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ABSTRACT
Modeling the nonstationarity of image signals is one of the
challenging issues for image interpolation. In this paper, we
propose a similarity probability modeling to faithfully charac-
terize the nonstationarity of image signals, and present a novel
image interpolation algorithm based on the proposed model.
The missing pixels are estimated in groups by weighted block
estimation. The weight of each pixel inside the block is de-
fined as the similarity probability between itself and the cen-
tered to-be-interpolated pixel. It is demonstrated by the exper-
imental results that the proposed method preserves the edge
structures of the interpolated images better than the state-of-
the-art interpolation methods. Annoying artifacts nearby the
sharp edges are also greatly reduced.

Index Terms— Image interpolation, similarity probabil-
ity modeling, block estimation

1. INTRODUCTION

Image interpolation is the process of producing high-resolution
(HR) images from its low-resolution (LR) counterparts. Un-
derstanding and modeling the inherent image structures partly
reflected by LR images is the key task and challenge for image
interpolation. Conventional interpolation methods, such as
bilinear and bicubic interpolation regard the ground-truth HR
images to be continuous and smooth. These methods work
well in smooth regions but fail to capture the fast varying
property around edge structures, suffering from the problem
of aliasing, blurring or ringing artifacts.

It is well recognized that edge structure is one of the most
important image features in natural images. To address the
problems of conventional interpolation methods, many spatial
adaptive interpolation methods have been proposed to prefer-
ably preserve the edge structures. A major challenge for de-
veloping such adaptive interpolation algorithm is modeling
the nonstationarity of image signals, in particular the edge
structures. Fortunately, geometric regularity property of nat-
ural images (i.e., image intensity field evolves more slowly
along the edge orientation than across the edge orientation)
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gives the prior knowledge to model the image signals. Edge-
adaptive methods [1, 2, 3] explicitly extract the edge struc-
tural information, such as edge directions and widths. Then
missing pixels are fitted by directional interpolating along the
detected edge directions to enhance the geometric regularity
property of the interpolated image. However, it is difficult
to carry out this process when irregular textures or noises
are present in the LR images. Instead of using explicitly ex-
tracted geometry information, other methods [4, 5, 6, 7] im-
plicitly exploit the inherent image structures in the LR im-
ages through statistical models. Li and Orchard [4] proposed
a covariance-based method based on the autoregressive (AR)
model to produce better interpolation results along arbitrar-
ily oriented edge. The HR covariances are approximated by
the LR covariances which are estimated under the assumption
that the statistics are kept stationary in a local window. Zhang
and Wu [7] further introduced more correlations on differ-
ent directions into the AR model and jointly estimated the
missing HR pixels with the imposed statistical consistency
constraint in the local window. These implicit methods are
grounded when the piecewise statistical stationary assump-
tion in a local window is tenable. However, the richness and
varying scales of textures and edges in natural images violate
the validity of the stationary assumption.

In this paper, we propose a new implicitly statistical
method for image interpolation. First, a similarity probability
modeling is proposed to faithfully model the image signal
which is adaptive to the local image structure at different
scales. Then, according to this modeling, an improved in-
terpolation algorithm with the similarity modulated block
estimation is presented. Missing HR pixels in a block (lo-
cal window) are jointly estimated by minimizing an energy
function of model fitting errors. Experimental results show
that the proposed method is more adaptive to the local image
structures, and thus reduces most of the artifacts caused by
the large disparity in local image structures.

The rest of the paper is organized as follows. Sec. 2 gives
brief reviews and remarks to the AR model. Sec. 3 describes
the new proposed image interpolation algorithm based on a
novel similarity probability modeling. Experimental results
and a comparison study with the state-of-the-art interpolation
techniques are presented in Sec. 4. Finally, concluding re-
marks are given in Sec. 5.

2011 18th IEEE International Conference on Image Processing

978-1-4577-1302-6/11/$26.00 ©2011 IEEE 1201

LiuJiaying
高亮



2. AR INTERPOLATION MODEL

AR model is a type of random process in statistics and signal
processing, which is often used to model and predict various
types of natural phenomena. A 2-D image signal I can be
modeled as AR process as follows,

I(i,j) =
∑

(x,y)∈Ω

ψ(x,y)I(i+x,j+y) + ε(i,j), (1)

where ψ(x,y) are the model parameters, ε(i,j) is a white noise,
and Ω is a local neighborhood around the pixel I(i,j). The
number of neighbors in Ω decides the order of the model. To
model the nonstationarity of image signals, ψ(x,y) need to be
adaptive to the local pixel structure around pixel I(i,j), e.g.,
giving large coefficients to the neighbors along the local edge
direction. To compute the optimal ψ(x,y), a local window is
assigned and the statistics are considered to be stationary in
the local window [4, 7]. However, the fixed size of local win-
dow can not adapt to the local edge features at different scales.
Especially when the scale of local edge feature is smaller than
the selected local window size, the stationarity assumption is
violated.

An example of the irregular statistical stationarity of im-
age signals within a local window is shown in Fig.1(a). The
statistics vary significantly in different regions, while they
stay stationary or nearly stationary within each region. When
interpolating the centered to-be-interpolated pixel yc, the rea-
sonable local structure information is provided by the samples
within red region (area a1). However, samples in yellow and
green regions (area a2 and a3) will violate the accuracy statis-
tics estimation at yc. A natural idea is to explicitly exclude
those pixels with large disparity in local structures (e.g., pix-
els inside a2 and a3) and only remain those pixels with similar
local structures (e.g., pixels inside a1). However, the hard-
decision of whether a pixel belongs to the statistics station-
ary area is a difficult task when only the LR image pixels are
available. Besides, spatial template of interpolation becomes
too complicated to be implemented. Therefore, a probability-
based method is proposed in this paper to implicitly define the
irregular area which contains similar local structures to that of
pixel yc in the following section.

3. THE PROPOSED INTERPOLATION ALGORITHM

In this section, we present a new implicitly statistical method
for image interpolation. According to the analysis of Section
2, a similarity probability modeling is first proposed to model
the nonstationarity of image signals. Then the new interpola-
tion algorithm is described based on the proposed similarity
probability modeling.

Specifically, all the missing HR pixels are interpolated by
two passes: the first pass is to interpolate the diagonal missing
pixels (gray squares in Fig.1(b)) by using available LR pixels
(black squares in Fig.1(b)); the second pass is for the remain-
ing missing pixels (white squares in Fig.1(b)) by using LR
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Fig. 1. Nonstationarity of image signals and similarity prob-
ability modeling. (a) The irregularity of statistics stationarity.
(b) Similarity probability modeling at high and low resolution
in the first pass. The black and gray squares represent the LR
pixels and missing HR pixels, respectively. (c) An example
of similarity probability distribution in a local window.

pixels and first-pass generated HR pixels. These two passes
differ only in orientation and scale. For convenience, we shall
take the first pass to elaborate our proposed method.

3.1. Similarity probability modeling

First, we introduce the similarity probability to represent the
degree of local structural similarity between two pixels in a lo-
cal window. Similarity in structures between two pixels is de-
fined in the sense that they have similar relationship with their
neighbors. In this paper, we use the the four diagonal neigh-
bors from the 8-connected neighborhood of pixel zi, forming
a vector N⃗zi , to represent its local image structure. Then the
similarity probability between two arbitrary pixels zi and zj
is modeled as the Gaussian function of the Euclidean distance
between their local structure vectors, i.e.,

p(zi, zj) = exp

(
−
∥∥∥N⃗zi − N⃗zj

∥∥∥2
2
/h2
)
, (2)

where the only parameter h controls the shape of the expo-
nential function. In particular, to make the structural simi-
larity between two pixels independent to the image intensity
field, the local structure vector N⃗zi is normalized, N⃗zi =

N⃗zi
+ϵ

max(N⃗zi)+ϵ
, where operator max(·) extracts the maximum

value among the vector elements, and ϵ is some positive con-
stant to avoid the divide-by-zero error.

The similarity probability between each pixel and the cen-
ter pixel yc is computed throughout the local window. Let xi
and yi be the LR pixels and HR pixels in local window W ,
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respectively. The similarity probability between xi and yc are
written as pLi . Similarly, pHi represents the similarity prob-
ability between yi and yc. Fig.1(b) gives the spatial config-
uration for computing similarity probability for HR and LR
pixels. For computing pHi , N⃗yi is directly consist of the four
nearest diagonal LR neighbors on the HR image grid. How-
ever, when computing pLi , representing N⃗xi of LR pixel xi is
a little problematic since the nearest diagonal neighbors of xi
on the HR image grid are the missing HR pixels which are
still unknown. Instead, we construct the vector N⃗xi by tak-
ing the diagonal neighbor pixels on the LR image grid (black
squares with red border in Fig.1(b)) , based on the assumption
that local structures keep stationary at different scales.

Finally, the distribution of the similarity probability
within the local window implicitly characterize the profile
of the statistical stationary area. Fig.1(c) shows an exam-
ple of similarity probability distribution on portion of the
‘Airplane’ image. The pixels with large disparity in local
structures have significantly lower probabilities, which is
shown with darker intensity in the left image. The profile of
stationary area characterized by the probability distribution is
well consistent with the image structure in the local window
(red rectangle on the right image).

3.2. Similarity modulated block estimation

With above similarity modeling, we propose a new interpola-
tion method, in which the missing HR pixels are jointly es-
timated by weighted block estimation. The whole HR image
can be modeled as an AR process based on the Eq.(1) de-
scribed in Section 2. To void the risk of data overfitting, we
use two AR models with model parameters a = {at} and
b = {bt}(t = 1, 2, 3, 4.) instead of an AR model of order 8
to characterize the diagonal and cross-direction correlations,
respectively,

zi =
4∑

t=1

atzi⊗t + ε⊗i , zi =
4∑

t=1

btzi⊕t + ε⊕i , (3)

where zi refers to either LR pixels xi or HR pixels yi in
the local window W . zi⊗t and zi⊕t are the diagonal and
cross-direction neighbors around zi pixel, respectively. ε⊗i
and ε⊕i are the fitting error of diagonal and cross-directional
AR model. The spatial configurations of these two AR mod-
els are figured as Fig.2.

A block of missing HR pixels in W are jointly estimated
by minimizing the following energy function Eq.(4),

E(y,a,b|x) = Ed(y,a|x) + λEc(y,b|x), (4)

where λ is a parameter to balance the energy functions of di-
agonal fitting errors Ed(y,a|x) and cross-directional fitting
errors Ec(y,b|x). According to the modeling described in
Section 3.1, the similarity probability pi actually indicates the
consistency of AR model parameters for each pixel zi in W .
Therefore, the model fitting error at each pixel zi is weighted
by pi, giving the following energy function formalization,
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Fig. 2. The spatial configuration of AR model. (a) and (b) il-
lustrate the diagonal relationship between HR and LR pixels.
For LR pixel xi in (b), we also indicate its diagonal neighbors
xLi⊗t on the LR image grid. (c) and (d) illustrate the cross-
direction relationship for HR pixel and LR pixel.

Ed(y,a|x) =
∑
zi∈W

pi

(
zi −

4∑
t=1

atzi⊗t

)2

,

Ec(y,b|x) =
∑
zi∈W

pi

(
zi −

4∑
t=1

btzi⊕t

)2

.

(5)

The model parameters a, b and the missing HR pixels y
are both treated as variables in the non-linear optimal estima-
tion in Eq.(4). Iterative methods, such as gradient descent,
are needed to solve the optimization of Eq.(4). To reduce the
computational cost, the parameters a, b can be approximately
estimated by the available LR pixels xi in local window W
ahead of time,

â = argmin
a

∑
xi∈W

pLi

(
xi −

4∑
t=1

atx
L
i⊗t

)2

,

b̂ = argmin
b

∑
xi∈W

pLi

(
xi −

4∑
t=1

btxi⊕t

)2

,

(6)

where xLi⊗t is the diagonal neighbor pixels on the LR im-
age grid (Please refer to the graphical illustration in Fig.2(b)).
This approximation reduces the problem to a linear estima-
tion,

ŷ = argmin
y

{
E′

d(y|x, â) + λE′
c(y|x, b̂)

}
, (7)

where E′
d(y|x, â) =

∑
zi∈W pi

(
zi −

∑4
t=1 âtzi⊗t

)2
,

E′
c(y|x, b̂) =

∑
zi∈W pi

(
zi −

∑4
t=1 b̂tzi⊕t

)2
.

Only the center pixel yc is output in one block estimation
process. For practical purpose, we perform the proposed al-
gorithm in areas of high activities (local variances above 100).
For the pixels in low activities area, we still use the bicubic
interpolation due to its simplicity.

4. EXPERIMENTAL RESULTS

The proposed interpolation algorithm is implemented on
MATLAB 7.6 platform and compared with conventional
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Table 1. PSNR(dB) results of four interpolation methods.
Images Bicubic NEDI[4] SAI[7] Proposed
Lena 33.86 33.80 34.63 34.67
Pepper 32.77 33.30 33.51 33.56
Tulip 33.69 34.16 35.66 35.82
Cameraman 25.18 25.34 25.70 25.78
Monarch 31.72 31.68 32.90 33.16
Airplane 30.70 31.21 31.65 31.72
Caps 33.67 34.05 34.48 34.48
Bike 25.93 25.97 26.97 27.02

Bicubic interpolation method and two state-of-the-art inter-
polation methods: new edge-directed interpolation (NEDI)
in [4]and soft-decision adaptive interpolation (SAI) in [7]1.
We have tested the proposed algorithm on a large image set,
including the Kodak database and many standard test images
also used in previous papers on image interpolation.

To compare the objective quality of different interpolation
methods, the original HR images are first directly downsam-
pled by a factor of two to generate the input LR images. Then
different interpolation methods are applied to interpolate the
input LR images to their original resolutions. Table 1 tabu-
lates the PSNR results of the four interpolation methods on
several images in our experiments. From Table 1, we can see
that the proposed method produces comparable or often bet-
ter PSNR results than other methods. It is worth noticing that
for ‘Monarch’ and ‘Tulip’ image, the proposed method gains
0.26 dB and 0.16 dB respectively over the second-best SAI
algorithm.

We also compare the visual quality of different interpola-
tion methods. Bicubic interpolation blurs the edges in Fig.3.
While the edge-directed method such as NEDI[4] preserves
the long edge structure well, it produces annoying artifacts
nearby the fast-evolving edges. SAI[7] and the proposed
method achieve nearly the same good visual quality for most
of the test images. However, comparing them in detail, we can
see that the proposed method produces smaller interpolation
errors than other methods, especially on the edge structures
pointed by the red arrows. Our proposed method achieves
the best visual quality and is more adaptive and robust to the
fast evolving edge structures. Another interesting property of
our method is that it tends to produce some continues edges
which is visually plausible, even though these edges may
not be faithful to the original images. This phenomena is
demonstrated within the yellow boxes in Fig. 3.

5. CONCLUSION

In this paper, we propose a novel interpolation method based
on an adaptive image signal model. The irregularity of statis-
tics stationarity of image signals is implicitly characterized by
the proposed similarity probability modeling. The proposed

1We thank the authors of [4, 7] for providing their source codes or exe-
cutable program.

Fig. 3. Visual comparisons: Portions from various interpo-
lated images using different methods. From top to bottom:
airplane, cameraman, ruler, sailboat, bike. From left to right:
ground truth, Bicubic, NEDI[4], SAI[7], proposed method.

interpolation method is more adaptive to the local fast evolv-
ing structures. Experimental results show that our proposed
method preserves the edge structures in images better than
other popular interpolation methods and greatly reduces the
artifacts nearby sharp edges.
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