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Abstract— In this paper, we propose an adaptive general
scale interpolation algorithm considering the non-stationarity of
natural images in local areas. In image 2× enlargement, there
are fixed relative positions between low-resolution (LR) pixels and
high-resolution (HR) pixels. Unknown HR pixels can be estimated
by their available LR neighbors. However, such relative positions
are not fixed in the general-scale enlargement situations. The
number and position of available LR pixels are indeterminate,
therefore HR pixels can not be estimated by LR pixels. To make
our method suitable for general scaling factors, we construct
autoregressive (AR) models with pixels’ neighbors instead of
their available LR neighbors. Simultaneously, we introduce the
similarity between pixels within a local window, which improves
the method’s performance by modeling the non-stationarity of
image signals. Experimental results demonstrate the effectiveness
of the proposed method on general scaling factors.

I. INTRODUCTION

Image interpolation is a process that generates HR images
utilizing the information in LR images. The key task of
image interpolation is to estimate the pixels interpolated into
the LR image. Conventional interpolation algorithms, such
as Bilinear and Bicubic interpolations apply a convolution
on every pixel of the HR image. Since these methods apply
the same convolution on every pixel, they do not distinguish
pixels in plain area and high frequency region. Although these
methods have rather low complexity, they produce noticeable
reconstruction artifacts near edges and blur the image to some
extent.

With technological developments, the computational ca-
pabilities are increasing at full speed. Hence, lots of inter-
polation algorithms with high sophistication are proposed.
Since the edge structure is one of the most salient features
in natural images, many edge-guided interpolation algorithms
are published. Li and Orchard [1] proposed a new edge-
directed interpolation (NEDI). They computed the parameters
of the AR model in the LR image by a least square problem
and estimated HR pixels by their neighbor LR pixels using
corresponding parameters. Zhang and Wu [2] further proposed
a soft-decision adaptive interpolation (SAI) based on NEDI.
They added a cross-direction AR model and more correlations
between LR pixels and HR pixels. Thus, SAI gained a better
performance upon NEDI. However, these algorithms are based
on the assumption that the image is piecewise stationary.
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To account for the fact that natural images are not always
stabilized in local windows, our previous work [3] proposed
an implicit piecewise autoregressive model-based image in-
terpolation algorithm (IPAR) based on similarity modulated
block estimation. In IPAR [3], a similarity probability model
is proposed to model the non-stationarity of image signals.

The adaptive algorithms mentioned above have limitation
that they can only deal with enlargement whose magnification
is two or a power of two. As the popularity of video devices
rises, resolutions of video sequences and images differ greatly
among devices. Thus, general-scale enlargement is required.
Wu et al. [4] proposed an adaptive resolution up-conversion
method implemented in H.264/SVC, providing support to
arbitrary scaling factors between spatial resolution of the base
and refinement layers. This method used two directional AR
models that are constructed of pixels’ neighbors. However, the
method did not consider the instability of natural images in
local areas either.

In this paper, we propose a novel image interpolation
algorithm that can manage arbitrary general scaling factor
while considering the instability of natural images in local
areas. At first, we generalize the interpolation by adjusting
the composition of AR models and making a constraint by
comparing the LR pixels and the down-sampling results of the
corresponding region in the HR image. The new AR models
are constructed by the pixel’s neighbors instead of its neighbor
LR pixels. Then we propose a weight calculation method to
determine the similarity between pixel pairs in a local window.
Based on this method, we get a weight distribution matrix
of the whole local window, which can be used to adjust the
formulation of the AR models. Finally, since the HR pixels
and parameters of two AR models are both unknown, we
use structured total least-squares solution (STLS) to linearize
the objective function and solve the problem by an iterative
process. Experimental results show that our method preserves
better details, especially details around edge-structures, among
Wu’s work [4] and the method implemented in JSVM [5] when
the factor is a general rational number. When it comes to 2×
enlargement, our method is competitive with IPAR.

The rest of the paper is organized as follows: Section II
introduces the two AR models briefly. Section III generalizes
the interpolation algorithm to general scaling factor, then
describes the new proposed image interpolation algorithm
based on weight distribution in the local window. Experimental
results and analysis of the proposed method are presented in
Section IV. Finally, Section V concludes this paper.
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II. AUTOREGRESSIVE MODEL

An autoregressive (AR) model is a type of random process
that is often utilized to model and predict various types of
natural signals. It is a set of linear formulas that attempts
to obtain an estimation of a system based on the given
information. In image processing, every pixel in an image can
be estimated by its adjacent neighbors with certain weights.
The AR model is defined as

X(m,n) =
∑

(i,j)∈Ω

φ(i, j)X(m+ i, n+ j) + σ, (1)

where Ω and φ are the adjacent neighbors and their weights to
pixel X(m,n), respectively. σ is the estimating error. Based
on the assumption that images maintain stability in a local
window W , we compute the weights by solving the linear
least squares problem showed below,

min
φ

∥X − Xnφ∥, (2)

where X is an M × 1 vector consisting of pixels in W . The
ith row of Xn consists of adjacent neighbors of the ith pixel
in X . Then unknown pixels in W can be estimated by LR
pixels with the same model parameters φ.

For better estimation, two kinds of AR models in different
directions are applied. One of them uses a pixel’s cross-
direction adjacent neighbors to estimate it, the other uses its
diagonal direction adjacent neighbors. Two sets of weights can
be calculated by performing these two AR models in a local
window. Therefore, constraints on pixels are stronger, and the
unknown pixels can be estimated more precisely.

These types of AR model are used in [1], [2]. However,
there are two drawbacks. First, in general-scale cases there
may be insufficient LR pixels in W to estimate unknown
pixels. Second, the stationary assumption aforementioned does
not always hold in most natural images. The solutions of these
two problems will be given in Section III-A and Section III-B.

III. GENERALIZED IMAGE INTERPOLATION ALGORITHM

In this section, we present a generalized image interpolation.
The difference between 2× enlargement methods mentioned
before and generalized methods is elaborated at first. Then
we introduce a method to define the similarity of two pix-
els. At last, our generalized image interpolation algorithm is
proposed.

A. Generalization of Interpolation at Arbitrary Scaling Fac-
tors

When we use interpolation algorithms to obtain an HR
image, there are always plenty of pixels that are extracted
from the LR image directly. In other words, these pixels
are exactly the same as the corresponding pixels in the LR
image. We name these pixels fixed-pixels and inter-pixels for
other pixels. In a local region in HR image, the more the
fixed-pixels there are, the more information we can get to
interpolate inter-pixels. Fig.1 shows that the relative location
between LR pixels and HR pixels varies when the scaling
factor changes. When the scaling factor is 2, there is only one
pixel between adjacent fixed-pixels (Fig.1(a)). Hence, it is a

good way to estimate inter-pixels from their neighboring fixed-
pixels. However, 2× enlargement is just one of the special

(a) (b) (c)

Fig. 1. HR pixel and LR pixel in local region at different scaling factors.
(a) Scaling factor = 2.0. (b) Scaling factor = 1.5. (c) More general situation.
An general scaling factor, such as 1.57, is likely to produce a really large N .
circumstances of image enlargement at general scaling factors.
In Fig.1(c), N is the minimal integral multiples of the scaling
factor. As N increases, there are less fixed-pixels around inter-
pixels. It should be pointed out that the locality stationary still
remains in arbitrary scaling factors. Thus, we apply two AR
models on pixels. Unlike methods for 2× enlargement, inter-
pixels are estimated by its neighbor pixels no matter what
types of pixels they are. The formation is modeled as

min
y,a,b

{α∥yc − Ay∥2 + β∥yc − By∥2}, (3)

where vector y consists of pixels in a local window of HR
image. Vector yc consists of pixels in the local window
excluding the pixels on boundaries of the window. α and β
are the coefficients that control the weight of two AR models.
A and B are defined as follow,

A(i, j) =

 ak, if yj is the kth pixel of yi’s
diagonal neighbors,

0, otherwise.

B(i, j) =

 bk, if yj is the kth pixel of yi’s
cross-direction neighbors,

0, otherwise.

(4)

where a = (a1, a2, a3, a4) and b = (b1, b2, b3, b4) are the
parameters of two AR models. The question is, both of the
inter-pixels (y) and the parameters of AR models (a and b)
are unknown. We use the iterative procedure mentioned in
Section III-C to solve this problem.

Since fixed-pixels are not utilized in AR models, we use
these valuable pixels to improve our result in a different way.
As we mentioned before, there is a corresponding relation
between the pixels in LR image and fixed-pixels in HR image.
Another way to utilize the fixed-pixels is to use them from the
LR image. For a local window in HR image, we down-sample
it by Bicubic method and compare it to the corresponding
window in LR image. The constrain is modeled as

∥x− Dyc∥2, (5)
where vector x consists of pixels in a local window of LR
image and matrix D represents the Bicubic down-sampling
process. Obviously, the smaller this constrain’s value is, the
better estimation we have. Such constrain is useless in 2×
enlargement because the pixels that is down-sampled are
exactly the same with the corresponding pixels in LR image.
B. Weight Distribution in a Local Window

AR model works well when the statistics in the local
window are stationary because all AR models of a same type
share a same weights in the whole window. However, natural
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Fig. 2. Similar patches in local window. Patches in yellow frames are similar
to each other but different from those in red or navy blue.

pictures do not maintain stability in most local windows.
For example, as illustrated in Fig.2, there are significant
differences between an edge-crossing area and a plain area
in a local window. Thus, estimations of AR models in this
window are not robust. In order to solve this problem, we
introduce a method to judge the similarity between the pixel
to-be-output (usually the center pixel) and other pixels in the
local window.

Naturally we prefer to give more weight on the pixel (in
other words, its corresponding AR model) that are more
similar to the center pixel, and vice versa. It is commonly
agreed that pixels are similar if there is a small difference
between their local structures. Moreover, two pixels are likely
to be similar if they are close to each other. Thus, the weight
is a composite of two parts. One of them is the similarity of
two center pixels’ local structures. The other is the distance
between them. The weight w(m,n) between two pixels m and
n is defined as

w(m,n) = wls(m,n)wd(m,n), (6)
where wls(m,n) represents the similarity of two center pixels’
local structures. wd(m,n) represents the degree of two pixels’
distance. They are described as

wls(m,n) = e−∥Lm−Ln∥2/ε1 , (7)

wd(m,n) = e−∥Pm−Pn∥2/ε2 , (8)
where Lm and Ln represent vectors consisting of the 8-
connected neighborhood of m and n, respectively; Pm and
Pn are the spatial coordinates of m and n, respectively. ε1
and ε2 control the shape of the exponential function.

Our previous work [3] proposed a similarity modulated
block estimation, in which pixel’s local structure consists
of its four nearest diagonal LR pixel neighbors, since they
are accurate and reliable to form a local structure. Such
characteristic does not exist in general situations. So we choose
the 8-connected neighborhood to compose the local structure.

After obtaining all pixels’ weight to the center pixel, we
can form a diagonal weight matrix W which represents the
weight distribution in current local window.

C. The Generalized Interpolation Algorithm

By adding W to (3), combining with (5) we can get the
objective function described below,
min
y,a,b

{α∥W(yc−Ay)∥2+β∥W(yc−By)∥2+λ∥x−Dy∥2}. (9)

The objective function (9) can be represented by a least
square problem as

min
y,a,b

∥R(y, a, b)∥2. (10)

where R(y, a, b) is the residue vector, representing the esti-
mating residue. It is described as

R(y, a, b) =

√αW(I − A)y√
βW(I − B)y√
λ(x− Dyc)

 . (11)

The least-squares problem in (10) is nonlinear. In order to
make it easier to be solved, we use the structured total least-
squares solution to linearize the problem. Let ∆y, ∆a and
∆b be the small changes in y, a and b respectively. To better
constrain the pixels inside the window, we keep pixels on the
boundaries of the window unchanged. Thus, A and B can be
decomposed to [Ac,Ab] and [Bc,Bb] respectively. Let T be the
length of the square window, then Ac and Bc are composed
by the first (T −2)2 columns of A and B respectively, Ab and
Bb are composed by the remaining columns.

The residue vector R(y, a, b) can be linearized as
R(y +∆y, a+∆a, b+∆b) =

R(y, a, b)−

√αW(−I + Ac)∆yc + E1∆a√
βW(−I + Bc)∆yc + E2∆b√

λ(x− D∆yc)

 . (12)

where E1 and E2 are constructed as follows: the kth row of
E1 is a vector constructed by four diagonal neighbors of pixel
yk. The kth row of E2 is a vector constructed by four cross-
direction neighbors of pixel yk.

Let

C =

√αW(−I + Ac) E1 0√
βW(−I + Bc) 0 E2√

λD 0 0

 ,

∆R =
[
∆y ∆a ∆b

]T
.

For convenient representation, we rewrite (12) as

min
∆y,∆a,∆b

∥R(y, a, b)− C ·∆R∥2 . (13)

Therefore, given the initial values of y, a and b, we can
obtain ∆R and use it to update y, a and b for the next iteration.
In our implementation, we use Bicubic’s result as the initial
value of y. a and b are initialized as ( 14 ,

1
4 ,

1
4 ,

1
4 ).

The iterative process is computationally expensive. In order
to alleviate the complexity of the proposed method, we only
apply the proposed algorithm on high-frequency areas. Fur-
thermore, we output the center 3 × 3 pixels at once. It may

Fig. 3. Possible configuration used in proposed algorithm. The size of
windows is set to be 9 × 9. The square in full line represents the current
window while the square in dotted line represents its next window. Black
pixels and gray pixels are the output of the current window and the next
window, respectively.
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slightly reduce the performance, but can lead to a 9 times
speed-up. Meanwhile, in order to avoid blocking artifacts, we
produce an overlapping region between adjacent windows and
the offset is set to be 3 pixels. In Fig.3, the output pixels of
two adjacent windows are shown. It can be seen that every
pixel except for the pixels in boundary areas of the whole
image can be processed.

IV. EXPERIMENTAL RESULTS

The proposed interpolation is implemented on MATLAB
7.10 platform. We implemented Wu’s work [4] by ourselves,
using our data fidelity constraint and an 11× 11 window. The
proposed algorithm is compared with Bicubic and the method
implemented in JSVM [5] on the factor of 1.5. It is also
compared with Bicubic, SAI [2], IPAR [3] and Wu’s work
[4] on the factors of 1.7 and 2. We tested our interpolation
algorithm on a large number of images. The testing images are
selected from the Kodak database and other standard testing
images. More results are presented in our web site [6].

For a scaling factor s, we firstly generate an LR image
by down-sampling an original HR image by a factor of 1/s.
Then we use different methods to obtain the HR images from
the LR image and compare them with the original HR image.
Peak Signal-to-Noise Ratio (PSNR) is selected as the objective
evaluation criterion.

TABLE I
AVERAGE PSNR OF RESULTS IN DIFFERENT METHODS,

SCALING FACTOR s = 1.5

Sequences JSVM Bicubic Proposed
Akiyo 39.50 41.79 43.81

Foreman 39.60 42.17 43.94
Highway 40.85 43.07 45.70
Average 39.99 42.34 44.48

TABLE II
AVERAGE PSNR OF RESULTS IN DIFFERENT METHODS,

SCALING FACTORS s = 1.7 & 2

s Images Bicubic SAI IPAR Wu’s Proposed
Monarch 34.27 - - 31.72 35.20

1.7 Lena 36.26 - - 34.64 36.78
Bike 28.33 - - 26.72 29.45

Pepper 32.06 31.84 32.69 32.43 32.56
2 Airplane 29.40 29.62 30.05 29.73 29.87

Lighthouse 26.97 26.70 26.76 26.91 27.13

Weight coefficients α, β and λ are set by 0.2, 0.3 and 0.5.
ε1 and ε2 are set to be 17 and 33, respectively. The window
size is particularly important to our algorithm (a large size
window may impact the locality stationary, and a small one
cannot provide enough structural information), we set it to
be 11× 11. Results of 1.5×, 1.7× and 2× magnification are
shown in Table I and Table II.

It is interesting to notice that, in Table II, our method’s
performance is better than SAI [2] and competitive with IPAR
[3] in 2× enlargement. It should be pointed out again that,
NEDI [1], SAI [2] and IPAR [3] are all designed only for
2× enlargement. The proposed method is suitable for general
scaling. The gaps between the performances of Wu’s work [4]
and the proposed work in 2× enlargement are quite small, but
the gaps in 1.7× and 1.5× magnification are rather big.

(a) (b) (c) (d)

Fig. 4. Subjective image quality comparison of 1.5× enlargement. (a) a part
of first frame of original sequence Highway. (b) result of JSVM. (c) result of
Wu’s work. (d) result of proposed work.

Fig. 5. Subjective image quality comparison of 2× enlargement. The upper
image is a part of House and the nether image is a part of Lighthouse. From left
to right: original image, Bicubic, SAI, IPAR, Wu’s work, proposed method.

Subjective image quality is also demonstrated in Fig.4 and
Fig.5. In general-scale cases, the proposed method presents
more clean edges than JSVM [5]. As shown in Fig.4, our
method presents better edges. In 2× enlargement situation
(Fig.5), Bicubic interpolation presents fuzzy areas around
edges. SAI [2] and IPAR [3] present rather clean edges, but
there are some jags on the sharp edges and affect the subjective
image quality. The proposed method presents clean sharp
edges and does not produce aliasing effects.

V. CONCLUSIONS

In this paper, we present an interpolation algorithm suitable
for general scaling factors considering the non-stationarity of
natural images in local areas. The AR models are constructed
by the pixel’s neighbors instead of its available LR neighbors
in order to solve the general-scale interpolation problem.
Similarity of pixels in the local window is utilized to alleviate
the inaccurate estimation caused by the local instability of
natural images. As the experimental results show, our method
performs the best in general-scale cases and it preserves better
details around edges among other competitive interpolation
algorithms.
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