohm, “Robust global motion estimation using a simplified m-estimator approach,” Proc. of 

IEEE Int. Conf. Image Processing. Papers 1, 868-871 (2000). 
[11] Y. Su, M.-T. Sun, and V. Hsu, “Global motion estimation from coarsely sampled motion vector field and the 

applications,” Proc. of IEEE Int. Symp. Circuits and Systems. Papers 2, 628-631(2003). 
[12] F. Moscheni, F. Dufaux, and M. Kunt, “A new two-stage global/local motion estimation based on a 

background/foreground segmentation,” Proc. of IEEE ICASSP, 2261-2264(1995). 
[13] Bin Qi, Mohammed Ghazal, Aishy Amer, “Robust global motion estimation oriented to video object segmentation,” 

IEEE Trans. Image Processing. Papers 17, 958-967 (2008). 
[14] W.H. Press, S.A. Teukolsky, W.T. Vetterling. B.P. Flannary, [Numerical Recipes in C], Cambridge University Press, 

(1992). 
[15] Richard O. Duda, Peter E. Hart, David G. Stork, [Pattern Classification (2nd Edition)], John Wiley & Sons, Inc. 

New York, (2001). 


	1. INTRODUCTION
	2. CONVENTIONAL GME ALGORITHM ON SPATIAL
	3. GME ALGORITHM WITH ADAPTIVELY SELECTING INPUT PIXELS
	3.1 Pixel Clustering
	3.2 Map Generation
	3.3 Candidate Cluster Selection

	4. EXPERIMENTAL RESULTS
	5. CONCLUSION AND FUTURE WORK

