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Abstract—We propose a model-based spatial layer bit allo-
cation algorithm for H.264/scalable video coding (SVC) in this
paper. The challenge of this problem lies in the fact that the rate-
distortion (R-D) behavior of an enhancement layer is dependent
on its preceding layers because of inter-layer prediction. To solve
it, we first focus on the case of two spatial layers, derive the
distortion and rate models of the dependent layer analytically,
and develop a low-complexity bit allocation algorithm. It is shown
by experimental results that the proposed two-layer bit allocation
algorithm can achieve the coding performance close to the
optimal R-D performance based on the full search method. Then,
we extend this result to multilayer bit allocation by performing
the two-layer allocation scheme recursively. Finally, we compare
the performance of group of pictures-based and frame-based
spatial layer bit allocation schemes at a fixed temporal resolution.
The superior performance of the proposed spatial layer bit
allocation algorithm is demonstrated using Joint Scalable Video
Model reference software algorithm and two prior H.264/SVC
rate control algorithms as the benchmarks.

Index Terms—Dependent layer, frame-based distortion and
rate models, H.264/scalable video coding (SVC), spatial layer bit
allocation.

I. Introduction

SCALABLE VIDEO coding (SVC) has recently been stan-
dardized to extend the capabilities of the H.264/advanced

video coding (AVC) standard [1], [2]. It addresses the ap-
plication need of a more flexible format of coded video in
heterogeneous and time-varying environments. The fundamen-
tal principle of SVC is to generate a single compressed bit
stream that can adapt to the varying bit rates of different
transmission channels, display resolutions, and computational
resource constraints of various receivers rapidly and easily.
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To achieve the spatial scalability, H.264/SVC follows the
conventional approach of multilayer coding, where each layer
corresponds to a spatial resolution. In each spatial layer, the
motion-compensated prediction and the intra-prediction are
employed as those in the single-layer H.264/AVC coding.
Furthermore, to improve coding efficiency with respect to
simulcasting of different spatial resolutions, additional inter-
layer prediction is adopted to exploit statistical dependences
between different spatial layers [3]. Due to the inter-layer
prediction, the problem of spatial bit allocation in H.264/SVC
is very challenging. That is, we should consider the tradeoff
in coding efficiency between the base layer (BL) and the en-
hancement layer (EL) simultaneously. Practically, H.264/SVC
video can be conveniently delivered in heterogeneous net-
works with varying client display resolutions, transmission
bandwidths, and network conditions. Although some target
bit rates are desired for specific applications, most of them
do have the flexibility of a bit rate range. Then, H.264/SVC
bit allocation algorithm provides an efficient way to utilize the
available resource and offer higher quality video to all clients
of various spatial resolutions.

There is no previous work that handles the H.264/SVC bit
allocation problem by taking into account the relationship
between the dependent and reference layers. For example,
the reference software [Joint Scalable Video Model (JSVM)]
specifies a bottom-up approach to produce a scalable bit stream
[2]. That is, the encoding process starts from the bottom-
most BL and subsequent ELs are encoded in an ordered
manner, where the bit budget of each layer is set individ-
ually. It is desirable to develop an optimized bit allocation
scheme by considering the inter-layer dependence between
the BL and ELs. This is the main objective of our current
research.

Bit allocation for inter-frame dependence has been exam-
ined since MPEG-2 video. For example, Ramachandran et al.
[4] studied the dependent bit allocation problem with a trellis-
based solution. Although it can yield the optimal solution,
the complexity of the solution grows exponentially as the
number of dependent frames increases. For this reason, it
can be used only as a performance benchmark rather than
a practical solution. Lin and Ortega [5] sped up the dependent
bit allocation solution by encoding the source video with
a few quantization steps and using interpolation to find the
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rate-distortion (R-D) values for other quantization steps. Their
scheme used the spline interpolation for I frames and the
piecewise linear interpolation for P frames. Liu and Kuo
[6] investigated the dependent temporal-spatial bit allocation
problem for H.263+/MPEG-4 simple profile with a variable
frame rate. However, the complexity of these two algorithms
is still high since the source video has to be encoded several
times. Due to the complexity concern, these solutions cannot
be practically applied to the dependent bit allocation problem
involved with multiple layers in H.264/SVC.

Among bit allocation algorithms recently proposed for
H.264/SVC, except for the highly complex trellis-based so-
lution by Pranantha et al. [7], the inter-layer dependence is
not well addressed in the problem formulation. For example,
Xu et al. [8] proposed a rate control algorithm for spatial
scalable coding in SVC by employing an improved TMN8
model based on the mode analysis of P/B frames. Liu et al.
[9], [10] presented a rate control algorithm for the spatial
and coarse-grain-SNR (CGS) scalability of H.264/SVC. Their
algorithms operate on a fixed rate of each layer and implement
an macroblock (MB)-layer bit allocation scheme. In other
words, the dependence among spatial layers is not considered
at all. To solve this inter-layer dependence issue, a group of
pictures (GOP)-based bit allocation problem for the spatial
scalability of H.264/SVC was studied in [11] with two spatial
layers. In this paper, we attempt to generalize the result in
[11] along two directions: 1) from the GOP-based to the frame-
based scheme; and 2) from two to multiple spatial layers. They
are detailed below.

Since the GOP-based bit allocation algorithm demands a
longer delay in the encoding process, it is not suitable for real-
time conversational applications. Here, we consider the prob-
lem of allocating the bit budget among dependent spatial layers
in one frame as the basic coding unit. To provide an analytical
solution to this problem, we first investigate the two-layer case.
That is, we develop a scheme to decouple the influence of BLs
quantization choice on the R-D characteristics of a dependent
EL, and show that the statistics of the input signal to the EL
quantizer can be modeled as a probability density function
parameterized by the BL quantization step-size. As a result, the
impact of the BL quantization to the EL quantization can be
successfully isolated. Furthermore, we study the relationship
between the BL rate and EL rate and propose a rate model of
the dependent layer by fixing each EL quantization step-size
and changing BL quantization step-sizes.

The major contribution of our paper is the proposal of a
novel frame-based dependent distortion and rate model target-
ing at H.264/SVC spatial scalability. The dependent distortion
and rate models are relatively simple yet accurate enough
to provide good R-D performance tradeoff. Based on these
distortion and rate models, the optimal bit allocation problem
can be formulated using the Lagrangian multiplier approach
and solved numerically. Furthermore, we extend the two-layer
scheme to the multilayer scenario with a recursive process.
It is demonstrated by experimental results that the proposed
algorithm outperforms the JSVM FixedQPEncoder tool [12]
and two previous H.264/SVC rate control schemes proposed
in [8] and [10].

Fig. 1. Illustration of two bit allocation strategies within a GOP.
(a) Strategy I: GOP-based strategy. (b) Strategy II: frame-based strategy.

Another contribution of our paper is to offer a low com-
plexity algorithm for dependent spatial layer bit allocation
using the R-D model. Since the proposed scheme provides
a model-based bit allocation mechanism, it only takes a few
encoding passes with several different quantization parameters
to obtain the model parameters. For example, the number of
the encoding pass for two-layer R-D model construction is
equal to 3 (see discussion in Section III). After the target bit
budget is allocated to each layer based on the estimated R-D
model, a frame is encoded once to meet its individual target
bit rate.

The rest of this paper is organized as follows. The frame-
based spatial layer bit allocation problem is formulated in
Section II. The dependent two-layer bit allocation problem
is solved in Section III by analyzing and simplifying the
dependent R-D models and a practical two-layer bit allocation
algorithm is proposed. Then, the multilayer bit allocation
problem is examined in Section IV. The performance of
the proposed spatial bit location scheme in terms of cod-
ing efficiency and computational complexity is evaluated in
Section V. Finally, concluding remarks and future research
directions are given in Section VI.

II. Problem Formulation

In the spatial scalability of H.264/SVC, a video signal with
a high spatial resolution is encoded in such a way that the
output bit stream provides multiple layers of various spatial
resolutions. Suppose that the bit budget for one GOP of spatial
layers in H.264/SVC is given. Within one GOP, there are two
simple strategies to allocate bits as illustrated in Fig. 1. The
first strategy is to allocate the bit budget to different spatial
layers of the whole GOP, and then assign the bit budget to
each frame within the same spatial layer. The second strategy
is to allocate the bit budget to each frame first, where bits
are allocated to different picture types (I, P, B). Then, for
each frame, bit allocation is conducted for spatial layers.
Since Strategy I has a longer delay (in the unit of one GOP),
we focus on Strategy II in this paper. For more discussion
about the comparison between these two strategies, refer to
Section V.

When a bit budget on a full-resolution frame is given, an
encoder has still to distribute this bit budget to different spatial
layers for optimal coding efficiency. As shown in Fig. 2, a
frame is employed as a basic bit allocation unit in this paper,
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Fig. 2. Allocation of the bit budget of a full-resolution frame to one BL and
several EL frames.

which consists of a BL frame and several EL frames. The rate
and the distortion of a coded video stream are determined by
the choice of the quantization step-sizes at different layers. In
the following, we formulate a general dependent bit allocation
problem, and show how this formulation is applicable to the
H.264/SVC encoder.

It is worthwhile to mention that a practical rate control
algorithm for H.264/SVC spatial scalability operates at two
levels: 1) the layer-level bit allocation by selecting a quantiza-
tion parameter for each spatial layer; and 2) the MB-level bit
allocation by selecting a quantization parameter for each MB
within the same spatial layer. This research has focused on the
solution to the first level. As to the second-level, we use the
JSVM QP assignment mechanism to select the quantization
parameter for each MB for experiments.

The constrained optimization problem for dependent bit
allocation can be stated as follows. We seek the quantization
step-size of each spatial layer so that the total distortion is
minimized subject to the total bit budget constraint. Let N be
the number of spatial layers in a frame. Rk(Q1, . . . , Qk) and
Dk(Q1, . . . , Qk) are the rate and the distortion model of the
kth layer with respect to the vector of quantization step-sizes,
denoted by (Q1, . . . , Qk). Given the bit budget RT of the
current frame, the bit allocation problem can be formulated
mathematically as

Q∗ = (Q∗
1, . . . , Q

∗
N ) = arg min

Qk∈Q

N∑
k=1

ωk · Dk(Q1, · · · , Qk)

subject to
N∑

k=1

Rk(Q1, . . . , Qk) ≤ RT ,

N∑
k=1

ωk = 1 (1)

where Q∗ = (Q∗
1, . . . , Q

∗
N ) is the optimal quantization vector,

and Q is the set of all possible quantization candidates.
Q1, · · · , Qk−1 in the R-D functions of the kth layer indicate
that the coding performance of the kth layer is dependent
upon previously coded (k − 1) layers. Furthermore, ωk is
a weighting factor that indicates the importance of the kth
layer. Thus, the total distortion is defined as a weighted sum
of the distortion of each individual layer in (1).

The Lagrangian multiplier method can be used to map
the constrained optimization problem in (1) to an equiva-
lent unconstrained optimization problem by introducing the
Lagrangian cost function as

Q∗ = arg min
Qk∈Q

J(Q, λ)

J(Q, λ) =
N∑

k=1

ωk · Dk(·) + λ ·
(

N∑
k=1

Rk(·) − RT

)
(2)

where λ is the Lagrangian multiplier. To solve the problem
given in (2), one solution is to conduct a full search over
all possible combinations of admissible quantization choices.
However, since the search space grows exponentially as the
number of layers increases, the complexity of full search
is prohibitively large. To address the complexity issue, we
will model the R-D characteristics of dependent layers as
elaborated in the next section.

III. Bit Allocation Analysis for Two Spatial

Layers

In this section, we consider the bit allocation problem for the
two-layer case (i.e., N = 2). The solution will be generalized to
the general multilayer case in Section IV. Mathematically, the
Lagrangian cost function of a two-layer case can be expressed
as

J(Q, λ) = ω1 · D1(Q1) + ω2 · D2(Q1, Q2)

+ λ · (R1(Q1) + R2(Q1, Q2) − RT ) . (3)

In the following discussion, we assume the equal importance
of these two layers; namely, ω1 = ω2 = 0.5, which can be
easily generalized. In order to ease the computational burden
of the full search method, we look for a solution method that
avoids the need to collect all the R-D data while retaining
some optimality. Consequently, we will adopt a model-based
approach that analyzes the distortion and rate dependence
between these two layers of H.264/SVC.

Generally speaking, the R-D characteristics of a dependent
layer [i.e., R2(Q1, Q2) and D2(Q1, Q2)] can be represented
by a function of the quantization step-size of the reference
layer (Q1) and the dependent layer (Q2). In this case, the
dependent and reference layers indicate the EL and BL,
respectively. For dependent R-D modeling, if we can convert
the multi-variable rate and distortion functions into a number
of independent single-variable functions, the solution to the
bit allocation problem would be significantly simplified. We
will propose a way to achieve this goal in the next two
subsections.

A. Distortion Modeling

Without loss of generality, we depict an exemplary
H.264/SVC encoder in Fig. 3, whose input is a common
intermediate format (CIF) sequence and output consists of
two spatial layers, i.e., coded BL and EL. As shown in this
figure, we first obtain a low frequency component of the
input CIF video by the down-sampling process. The lowpass
filtered video is fed into the BL encoder to produce the BL
reconstruction, which corresponds to a quantized version of the
low-frequency video using quantization step-size Q1. The re-
constructed BL is used as a basis to predict the low frequency
component of the input to reduce inter-layer redundancy. Then,
we use the differential video between the original and the
interpolated BL signals as the input to the EL encoder.
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Fig. 3. Illustration of video layer decomposition in the H.264/SVC encoder
for spatial scalability.

Fig. 4. Curve fitting results of DCT/AC coefficients of different input video
signals to the BL quantizer for the City sequence. (a) CIF input and Q1 = 14.
(b) CIF input and Q1 = 32. (c) 4CIF input and Q1 = 14. (d) 4CIF input and
Q1 = 24.

This differential video actually consists of two parts: 1) the
high frequency component; and 2) the distortion in the low
frequency component due to the quantization effect by QP1

in the BL, which is denoted as the “BL Distortion.” The second
part controls the coupling between BLs and ELs codings. If
the BL distortion term is much smaller than the high frequency
term, such a coupling effect can be ignored.

Since the frame is used as the basic unit, we use the distri-
bution of DCT/AC coefficients of each frame to characterize
the EL differential signal. It was stated in [13] that the zero-
mean Cauchy density is more accurate in representing the
distribution of AC coefficients than the traditional Laplacian
density, while it is simpler than the generalized Laplacian
density since it only has a single parameter. Thus, we approxi-
mate the distribution of DCT/AC coefficients of the differential
EL sequence by the zero-mean Cauchy distribution of the
following density function:

p(x) =
1

π
· µ

µ2 + x2
, x ∈ R (4)

where parameter µ controls the thickness and the height of
the pulse centered at the origin.

By conducting curve fitting with transform coefficients of
the difference video sequence, we find that the zero-mean

Fig. 5. Illustration of the affine relationship between µ and Q1,with different
spatial complexity sequences. (a) City. (b) Foreman. (c) Akiyo.

Cauchy density distribution is still valid. Fig. 4 shows the
curve fitting results by the influence of different Q1 values and
different input video sizes. The two layers in Fig. 4(a) and (b)
are the quarter common intermediate format (QCIF)–CIF pair
while those in Fig. 4(c) and (d) are the CIF–4CIF pair. We see
that both the generalized Laplacian density function and the
zero-mean Cauchy density function provide an excellent match
with the real data. Since the generalized Laplacian density
has two parameters, we choose the Cauchy density function
for simplicity. Next, we examine the relationship between
parameter µ in the Cauchy pdf and the step-size, Q1, of the BL
quantization using three CIF sequences (i.e., City, Foreman,
and Akiyo) of different content complexity. The following
affine relationship is obtained from the results shown in Fig. 5:

µ = η · Q1 + ϕ (5)

where η and ϕ are two parameters of the affine model.
Besides the effect of the BL quantization step-size, Q1, on

the input video signal to the EL encoder, the output of the
EL encoder is determined by the EL quantization step-size,
Q2. After the decomposition process, we treat the EL as a
single layer. Since it is uniformly quantized by step-size Q2,
the distortion of the EL output can be estimated via

D2(Q2) =
∞∑

i=−∞

∫ (i+ 1
2 )Q2

(i− 1
2 )Q2

|x − iQ2|2p(x)dx. (6)

It can be shown that the infinite sum in (6) converges and the
converged value is bounded above by Q2

2/4. For the Cauchy
source, (6) can be simplified as

D2(Q2) = 2
M∑
i=1

[
µQ2

π
− iµQ2

π
ln

(
µ2 + (i + 1

2 )2Q2
2

µ2 + (i − 1
2 )2Q2

2

)

− µ2 − i2Q2
2

π
tan−1

(
µQ2

µ2 + (i2 − 1
4 )Q2

2

)]

+

[
µQ2

π
− 2µ2

π
tan−1

(
Q2

2µ

)]
. (7)

Although (7) is complex, it can be approximated by an
exponential form [13]

D2(Q2) ≈ b · Q
β
2 (8)

where b is a parameter related to µ only while the value of β

is almost constant for a given frame. b is computed using the
least-square-errors solution. Several pairs of b and µ values
in the single layer are given in Table I. We observe an affine
relationship between parameters b and µ as shown in Fig. 6.
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TABLE I

Corresponding Values of Parameter b in (8) and Parameter

µ in (4)

µ b

1.5634 0.2501
1.6468 0.2356
2.3285 0.2223
2.8522 0.2087
3.0980 0.1976
3.2928 0.1889

Fig. 6. Plot of parameter b as a function of parameter µ, which exhibits an
affine relationship.

Based on the above analysis, we see that the two factors that
affect the distortion of the dependent EL are decoupled clearly.
That is, the BL quantization step-size, Q1, determines the
parameter, µ, of the Cauchy distribution as shown in (5) while
the single layer EL distortion is related to the EL quantization
step-size, Q2, as shown in (8) and the affine relationship
between b and µ. Thus, we can obtain the following simplified
distortion model for the dependent EL layer:

D2(Q1, Q2) ≈ (ζQ1 + υ) · Q
β
2 (9)

where ζ, υ, and β are model parameters, which are indepen-
dent of Q1 and Q2.

We conducted experiments to verify the accuracy of the dis-
tortion model given in (9). In the experiments, we considered
two layers of either QCIF–CIF at the frame rate of 15 frames/s
or CIF–4CIF resolutions at the frame rate of 30 frames/s, and
generated 500 distortion samples with various values of Q1

and Q2 for each test case. The parameter configure file was
the scalable baseline profile. Table II lists the accuracy of the
distortion model, which is defined as

Accuracy =

(
1 − |Estimated value − Actual value|

Actual value

)
×100%.

(10)
We see that the proposed distortion model has an accuracy of
about 84.84% on average.

B. Rate Modeling

To derive the rate model of an EL, denoted by R2(Q1, Q2),
we plot the rate of a dependent layer EL, with respect to
the rate of its reference layer BL, in Fig. 7, where rate
pairs [R1(Q1), R2(Q1, Q2)] are shown. There are two types
of curves, reflecting two different settings of a two-variable
rate function denoted by R2(Q1, Q2). The dashed curve on the
diagonal plots the EL rate when Q1 + 6 and Q2 have the same
values. For solid branches, the value of Q1 varies whereas

TABLE II

Verification of the Proposed Distortion Model

EL Resolution Sequence Accuracy (%)

CIF

Flower 80.53
Bridge-far 90.15
Tempete 81.24

News 87.82
Stefan 91.47

Carphone 86.26
Salesman 84.30

4CIF
Ice 83.02

Harbour 81.11
Soccer 78.48

Average 84.84

Fig. 7. Illustration of the proposed rate modeling results. (a) City, QCIF–
CIF. (b) Football, QCIF–CIF. (c) City, CIF–4CIF. (d) Crew, CIF–4CIF.

the value of Q2 is fixed at each branch. We see that, for
each fixed Q2, increasing R1(Q1) (or decreasing Q1) results
in a roughly linear reduction in R2(Q1, Q2) for low BL bit
rates. However, the EL rate R2 becomes saturated and does not
decrease furthermore beyond the point with QP2 = QP1 + 6.

Based on the above observation, the idealized rate charac-
teristics are illustrated in Fig. 8. We conclude that the rate of
a dependent spatial layer can be approximated as

R2(Q1, Q2) =

{
r · R1(Q1) + (s − r) · R1(Q2/2) Q2 ≤ 2Q1

s · R1(Q2/2) Q2 > 2Q1

(11)

where s and r are the slopes of the line when QP2 = QP1 + 6
and QP2 ≤ QP1 + 6, respectively. When QP2 = QP1 + 6, we
have that the corresponding quantization step size is halved,
i.e., Q2 = 2Q1. Although the dependent rate model is similar
to those derived in [5] and [14], the context is different.
That is, the dependent rate models in [5] and [14] were
obtained for temporal dependence while ours arise from spatial
dependence.

The accuracy of the proposed rate model given in (11) was
verified experimentally with the EL of CIF at the frame rate of
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Fig. 8. Proposed rate model for the EL as a function of the BL.

TABLE III

Verification of the Proposed Rate Model

EL Resolution Sequence Accuracy (%)

CIF

Flower 82.75
Bridge-far 96.13
Tempete 93.61

News 93.12
Stefan 95.04

Carphone 87.37
Salesman 92.11

4CIF
Ice 80.06

Harbour 93.44
Soccer 91.59

Average 90.52

15 frames/s or 4CIF resolution at the frame rate of 30 frames/s.
We generated 500 samples for each test sequence with various
Q1 and Q2 values. The mean results in accuracy are shown
in Table III, and the rate estimation accuracy is calculated as
(10). We see that the proposed rate model has an accuracy of
about 90.52% on average.

C. Solution to the Lagrangian Formulation

The base layer of H.264/SVC is compatible with
H.264/AVC, and the Cauchy-density-based R-D model has a
good balance between complexity and estimation accuracy for
frame-based R-D modeling H.264/AVC. Thus, for R1(Q1) and
D1(Q1) of the BL, we adopt the following models [13]:

D1(Q1) = b · Q
β
1 and R1(Q1) = a · Q−α

1 (12)

where a, b, α, and β are model parameters. With the EL R-D
models given in (9) and (11), and the BL R-D models in (12),
we are ready to solve the bit allocation problem for H.264/SVC
with two spatial layers. Since the proposed R-D models are
defined by completely closed-form expressions, a numerical
solution to the Lagrange formulation in (3) becomes feasible.
Note also that the rate model in (11) can be further simplified
when we impose the following constraint by taking account
of the monotonicity condition:

0 ≤ QP2 − QP1 ≤ 6. (13)

This constraint is usually met by the optimal solution
(Q∗

1, Q
∗
2). It was also recommended generally by the Joint

Video Team (JVT) [2] that the quantization parameter QP2

for the enhancement layer was set to QP1 +4, with QP1 being
the quantization parameter for the base layer.

Under the above conditions, the Lagrangian cost function
in (3) can be written as

J(Q, λ) =
1

2

(
b · Q

β1
1 + (ζQ1 + υ) · Q

β2
2

)
+ λ · (

(1 + r) · aQ−α
1 + (s − r) · a(Q2/2)−α − RT

)
(14)

To derive the optimal solution of the Lagrangian cost function,
we take the partial derivatives with respect to Q1, Q2, and λ,
which yields the following three equations:

bβ1 · Q
(β1−1)
1 + ζ · Q

β2
2 − aα(1 + r)Q(−α−1)

1 · λ = 0

υβ2 · Q
(β2−1)
2 − 1/2aα · (s − r)(Q2/2)(−α−1) · λ = 0

a · (1 + r)Q−α
1 + a · (s − r)(Q2/2)−α − RT = 0. (15)

Note that there are three variables Q1, Q2, and λ in (15) while
other parameters are determined in an earlier stage. To be
more specific, the proposed algorithm consists of three stages:
1) pre-encoding for model parameter decision; 2) Q-decision
to encode at a target bit rate; and 3) actual encoding based
on the allocated rate. The model parameters are determined
in the pre-encoding stage. Then, we compute Q1 and Q2 that
optimize the Lagrangian cost function numerically. We can
determine quantization parameters, QP1 and QP2, using the
one-to-one correspondence between quantization step-size Q

and quantization parameter QP [15]. Finally, each layer in the
current basic coding unit is encoded to produce the final bit
stream at the target bit rate.

D. Experimental Results: Bit Allocation With Two Spatial
Layers

The proposed two-spatial-layer bit allocation algorithm was
implemented with JSVM 9.6 using the scalable baseline pro-
file. Since there is no spatial layer bit allocation algorithm in
the current version of JSVM, we compare the performance
of the proposed two-layer bit allocation algorithm against that
of the full search (FS) method. With the FS, the input video
sequence is encoded with all possible Q1 and Q2 values, which
are set constant for the whole sequences in the FS algorithm,
and selects the one with the best R-D performance, showing
the minimum value of the average distortion of BL and EL,
while meeting the requirement of the total target bit rate.
Then, the optimal solution is determined as the (Q1, Q2) pair
that provides the minimum average distortion while satisfying
the target bit rate constraint. Clearly, the R-D curve obtained
by the FS provides the optimal R-D tradeoff among all bit
allocation schemes since the solution is determined based on
the real R-D data.

One performance benchmark was obtained using the ref-
erence JSVM FixedQPEncoder tool under the SVC test con-
ditions as defined in JVT-Q205 [16]. To employ the JSVM
FixedQPEncoder tool, each layer is first assigned an initial
QP. Then, the encoder performs the encoding process with a
trial QP in each iteration, where the generated bit rate value is
further used as the feedback information to adjust the trial QP
value in the next iteration. The iteration terminates when the
generated bit rate is within the acceptable mismatch range of
the target bit rate or exceeds the predefined maximal threshold.
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TABLE IV

Two-Layer Setting and the Experimental Configuration in

Spatial Scalable Coding

Scenario Layer No. Format Frame Rate Initial QP

I
1 QCIF 15 32
2 CIF 15 32

II
1 CIF 30 32
2 4CIF 30 32

Profile Scalable SearchMode FastSearch
Baseline SearchRange 16

Otherwise, the QP is further computed and updated using the
logarithmic search method. The number of multiple encoding
passes is called the iteration number.

Two test scenarios and corresponding SVC configurations
are given in Table IV. For Scenario I, two layers are of
QCIF–CIF format with four test sequences (Bus, Football,
Foreman, and Mobile) at the frame rate of 15 frames/s. For
Scenario II, the two layers are of CIF–4CIF format with
another four test sequences (City, Crew, Soccer, and Harbour)
at a frame rate of 30 frames/s. These test sequences have
different spatial complexities. Layer 1 is the base layer, which
is encoded without any inter-layer prediction. Layer 2 is the
spatial enhancement layer using adaptive inter-layer prediction
from the base layer. For the FixedQPEncoder tool, the initial
QP value is set to 32 in both layers. The GOP size is set to 1
to provide the IPPP structure.

The frame-by-frame peak signal-to-noise ratio (PSNR) per-
formance comparison of three spatial bit allocation algorithms
is shown in Figs. 9 and 10 for Scenarios I and II, respectively.
From these figures, we see the proposed bit allocation method
outperforms the JSVM FixedQPEncoder tool significantly.
While the gap between the optimal performance (obtained by
FS) and the proposed scheme is within 1 dB in both scenarios.
It is worthwhile to point out that the performance of the
proposed two-layer bit allocation scheme is not sensitive to
frame rates or spatial resolutions of the underlying video.

We summarize the coding results using the proposed bit
allocation algorithm and JSVM reference software algorithm
in Tables V and VI for Scenarios I and II, respectively. The
rate control method using the proposed bit allocation algorithm
achieves an average of 1.82 dB and 1.38 dB PSNR gains over
the JSVM in Scenarios I and II, respectively. Both methods
can yield the desired rate with a small deviation (less than
3% of the target rate). We also show the iteration numbers
of the JSVM FixedQPEncoder and the proposed scheme in
Tables V and VI. The proposed bit allocation algorithm
demands a fixed number of iteration. We have to determine
the parameters of the distortion model and the rate model of
BL and EL. Parameters b and β1 of BLs distortion model and
parameters a and α of BLs rate model can be calculated in
the first two encoding passes. Parameters ζ, υ, and β2 of ELs
distortion model can be calculated in the first three encoding
passes. The rate model of ELs rate model is determined by two
slope values, which demands three encoding passes. To sum-
marize, we need three encoding iterations to build all required
R and D models. Furthermore, we need to encode a frame once
to meet the target bit based on these R and D models. As a

Fig. 9. PSNR value as a function of the frame number with the proposed,
JSVM and FS bit allocation schemes for Scenario I. (a) Football, RT =
768 kb/s. (b) Foreman, RT = 192 kb/s. (c) Mobile, RT = 256 kb/s. (d) Bus,
RT = 384 kb/s.

Fig. 10. PSNR value as a function of the frame number with the proposed,
JSVM and FS bit allocation schemes for Scenario II. (a) City, RT = 1024 kb/s.
(b) Crew, RT = 1536 kb/s. (c) Soccer, RT = 1536 kb/s. (d) Harbour, RT =
1536 kb/s.

result, the total iteration number is four. In contrast, JSVM
reference software algorithms demand a much higher number
of iteration, which implies a higher computational complexity.
These results demonstrate the effectiveness and the robustness
of the proposed bit allocation algorithm for video sequences
of various spatial characteristics.

For further evaluation, we compare the proposed algorithm
with two previous SVC rate control algorithms proposed by
Xu et al. [8] and Liu et al. [10]. The rate control algorithm in
[8] targeted at spatial and CGS scalable coding in SVC. First, a
rate-distortion model extended from TMN8 was applied to I/P
frames. Then, a two-pass QP refinement process was adopted.
In [10], a linear R-Q model estimation of texture bits was
used for rate control. By exploiting the correlations between
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TABLE V

Performance of the Proposed Algorithm and JSVM Method for QCIF−CIF Two Layers in Terms of Output Rate, PSNR, PSNR Gain,


 Rate, and Iteration Number

Seq. Target Rate Method PSNR PSNR Rate 
 Rate Iter.
(kb/s) (dB) Gain (dB) (kb/s) (kb/s)
384 Proposed 31.43 1.6 376.45 −7.55 4

JSVM 29.83 386.97 +2.97 57
Bus 512 Proposed 32.57 0.83 495.14 −16.86 4

JSVM 31.74 527.28 +5.28 40
768 Proposed 33.98 1.8 764.58 −3.42 4

JSVM 32.18 788.86 +0.32 45
768 Proposed 34.87 1.89 779.1 +10.9 4

JSVM 32.98 776.04 +8.04 57
Football 1024 Proposed 37.24 2.25 1020.88 −3.12 4

JSVM 34.99 1036.89 +12.89 26
1536 Proposed 38.53 3.51 1524.47 −11.53 4

JSVM 35.02 1519.54 −15.46 31
192 Proposed 35.01 1.66 194.78 +2.78 4

JSVM 33.35 192.59 +0.59 27
Foreman 256 Proposed 36.85 1.95 254.42 −1.58 4

JSVM 34.90 254.57 −1.43 36
384 Proposed 38.12 1.18 388.23 +4.23 4

JSVM 36.94 380.66 −3.34 37
256 Proposed 27.76 1.94 257.11 +1.11 4

JSVM 25.82 250.26 −5.74 36
Mobile 384 Proposed 29.04 1.39 382.65 −1.35 4

JSVM 27.65 372.88 −11.12 27
512 Proposed 31.24 1.88 520.13 +8.13 4

JSVM 29.36 514.19 +2.93 39
Average PSNR gain (dB) 1.82

TABLE VI

Performance of the Proposed Algorithm and JSVM Method for CIF−4CIF Two Layers in Terms of Output Rate, PSNR, PSNR Gain,


 Rate, and Iteration Number

Seq. Target Rate Method PSNR PSNR Rate 
Rate Iter.
(kb/s) (dB) Gain (dB) (kb/s) (kb/s)
1024 Proposed 34.37 1.47 1027.55 +3.55 4

JSVM 32.90 1019.50 −5.50 24
City 1536 Proposed 35.42 1.85 1519.14 −16.86 4

JSVM 33.84 1541.56 +5.56 7
2048 Proposed 36.98 2.37 2041.23 −6.77 4

JSVM 34.61 1987.71 −60.29 36
1536 Proposed 35.65 1.16 1512.36 −23.64 4

JSVM 34.49 1485.36 −50.64 39
Crew 2048 Proposed 37.25 1.17 2033.16 −14.84 4

JSVM 36.08 2041.31 −6.69 17
3072 Proposed 38.68 1.66 3044.37 −27.63 4

JSVM 37.02 2967.51 −104.49 31
1536 Proposed 35.54 1.24 1532.88 −3.12 4

JSVM 34.30 1518.50 −17.50 30
Soccer 2048 Proposed 37.51 1.50 2047.16 −0.84 4

JSVM 36.01 2041.29 −6.71 9
3072 Proposed 38.99 1.32 3079.64 +6.64 4

JSVM 37.67 3035.01 −26.99 28
1536 Proposed 30.76 1.12 1522.49 −13.51 4

JSVM 29.64 1542.01 +6.01 13
Harbour 2048 Proposed 31.94 1.06 2043.11 −4.89 4

JSVM 30.88 2053.93 +5.93 10
3072 Proposed 33.37 1.02 3088.57 +16.57 4

JSVM 32.35 2977.31 −94.69 51
Average PSNR gain (dB) 1.38
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Fig. 11. Performance comparison of three algorithms for the averaged
PSNR value of the BL and the EL as a function of the frame number in
Scenario I. (a) Football, RT = 768 kb/s. (b) Foreman, RT = 192 kb/s.
(c) Mobile, RT = 256 kb/s. (d) Bus, RT = 384 kb/s.

different layers, a switched model was proposed to predict the
mean absolute difference (MAD) of residual texture based on
the available MAD information of the previous frame in the
same EL or the same frame in its BL. Consequently, abrupt
MAD fluctuations in the EL could be predicted properly.

The results are summarized in Tables VII and VIII. For
Scenario I, the proposed algorithm achieves an averaged PSNR
gain of 1.14 dB and 1.27 dB over Liu’s algorithm and Xu’s al-
gorithm, respectively. For Scenario II, the proposed algorithm
achieves an averaged PSNR gain of 0.96 dB and 1.06 dB over
Liu’s and Xu’s algorithms, respectively. The averaged PSNR
value of the BL and the EL is plotted as a function of the frame
number in Figs. 11 and 12. We see that the frame quality using
our algorithm is the best among the three most often. Besides,
the proposed algorithm has the lowest PSNR variation across
frames. Since these two approaches are all model-based rate
control algorithms, their complexities are also low. For Xu’s
algorithm, the iteration number is four because of the use
of the two-pass encoding at each layer. For Liu’s algorithm,
since there is no any feedback used to adjust the current bit
allocation scheme, it is a one-pass encoding process and its
iteration number is two.

We concentrate on the optimal bit allocation scheme by
considering layer dependence. Fig. 13 shows the optimal ratio
of the BL rate to the sum of the BL rate and the EL rate,
with Foreman and Football sequences. It is observed that the
ratio for frames of higher spatial complexity (or, equivalently,
frames with a large amount of higher frequency components)
is smaller. This is consistent with our signal decomposition
analysis in Section III; namely, the ratio is smaller for frames
that contain a large amount of high frequency components.
For example in Fig. 13, the difference of the ratios is clear
depending on the picture complexity. With the camera chang-
ing from running football players to the background grass,
the ratio increases from 0.5 on average in a period to 0.7.
With the scene change in Foreman sequence, the ratio curve

TABLE VII

Performance Comparison of the Proposed Algorithm, Liu’s

Algorithm and Xu’s Algorithm for the QCIF−CIF Two Layers

in Terms of the Output Rate, PSNR and 
 Rate

Seq. Target Rate Method PSNR Rate 
Rate
(kb/s) (dB) (kb/s)
384 Proposed 31.43 376.45 −7.55

Liu’s 30.56 384.43 +0.43
Xu’s 30.56 387.28 +3.28

512 Proposed 32.57 495.14 −16.86
Bus Liu’s 32.06 512.15 +0.15

Xu’s 31.91 515.38 +3.38
768 Proposed 33.98 764.58 −3.42

Liu’s 33.57 769.08 +1.08
Xu’s 33.89 771.54 +3.54

768 Proposed 34.87 779.10 +10.90
Liu’s 33.21 768.84 +0.84
Xu’s 33.35 771.38 +3.38

1024 Proposed 37.24 1020.88 −3.12
Football Liu’s 34.95 1027.34 +3.34

Xu’s 35.09 1027.49 +3.49
1536 Proposed 38.53 1524.47 −11.53

Liu’s 37.65 1538.75 +2.75
Xu’s 37.74 1539.63 +3.63

192 Proposed 35.01 194.78 +2.78
Liu’s 33.81 192.39 +0.39
Xu’s 33.73 195.23 +3.23

256 Proposed 36.85 254.42 −1.58
Foreman Liu’s 35.11 256.66 +0.66

Xu’s 35.10 259.23 +3.23
384 Proposed 38.12 388.23 +4.23

Liu’s 36.97 384.65 +0.65
Xu’s 36.99 387.25 +3.25

256 Proposed 27.76 257.11 +1.11
Liu’s 26.77 256.67 +0.67
Xu’s 25.81 259.25 +3.25

384 Proposed 29.04 382.65 −1.35
Mobile Liu’s 28.52 384.85 +0.85

Xu’s 27.90 387.28 +3.28
512 Proposed 31.24 520.13 +8.13

Liu’s 29.83 512.41 +0.41
Xu’s 29.30 515.29 +3.29

decreases and fluctuates as shown in Fig. 13. Fig. 14 shows
the buffer occupancy for the proposed bit allocation scheme.
We see from these plots that the proposed rate control can
maintain suitable buffer occupancy levels. In other words, the
proposed bit allocation algorithm can prevent the buffer from
overflow or underflow.

We also provide the comparison of the visual quality of
reconstructed video sequences using these three bit allocation
schemes. We show the ninth frame of the Foreman sequence
with two layers (of CIF and QCIF resolutions) in Fig. 15. Since
the spatial scalability is our main concern, we pay attention
to the relatively still region of the textured background such
as the walls of the building. Some regions are highlighted by
rectangles for ease of comparison. We could also observe that
the visual quality by the proposed algorithm outperforms that
by JSVM for the test sequences. More importantly, it is very
close to that of the optimal solution by the FS method.
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Fig. 12. Performance comparison of three algorithms for the averaged PSNR
value of BL and EL as a function of the frame number in Scenario II.
(a) City, RT = 1024 kb/s. (b) Crew, RT = 1536 kb/s. (c) Soccer, RT =
1536 kb/s. (d) Harbour, RT = 1536 kb/s.

Fig. 13. Optimal bit rate ratio obtained by the proposed algorithm, R1/(R1 +
R2), as a function of the frame number. (a) Football, QCIF–CIF. (b) Foreman,
QCIF–CIF.

Fig. 14. Illustration of the buffer occupancy for each layer as a function
of the frame number. (a) Football, BL. (b) Football, EL. (c) Foreman, BL.
(d) Foreman, EL.

TABLE VIII

Performance Comparison of the Proposed Algorithm, Liu’s

Algorithm and Xu’s Algorithm for the CIF−4CIF Two Layers

in Terms of the Output Rate, PSNR, and 
 Rate

Seq. Target Rate Method PSNR Rate 
 Rate
(kb/s) (dB) (kb/s)
1024 Proposed 34.37 1027.55 +3.55

Liu’s 32.86 1025.51 +0.51
Xu’s 32.71 1030.38 +6.38

1536 Proposed 35.42 1519.14 −16.86
City Liu’s 34.31 1537.83 +1.83

Xu’s 34.39 1542.48 +6.47
2048 Proposed 36.98 2041.23 −6.77

Liu’s 35.33 2050.80 +2.80
Xu’s 35.47 2054.47 +6.47

1536 Proposed 35.65 1512.36 −23.64
Liu’s 35.25 1536.52 +0.52
Xu’s 34.17 1542.45 +6.45

2048 Proposed 37.25 2033.16 −14.84
Crew Liu’s 36.41 2048.63 +0.63

Xu’s 35.52 2054.48 +6.48
3072 Proposed 38.68 3044.37 −27.63

Liu’s 37.97 3072.89 −0.89
Xu’s 37.29 3068.35 −3.65

1536 Proposed 35.54 1532.88 −3.12
Liu’s 34.89 1538.77 +0.77
Xu’s 34.77 1542.49 +6.48

2048 Proposed 37.51 2047.16 −0.84
Soccer Liu’s 36.08 2052.57 +4.57

Xu’s 36.04 2054.50 +6.50
3072 Proposed 38.99 3079.64 +6.64

Liu’s 37.77 3076.91 −26.99
Xu’s 37.89 3078.67 +6.67

1536 Proposed 30.76 1522.49 −13.51
Liu’s 29.99 1536.44 +0.44
Xu’s 30.31 1542.44 +6.44

2048 Proposed 31.94 2043.11 −4.89
Harbour Liu’s 31.15 2048.13 +0.13

Xu’s 31.64 2054.48 +6.48
3072 Proposed 33.37 3088.57 +16.57

Liu’s 32.86 3070.30 −1.70
Xu’s 33.49 3078.63 +6.63

IV. Bit Allocation for Multiple Spatial Layers

Although the discussion in Section III is restricted to the
case of two-layer bit allocation, we can generalize its solution
to the case of multiple spatial layers by recursion. Our idea is
illustrated in Fig. 16. We consider an example of three layers
consisting of QCIF, CIF, and 4CIF resolutions as shown in
the top row of this figure. At the first decomposition stage,
we apply the two layer decomposition and obtain the BL
of the CIF resolution and the EL of the 4CIF resolution.
The bit budgets for the BL and the EL will be assigned.
Then, we perform the second stage decomposition on the
BL video from the previous stage so that the new BL is
of the QCIF resolution, the new EL of the CIF resolution
and the total bit budget has to be the same as that assigned
to the BL in the first stage. The general N-layer case is
given in the second row of the figure. The shaded and the
regular blocks in Fig. 16 represent the BL and the EL,
respectively.
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Fig. 15. Visual quality comparison among the proposed, JSVM and FS bit allocation schemes encoded by two spatial layers (QCIF–CIF), where the ninth
frame of the Foreman sequence is shown. (a) FS, CIF. (b) FS, QCIF. (c) Proposed, CIF. (d) Proposed, QCIF. (e) JSVM, CIF. (f) JSVM, QCIF.

Fig. 16. Decomposition of a multilayer bit allocation problem into a se-
quence of two-layer bit allocation problems by recursion.

To evaluate the bit allocation algorithm for SVC with the
multiple spatial layers, three layers were simulated with the
setting and SVC configuration given in Table IX. Layer 1 is
the base layer. Layers 2 and 3 are spatial enhancement layers,
both of which are encoded using adaptive inter-layer prediction
from their corresponding base layers (Layer 1 is the BL of
Layer 2, and the integration of Layers 1 and 2 forms the base
layer of Layer 3). The initial QP value is set to 32 and the
frame rate is 30 frames/s. We tested four SVC sequences (City,
Crew, Harbour, and Soccer) of various spatial complexities.
The GOP size is set to 1 to provide IPPP structure. We
compare the coding performance of three schemes; namely,
the FS scheme, the proposed bit allocation scheme and the
JSVM FixedQPEncoder.

The frame-by-frame PSNR performance of the three bit
allocation methods is compared in Fig. 17. Again, we see
that the proposed bit allocation scheme outperforms the JSVM
significantly while the FS method provides the optimal results.
We also compare the R-D performance of the proposed
algorithm with that of the simulcast in Fig. 18, where two or
more single-layer streams are transmitted together to provide
the same functionality as a scalable one. We show results for
the two-layer case in Fig. 18(a) and (b), where the R-D perfor-
mance of the bit stream of QCIF resolution is represented by
a triangle curve, which is the same for both the proposed and
the simulcast schemes. The R-D performance of the proposed
algorithm and the simulcast method is represented by the circle
and the square curves, respectively. The bit streams of these
two curves can provide coded video of the QCIF and the CIF
resolutions at the same time. We see clearly that the proposed

TABLE IX

Setting of Three-Layer and Configuration in Spatial Scalable

Coding

Layer No. Format Frame Rate Initial QP
1 QCIF 30 32
2 CIF 30 32
3 4CIF 30 32

Profile Scalable SearchMode FastSearch
Baseline SearchRange 16

Fig. 17. PSNR value as a function of the frame number with the proposed,
JSVM and FS bit allocation schemes for the three-layer case. (a) City, RT =
1024 kb/s. (b) Crew, RT = 1536 kb/s. (c) Soccer, RT = 1536 kb/s. (d) Harbour,
RT = 1536 kb/s.

algorithm outperforms the simulcast method substantially. This
is especially true for video with a lot of motion. Results for
the three-layer case are shown in Fig. 18(c) and (d), where
the comparison is made for three scenarios: 1) the base layer
(QCIF) only; 2) the bottom two layers (QCIF and CIF); and
3) all three layers (QCIF, CIF and 4CIF). Again, we see
that the spatial scalable coding of the proposed algorithm
outperforms the simulcast in coding efficiency for the later two
scenarios.
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TABLE X

Performance of the Proposed and JSVM Schemes for Three-Layer in Terms of Output Rate, PSNR, 
 Rate and Iteration Number

Seq. Target Rate Method PSNR Rate 
 Rate Iter.
(kb/s) (dB) (kb/s) (kb/s)
1024 Proposed 33.96 1027.55 +3.55 6

JSVM 32.37 1013.67 −10.33 53
City 1536 Proposed 35.42 1519.14 −16.86 6

JSVM 33.84 1539.76 +3.76 44
2048 Proposed 36.78 2041.23 -6.77 6

JSVM 35.04 1959.94 −88.06 53
1536 Proposed 34.56 1512.36 −23.64 6

JSVM 33.24 1519.13 −13.87 79
Crew 2048 Proposed 35.70 2033.16 −14.84 6

JSVM 34.37 2057.61 +9.61 27
3072 Proposed 37.43 3044.37 −27.63 6

JSVM 36.13 2913.41 −158.59 25
1536 Proposed 30.02 1532.88 −3.12 6

JSVM 28.89 1542.67 +6.67 61
Harbour 2048 Proposed 31.67 2047.16 −0.84 6

JSVM 30.14 2014.38 −33.62 52
3072 Proposed 32.97 3079.64 +6.36 6

JSVM 31.88 2976.06 −95.94 62
1536 Proposed 34.66 1532.88 −3.12 6

JSVM 33.24 1521.85 −15.15 59
Soccer 2048 Proposed 36.21 2047.16 −0.84 6

JSVM 34.77 2041.40 −6.60 47
3072 Proposed 38.99 3079.64 +6.36 6

JSVM 36.69 3057.04 −14.86 31

Coding results of the proposed algorithm and JSVM are
summarized in Table X, where we show the averaged PSNR
value, the deviation from the target bit rate and the number of
iteration required. The proposed bit allocation algorithm has
an average PSNR gain of 1.48 dB over JSVM. The proposed
algorithm has a fixed number of iteration whereas that by
the JSVM FixedQPEncoder is determined by the iteration
stopping criteria introduced in Section III-D. For the first
two-layer decomposition, we need three encoding passes to
build the R and D models as stated in Section III-D. We
need two more encoding passes to obtain parameters ζ and
υ of the new EL. Since parameter β2 of the two EL models
is almost same, it is only computed once. One additional
encoding pass is needed to encode the whole frame according
to these R and D models. Thus, the total number of itera-
tion is equal to 6. The JSVM FixedQPEncoder has a much
higher iteration number, which implies a higher computational
complexity.

The frame-to-frame quality comparison among the proposed
algorithm, the rate control algorithms proposed by Xu et al.
[8] and Liu et al. [10] is given Fig. 19. It is clear that
the proposed method achieves better performance. More R-
D comparison data are shown in Table XI. The proposed
algorithm achieves an averaged PSNR gain of 1.55 dB and
1.65 dB over Liu’s algorithm and Xu’s algorithm, respec-
tively.

Finally, we compare the visual quality of reconstructed
video using the three bit allocation schemes for the three-
layer case. We show the 5th frame of the City sequence of
4CIF resolution in Fig. 20. We see that the proposed bit

Fig. 18. Illustration of the R-D performance comparison between simulcast
and the proposed algorithm. (a) Foreman, two-layer. (b) Football, two-layer.
(c) Harbour, three-layer. (d) Crew, three-layer.

allocation algorithm gives a better result than JSVM and
provides a result close to the FS scheme. In particular, we
could observe that regions with high spatial complexity (those
enclosed by rectangles) are well preserved by the proposed
algorithm whereas they are not very clear by the JSVM
benchmark.
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TABLE XI

Performance of the Proposed, Liu’s and Xu’s Bit Allocation

Algorithms for Three-Layer in Terms of the Output Rate,

PSNR, and 
 Rate

Seq. Target Rate Method PSNR Rate 
 Rate
(kb/s) (dB) (kb/s)
1024 Proposed 33.96 1027.55 +3.55

Liu’s 33.13 1025.66 +1.66
Xu’s 33.13 1034.55 +10.55

1536 Proposed 35.42 1519.14 −16.86
City Liu’s 34.65 1537.89 +1.66

Xu’s 34.85 1546.64 +10.64
2048 Proposed 36.78 2041.23 −6.77

Liu’s 35.73 2051.02 +3.02
Xu’s 36.00 2058.55 +10.55

1536 Proposed 34.56 1512.36 −23.64
Liu’s 32.73 1536.54 +0.54
Xu’s 32.43 1546.62 +10.62

2048 Proposed 35.70 2033.16 −14.84
Crew Liu’s 34.01 2048.63 +0.63

Xu’s 33.87 2058.54 +10.54
3072 Proposed 37.43 3044.37 −27.63

Liu’s 35.88 3072.48 +0.48
Xu’s 35.83 3071.84 −0.16

1536 Proposed 30.02 1532.88 −3.12
Liu’s 28.55 1536.44 +0.44
Xu’s 28.60 1546.68 +10.68

2048 Proposed 31.67 2047.16 −0.84
Harbour Liu’s 29.68 2048.86 +0.84

Xu’s 29.94 2058.76 10.76
3072 Proposed 32.97 3079.64 +6.36

Liu’s 31.37 3072.35 +0.35
Xu’s 31.79 3074.32 +2.32

1536 Proposed 34.66 1532.88 −3.12
Liu’s 33.13 1540.81 +4.80
Xu’s 32.40 1546.62 +10.62

2048 Proposed 36.21 2047.16 −0.84
Soccer Liu’s 34.46 2053.77 +5.76

Xu’s 33.84 2058.58 +10.58
3072 Proposed 38.99 3079.64 +6.36

Liu’s 36.40 3080.38 +8.38
Xu’s 35.87 3076.12 +4.12

V. Comparison Between GOP-Based and

Frame-Based Bit Allocation

Two bit allocation strategies for the spatial scalability were
discussed in Section II. Strategy I uses a GOP as the op-
timization unit, where all frames of different types in each
spatial layer are treated as a combined unit. For one GOP,
we decouple the dependent relation between spatial layers
and allocate bits to these layers in the first step. Then, we
optimize the quantization parameter for all frames in one
layer in the second step. For this reason, we call Strategy I

Fig. 19. Comparison of the frame-to-frame PSNR values of the proposed,
Xu’s and Liu’s bit allocation algorithms for the three-layer case. (a) City,
RT = 1024 kb/s. (b) Crew, RT = 1536 kb/s. (c) Soccer, RT = 1536 kb/s.
(d) Harbour, RT = 1536 kb/s.

as the GOP-based bit allocation with respect to the spatial
scalability. The advantage of the GOP-based approach is that
it can compensate the discrepancy of the spatial layer R-D
model in the first step with the frame-based R-D model in
the second step. On the other hand, it demands larger delay in
the encoding process. The GOP-based approach was examined
before by authors in [11]. In contrast, Strategy II allocates
the bit budget to each frame set and then perform the bit
allocation between spatial layers within one frame. Thus, we
call Strategy II the frame-based bit allocation. The frame-based
approach can reduce the encoding latency and is suitable for
conversational applications.

Regardless of encoding time delay, it is interesting to
compare the coding performance of these two bit allocation
strategies for the spatial scalability of H.264/SVC. Here, we
choose the two-layer case in the test with Scalable Baseline
Profile, where Layer 1 is the BL and Layer 2 is EL using
adaptive inter-layer prediction from BL. We have encoded
three video sequences with low to high spatial complexity.
They are: Akiyo, Football and City. The GOP size is set to
8 and 16, respectively.

The performance of these two strategies is compared in
Fig. 21. When the target bit rate is lower, we see from
result figures that the GOP-based scheme achieves better R-
D performance than the frame-based scheme. When the bit
budget increases, the difference between these two strategies
becomes smaller. For the video sequences with high spa-
tial complexity such as City, the GOP-based scheme takes
full advantage of the temporal dependence between adjacent
frames within the same spatial layer. Consequently, it has
a better result than the frame-based scheme. These results
indicate that coding efficiency can be improved by increasing
the GOP size at the tradeoff of longer encoding/decoding
delay.
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Fig. 20. Visual quality comparison among the proposed, JSVM and FS bit allocation schemes encoded by three spatial layers (QCIF–CIF–4CIF), where the
fifth frame of the City sequence is shown. (a) FS. (b) Proposed. (c) JSVM.

Fig. 21. R-D performance comparison between GOP-based and frame-based
bit allocation schemes. (a) Football, GOP = 8. (b) Football, GOP = 16.
(c) City, GOP = 8. (d) City, GOP = 16.

VI. Conclusion and Future Work

We proposed a model-based spatial layer bit allocation
algorithm for H.264/SVC in this paper. We first focused on
the case of two spatial layers, derived the rate and distortion
models analytically, and developed a low-complexity (in terms
of a smaller iteration number) bit allocation algorithm by
considering the dependent layer in the spatial scalability.
Then, we extended this result to multilayer bit allocation
by performing the two-layer allocation scheme recursively.
Finally, we compared the performance of GOP-based and
frame-based spatial layer bit allocation schemes at a fixed
temporal resolution. The superior performance of the proposed
spatial layer bit allocation algorithm was demonstrated using
the reference software JSVM and two prior H.264/SVC rate
control algorithms as the benchmarks.

Although the reconstructed lower-resolution video repre-
sents the low frequency information in spatial scalable video,
it may not necessarily be the most suitable reference for inter-
layer prediction. Actually, the spatial predictor has to compete
with the temporal predictor. For example, for video sequences

with slow motion and high spatial detail, the temporal pre-
diction may be more effective than the spatial prediction. It
is a challenging and open problem to solve the joint spatial-
temporal bit allocation problem for H.264/SVC, which has
been first considered with H.263+ in [17]. It is desirable
to reduce these two-dimension dependent relations to further
improve the R-D performance of the SVC bit stream and
reduce the quality fluctuation between frames.
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