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Context-Aware Sparse Decomposition for Image
Denoising and Super-Resolution

Jie Ren, Jiaying Liu, Member, IEEE, and Zongming Guo, Member, IEEE

Abstract— Image prior models based on sparse and redundant
representations are attracting more and more attention in the
field of image restoration. The conventional sparsity-based meth-
ods enforce sparsity prior on small image patches independently.
Unfortunately, these works neglected the contextual information
between sparse representations of neighboring image patches.
It limits the modeling capability of sparsity-based image prior,
especially when the major structural information of the source
image is lost in the following serious degradation process.
In this paper, we utilize the contextual information of local
patches (denoted as context-aware sparsity prior) to enhance the
performance of sparsity-based restoration method. In addition,
a unified framework based on the markov random fields model
is proposed to tune the local prior into a global one to deal with
arbitrary size images. An iterative numerical solution is presented
to solve the joint problem of model parameters estimation
and sparse recovery. Finally, the experimental results on image
denoising and super-resolution demonstrate the effectiveness
and robustness of the proposed context-aware method.

Index Terms— Context-aware, image denoising, image
restoration (IR), Markov random fields (MRFs), sparse
representation, sparsity pattern, super-resolution.

I. INTRODUCTION

IMAGE restoration (IR) aims at recovering an original
image x (i.e., high-resolution, clean image) from its

degraded counterpart y. The mathematical degradation model
for the IR problem is typically formalized by

y = H x + v (1)

where H is a degradation matrix, and v is assumed as a zero-
mean Gaussian noise N (0, σ 2). When H is an identity matrix,
the IR problem in (1) is a denoising problem; when H is a
downsampling matrix, it corresponds to an interpolation or
super-resolution problem.

From a statistical point of view, image restoration is an
inverse problem which is to estimate x given y, maximizing
the probability Pr(x |y). Based on the Bayes’ rule, maximum
a posterior (MAP) estimator can be obtained by:

x̂ = arg max
x

Pr(x |y) = arg max
x

Pr(y|x) Pr(x) (2)
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where Pr(y|x) represents the data penalization or likelihood
term, while Pr(x) models the prior information that we prefer
the target original image x to be. Due to the ill-posedness of
IR problem, one of the most important issues is to model
a priori knowledge of natural images to regularize the IR
inverse problem.

Modeling the prior knowledge of natural images is a
challenging task. Many previous work have contributed to
this issue from various fields, including probability theory,
statistics, partial differential equation, and transform-domain
methods. Recently, an emerging group of techniques that relies
on sparse and redundant representations of image signals has
attracted a lot of attention [1]. The sparsity-based image prior
has been proved to be effective in various applications, such
as image denoising [2], deblurring [3], super-resolution [4],
inpainting [5], [6], and classification [7].

Generally, due to the high dimensionality of image sig-
nals, sparsity-based prior focuses on small patches of natural
images. To deal with arbitrary size image, the whole image
is divided into small image patches. In conventional sparsity-
based methods [2], [4], each patch is processed independently.
The final output is obtained by stitching and averaging the
patches in the overlapped regions. Although simple overlap-
ping and averaging operation has achieved good performance,
we argue that the smoothness constraint in the traditional
dispose is not effective enough to regularize the IR problem.
Especially when the observation is downsampled or noisy,
major structural information of the source image may be lost.
Therefore, the contextual information between neighboring
patches can provide more hints for recovering the details.

In this paper, we propose a context-aware sparsity prior
to explicitly model the structural correlations of neighboring
patches. In contrast to the previous work that dealt with similar
issue in the specific wavelet transform domain [8], we analyze
and address this problem in a more general and flexible
framework of sparse representations. The main contributions
of our work are summarized as follows:

1) Context-aware sparsity prior is proposed to model the
correlations between sparsity patterns of neighboring
patches. The proposed sparsity prior explicitly models
the contextual information of local image structure.
Therefore, it improves the capability of sparsity-based
regularization for the IR problem.

2) MRF-based global restoration framework is proposed to
tune the local sparsity prior into a global one in order
to deal with natural images of arbitrary size.

3) An iterative numerical solution to the MRF-based global
optimization problem is presented to approximate the
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exact estimation which is computationally intractable
in practice. The proposed algorithm adopts an adaptive
signal recovery scheme, which updates model parame-
ters update and recover the sparsity patterns alternately.

The rest of this paper is organized as follows. Section II
briefly reviews the previous work that are related to this
paper. In Section III, we introduce the generative signal model
and briefly review some typical prior models in literature.
Section IV gives an analysis of the context correlations of
sparse representations, which is the motivation of the proposed
work. Based on the analysis, we present the context-aware
sparsity prior and tune it into a MRF-based global prior. In
Section V, numerical solution to the MRF-based global
restoration problem is proposed. The effectiveness and robust-
ness of the proposed method are demonstrated by experimen-
tal results and analysis in Section VI. Finally, Section VII
concludes this paper.

II. RELATED WORK

A. Sparse and Redundant Representations

The sparsity concept of natural images comes from the early
work on transform-domain techniques, such as discrete cosine
transform (DCT) and discrete wavelet transform (DWT).
When applying a transform to natural images, a few coeffi-
cients represent the principal components of image structure.
In contrast, noisy or high-frequency oscillating part distributes
over the whole coefficient fields which leads to many zero or
small transform coefficients. Based on the above observation,
the well-known Shrinkage techniques are proposed for image
denoising [9], [10]. Simple scalar thresholding operation is
applied on each transform coefficient to eliminate small ones
and leave large ones.

Sparse and redundant representations of signals generalize
the concept of transform-domain sparsity. It states that a high-
quality image x can be approximately represented by a vector
α over a dictionary � ∈ Rn×m (each column in � is referred
to as an atom �i ), such that

x ≈ �α, s.t. ‖α‖0 ≤ T (3)

where T is a predefined threshold and l0-norm ‖α‖0 counts the
number of nonzero elements in α. Based on the sparsity prior
model, the problem of recovering the image x turns into an
optimal estimation of representation coefficients α by solving
the following MAP estimation:

α̂ = arg max
α

Pr(y|α) Pr(α) (4)

where Pr(α) ∝ exp (−λ‖α‖0) is inclined to the sparsity of
signal representation. Owing to the computational complexity
of the l0 regularized estimation problem, approximation
algorithms are commonly employed, such as greedy pursuit
algorithms like the Orthogonal Matching Pursuit (OMP)
[11], [12] and convex relaxation algorithms like the Basis
Pursuit (BP) [13].

In conventional sparse recovery algorithms such as
OMP and BP, independency between the dictionary atoms
is implicitly assumed. Although this assumption reduces
the computational complexity, it limits the representation

capability to model signals in the real world. For example,
in the wavelet transform domain of natural images, the
locations of large coefficients are strongly correlated. Recent
work [14]–[21] show that structured sparsity models that
consider the probabilistic dependencies between atoms are
more adaptive to natural image signals. This series of work
can further promote the performance of sparse recovery
algorithms. Inspired by these pioneer work, we are also
interested in modeling the statistical dependencies between
dictionary atoms. Different from the previous work [15], [20],
[21] which mainly focused on the atom correlations within
the local patch, we are especially interested in exploring
the correlations of atoms between neighboring patches. It is
accomplished by modeling the contextual information of
sparse representations of neighboring image patches.

Another important issue in sparse and redundant
representations is to select an appropriate dictionary [22].
An over-complete dictionary can be chosen as a pre-specified
set of functions, e.g., Redundant DCT, Curvelet [23],
Contourlet [24], Shearlets [25]. Although the pre-specified
dictionaries lead to fast transforms, they are limited to
sparsely describe arbitrary and new family of signals of
interest. Therefore, dictionary learning approaches [26]–[29]
are proposed to design the dictionary by adapting its content
to fit a given set of signal examples. One of the most efficient
methods is K-SVD [27] which uses either OMP or BP as part
of its iterative procedure for dictionary learning. In this work,
we choose the Redundant DCT and adaptive dictionary trained
by K-SVD to evaluate the robustness of the proposed method.

B. MRF-Based Global Prior

Traditionally, dictionary learning and sparse coding meth-
ods for sparse representations focus on small image patches
because of the high dimensionality of the image space.
However, in practice, we need to deal with arbitrary natural
images rather than small size patches. One heuristic way is
to divide the image into small non-overlapped patches and
apply any patch-wise sparse coding technique for each patch
separately. Unfortunately, blocking artifacts appear when the
independently processed non-overlapped patches are stitched
together into a whole image.

An intuitive improvement to alleviate the blocking artifacts
is to overlap the patches and average the pixels near patch
boundaries [30]–[32]. Elad and Aharon [2] presented a sys-
tematic global MAP estimator for the whole image prior, and
derived a numerical solution which is similar to [32]. The
key idea of defining such a global image prior is to combine
the local sparsity prior with MRFs model [6]. It enforces
sparsity on each single patch while implicitly imposing the
smoothness constraint on overlapped region between patches.
However, when the observation is noisy and downsampled,
major structural information of the source image may be lost.
The smoothness constraint is not effective enough to regu-
larize the IR problem. Therefore, it is reasonable to explore
contextual information of local image structures, which is one
of the main concerns of this work.
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III. BACKGROUND

A. Generative Signal Model

First, we introduce the generative statistical model in [21]
which is a fundamental of our work and analysis. We consider
a measured signal y that is linearly modeled as

y = H�α + v (5)

where � = [φ1, . . . , φm ] is a dictionary, φi is a dictionary
atom, and m is the number of atoms, i.e., dictionary size. α is
a sparse representation over the dictionary, and v is additive
white Gaussian noise with variance σ 2. Note that (5) can be
simplified to y = �̃α+ v, where �̃ = H� =

[
φ̃1, . . . , φ̃m

]
∈

R
n×m , and φ̃i = Hφi .
We define the sparsity pattern of α as S ∈ {−1, 1}m , where

Si = 1 implies that αi �= 0 whereas Si = −1 implies
that αi = 0. Given the sparsity pattern S, the positions of
nonzero coefficients in α are also fixed. We denote the nonzero
coefficients in α as αS , and the corresponding atoms in �̃
which participate in the representation αS are grouped into a
sub-dictionary denoted by �̃S . Following [15], we consider
a Gaussian distribution with zero mean and variance σ 2

α,i
for each nonzero coefficient αi and assume that the nonzero
coefficients are independent of each other. The conditional
distribution of αS given the sparsity pattern S is a multivariate
Gaussian distribution with zero mean and covariance �S ,

Pr(αS |S) = 1

det(2π�S)1/2
exp

(
−1

2
αT

S �
−1
S αS

)
(6)

where �S is a k × k diagonal matrix in which the diagonal
elements are the corresponding variances σ 2

α,i of the nonzero
coefficients αi , and k is the total number of the nonzero
coefficients in α. According to the well-known Gaussian
assumption of noise characteristics, the conditional distribution
of the signal y given its sparse representation αS and sparsity
pattern S can be written as

Pr(y|αS, S) = 1

(2πσ 2)n/2
exp

(
−‖y − �̃SαS‖2

2

2σ 2

)
. (7)

The conditional distribution of signal y given its sparsity
pattern S is the marginal probability distribution over all
possible values of αS , i.e.,

Pr(y|S) =
∫

Rk
Pr(y|αS, S) Pr(αS |S)dαS (8)

which is a multivariate Gaussian distribution with zero mean
and conditional covariance �(y|S) [33],

Pr(y|S) = 1

det(2π�(y|S))1/2
exp

(
−1

2
yT�−1

(y|S)y
)

(9)

where
�(y|S) = �̃S�S�̃

T
S + σ 2In , �−1

(y|S) = 1

σ 2

(
In − �̃SQ−1

S �̃T
S

)

with QS = �̃T
S �̃S + σ 2�−1

S .

B. Review of Prior Models in the Literature

In this work, we are especially interested in the estimation of
the underlying “true” sparsity patterns S of an original signal
x , given its degradation measurement y. The MAP estimator
is obtained by maximizing the posterior probability of sparsity
pattern S,

Ŝ = arg max
S

Pr(S|y) = arg max
S

Pr(y|S) Pr(S). (10)

We denote the recovery of sparsity pattern in (10) as a
Sparse Decomposition problem in this paper. In (10), the prior
probability Pr(S) is chosen to be some sparsity penalty. For
example, the prior model can be written as

Pr(S) = C · exp (−λ · ‖S + 1‖0) (11)

where C is the normalization constant, λ is a shape control
parameter and 1 is the all-ones vector. This form of prior cor-
responds to the sparsity prior implied in typical deterministic
sparse coding algorithms, e.g., OMP and BP. Furthermore,
the independent adaptive model in [34] assigns a different
prior probability Pi for each atom φ̃i to be selected in the
sparse representation. Therefore, the joint probability for S is
given by

Pr(S) =
∏

i

gi , gi =
{

Pi , Si = 1,

1 − Pi , Si = −1.
(12)

Pi is estimated from the data by computing the frequency
of occurrence of atom αi participating in all representations.
An alternative to the independent adaptive model (12) is
formalized by

Pr(S) = 1

Z(b)
exp

(
bT S

)
= 1

Z(b)

m∏
i=1

exp (bi Si ) (13)

where b = [b1, b2, . . . , bm]T is a vector of model parameters,
Z(b) is a partition function of parameters b that normalizes
the distribution. A bias bi is associated with the dictionary
atom φ̃i where bi < 0 favors Si = −1, which in turn makes
the atom φ̃i mostly unselected. The equivalence of (12) and
(13) is apparent when we let Pi = exp(bi )/(2 cosh(bi )), where

cosh(x) = 1

2

(
ex + e−x) is the hyperbolic cosine function.

All the above models are based on the same assumption that
there is no interaction between dictionary atoms. That is, in the
sparse coding stage, dictionary atoms are selected into the final
representation independently. However, natural image signals
exhibit significant connections between atoms of the dictionary
used for synthesis. Recent work on structured sparsity models
as in [15], [20], [21] suggested using a more general graphical
model framework, specifically the Boltzmann machine (BM)
model, to consider the interaction effects between dictionary
atoms. The BM model is a special case of the exponential
probability distribution family with energy function E(S),

Pr(S) = 1

Z(W, b)
exp (−E(S))

E(S) = −bT S − 1

2
ST W S (14)
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(a) (b)

(c)

5 10 15 29 43 45 50 53

65 68 100 131 142 152 180 247

5 10 15 29

43 45 50 53

65 68 100 131

142 152 180 247

Fig. 1. Illustration of the spatial distributions of dictionary atom coefficients on image Boats. (a) Boats image. (b) Learned dictionary atoms (16 selected
out of 256). (c) Spatial distributions of corresponding atom coefficients.

where Z(W, b) is a partition function of the Boltzmann
parameters W ,b. When W = 0, the BM model reduces to the
independent model in (13). The interaction matrix W accounts
for the dependencies between dictionary atoms. Specifically,
W (i, j) > 0 suggests that the atoms φ̃i and φ̃ j have an
“excitatory” interaction, i.e., Si and Sj tend to be the same
value; for an “inhibitory” interaction (W (i, j) < 0), they tend
to be opposite value. W (i, j) = 0 indicates the independency
between atoms.

Note that once the optimal sparsity pattern Ŝ has been
recovered, one can further reconstruct a source signal x if
necessary by performing the MAP estimation (i.e., oracle
estimator in [35]),

α̂S = arg max
αS

Pr(αS |y, Ŝ) = Q−1
S �̃T

S y

x = �̃Sα̂S = �̃SQ−1
S �̃T

S y. (15)

Instead of focusing on the atom interactions within local
patches, in this work, we pay more attention to model the
atom interactions between neighboring patches. In the next
section, we give an analysis of the contextual correlations of
sparse representations as the motivation of our work, and then
a new local sparsity prior and an extended MRF-based global
prior are presented in the following subsections.

IV. CONTEXT-AWARE SPARSE DECOMPOSITION

A. Context Correlation Analysis of Sparse Representations

Sparse coding of image patches extracted from the whole
image can be seen as filtering of the image with a set of filters.
Similar to the wavelet transform, casual observation indicates
that the sparse coefficients (or large amplitudes) of every patch
are sparsely distributed throughout the whole image and often
tend to occur in clusters (e.g., at edges and within textures
as illustrated in Fig. 1). Meanwhile, clusters of different
coefficient distributions seem not to be fully independent each
other, such as the distribution clusters of coefficient index
5 and 10, 15 and 29, 53 and 142. It implies that different

structural filters (or atoms of a dictionary) are highly correlated
in the spatial neighborhood.

The main reason for the above phenomena is attributed to
the regularity of natural image structures. In general, local
structures of natural images have the properties of visual
continuity and consistency. We find that these properties may
not necessarily appear in the image domain but commonly
in the principal components domain, i.e., the dictionary atoms
domain. Therefore, it is necessary to decompose the image into
a few of dictionary atoms, and analyze the image regularity
in the dictionary atoms domain.

We proceed with the following experiments to motivate the
necessary of modeling the spatially probabilistic dependencies
between dictionary atoms. The dictionary is adaptively learned
from the data itself by K-SVD algorithm [27]. We extract a set
of patches of size 8-by-8 from noise-free and high-resolution
natural images. The extracted patches are overlapped with
a few pixels in adjacent locations. For each patch, sparse
representations over an adaptive learned dictionary of size 64-
by-256 are obtained using the OMP algorithm. Specifically,
the model error is set to σ = 1, so that the OMP algorithm
stops when the residual error falls below ε = 1.15 · √

64 · σ .
Then the sparsity pattern of each patch is obtained from
the computed representations. Let S and S	t (t = 1, . . . , T )
represent the sparsity patterns of center position patch and
its neighbor in the t-th orientation, respectively (the spatial
configuration is shown in Fig. 2). We take all pairs of sparsity
patterns as samples for S and S	t . The i -th element of S,
and the j -th element of S	t are represented as Si and Sj	t ,
i, j = 1, . . . ,m, respectively. Then, the empirical marginal
distributions for each Si , Pr(Si = 1), and for all pairs of atoms
at neighboring spatial position with different orientations,
Pr(Si = 1, Sj	t = 1), are computed. The empirical conditional
probability Pr(Si = 1|Sj	t = 1) is computed by Pr(Si =
1|Sj	t = 1) = Pr(Si = 1, Sj	t = 1)

Pr(Sj	t = 1)
.

To examine the dependencies between pairs of atoms
at neighboring spatial position, we compute the following
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Fig. 2. Local neighborhood system of patch xk . We set J = 8 for spatial
configuration with eight different orientations. (a) Left-up. (b) Up. (c) Right-
up. (d) Right. (e) Right-down. (f) Down. (g) Left-down. (h) Left.

three-dimension dependency matrix value:

Q(t)
i, j =

∣∣∣∣log10

(
Pr(Si = 1|Sj	t = 1)

Pr(Si = 1)
+ δ

)∣∣∣∣ . (16)

Therefore, if Si and Sj	t are independent, then Pr(Si =
1|Sj	t = 1) is approximately equal to Pr(Si = 1), and the
value of (16) is near zero. Otherwise, Pr(Si = 1|Sj	t = 1) is
near zero or one, then the value of (16) is approaching to 1.
In this experiment, we set δ = 0.1, so that for Pr(Si =
1|Sj	t = 1) = 0, the value of Q(t)

i, j is 1.
The simulation results on the image Boats are shown in

Fig. 3. For better visualization, the three-dimensional matrix
Q is split into eight orientations, and each slice of Q in
the corresponding orientation is displayed. In these figures,
the black color corresponding to near-zero values is domi-
nant. It implies that most of the atom pairs at neighboring
position are nearly independent. However, there are some
pairs exhibiting significant dependencies, particularly near the
main diagonal. The correlations between sparsity patterns of
neighboring patches in different orientations reveal another
regularity of natural images.

B. Context-Aware Sparsity Prior

The significant dependencies exhibited among the atom
pairs can be utilized as another level of image regularity
beyond the sparsity prior. An important issue is to model the
spatial correlation between atoms adaptively, i.e., we need to
decide which atom pairs should have strong correlations and
make the others have weak or no correlations.

Motivated by the BM model, we propose a new prior for
the sparsity patterns of sparse representations. The proposed
sparsity prior explicitly models the atom interactions between
neighboring patches. It contains two components including
the context-aware part and the sparsity part. Therefore, we
denote the new prior model as context-aware sparsity prior
for the combination. More specifically, given the orientated
neighboring sparsity patterns {S	t }J

t=1, we define the context-
aware energy Ec(S) by

Ec(S) = −
J∑

t=1

ST W	t S	t (17)

where the matrix W	t captures the interaction strength between
dictionary atoms in the t-th orientation. The interaction
strength of each element in W	t relies on the co-occurrence
probability between dictionary atoms in the corresponding
orientation, which should be adaptive to the image content

Q(:,:,1),Orientation 1 Q(:,:,2),Orientation  2 Q(:,:,3),Orientation 3 Q(:,:,4),Orientation 4 

Q(:,:,5),Orientation 5 Q(:,:,6),Orientation 6 Q(:,:,7),Orientation 7 Q(:,:,8),Orientation 8

Fig. 3. Visualization of the computed dependency matrix Q on image
Boats. The 3-D matrix Q is split into eight orientations, and each slice of
Q corresponds to one orientation.

as well. In Section V-A, we present a maximum likelihood
estimator to obtain the optimal parameters W	t in an adaptive
scheme. Meanwhile, we also include the sparsity penalty
energy Es(S) as in (13),

Es(S) = −ST b. (18)

The total energy Etotal(S) for each sparsity pattern is the sum
of two parts, i.e., Etotal = Ec(S) + Es(S). Then, the prior
probability is formalized by using Etotal,

Pr(S) ∝ exp (−Etotal) ∝ exp

(
ST

(
J∑

t=1

W	t S	t + b

))
.

(19)

Let W̃ = [W	1, . . . ,W	J ], and S̃ = [(S	1)
T , . . . , (S	J )

T ]T ,
then (19) can be expressed in a clearer form,

Pr(S) = 1

Z(W̃ , b)
exp

(
ST

(
W̃ S̃ + b

))
(20)

where W̃ , b are model parameters, and Z(W̃ , b) is the partition
function for normalization. Compared to the BM model, the
proposed prior model places more emphasis on the dependen-
cies of atoms in the spatial context. In fact, we can combine the
proposed model with the BM model for further improvement
of the modeling capability, which is one of the interests of
future work.

C. MRF-Based Global Restoration

The prior model proposed in the previous subsection is
defined in a patch-wise scheme. It is enforced over the local
neighborhood range of each patch. In fact, the neighboring
sparsity patterns S̃ are always unknown when addressing the
sparsity pattern recovery for one single patch. Meanwhile,
when dealing with an arbitrary size image, it is necessary to
extend the local prior to a global one as in [2], [6].

MRFs theory provides a convenient and consistent way
to model context-dependent entities through characterizing
mutual influences among entities using conditional MRFs
distributions. It has been proved to be a robust and accurate
model for natural image [36]. Therefore, it is natural to
incorporate the context-aware sparsity prior into the MRFs
framework.
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Fig. 4. Eight-connected MRFs. Nodes y and S are low-resolution patch and
“true” sparsity pattern, respectively.

For an input degraded image Y of arbitrary size, we first
break it into overlapped small patches {yk}K

k=1. Each patch
yk has a corresponding high-quality patch xk , and the “true”
sparsity pattern of xk is denoted as Sk . S = {Sk}K

k=1 represents
the whole set of sparsity patterns. We introduce an 8-connected
MRFs to model the relationships among the degraded patches
and their corresponding high-quality patches, as illustrated
in Fig. 4. Based on the MRFs model, we define three
types of potential functions corresponding to the likelihood
term φ(Sk , yk), sparsity term η(Sk) and context-aware term
ψ(Sk , S p),

φ(Sk , yk) ∝ Pr(yk |Sk)

η(Sk) ∝ exp
(
(Sk)T b

)

ψ(Sk , S p) ∝ exp
(
(Sk)T W	t Sk	t

)

which use the fact that patch x p is adjacent to xk in the t-th
orientation. Once the potential functions are determined, the
MRFs with homogeneous potentials could be written as

Pr(S,Y ) ∝
∏

k

η
(

Sk
)
φ

(
Sk , yk

)∏
k,p

ψ
(

Sk, S p
)
. (21)

Note that η(Sk) and ψ(Sk , S p) with 8 orientations can
be reassembled to the prior probability Pr(Sk) in (20), and
φ(Sk , yk) corresponds to the likelihood probability Pr(yk|Sk).
Therefore, the probability for the whole MRFs is written as

Pr(S,Y ) ∝
∏

k

Pr
(

yk |Sk
)

Pr
(

Sk
)
. (22)

The complete set of sparsity patterns S in the MRFs can be
optimally estimated by maximizing the joint probability of
MRFs,

max Pr(S,Y ) = max
K∑

k=1

(
ln Pr

(
yk|Sk

)
+ ln Pr

(
Sk

))
. (23)

V. NUMERICAL SOLUTION

In practice, for a given set of degraded patches {yk}K
k=1

extracted from an input image Y , we would like to estimate
both the model parameters and the set of sparsity patterns
of each patch, S = {Sk}K

k=1. The model parameters include
W̃ , b, and {σ 2

α,i }m
i=1. Instead of addressing both together, we

suggest a block-coordinate maximization algorithm that starts
with W̃ = 0, bi = const, and σ 2

α,i = const. In fact, under this

Algorithm 1: Block-Coordinate Maximization Algorithm
for Joint Estimation

Input: Noisy observations {yk}K
k=1, dictionary �̃, noise

variance σ 2.
Output: Recovery of sparsity patterns Ŝ = {Ŝk}K

k=1 and

model parameters θ =
[
W̃ , b, υ = {σ 2

α,i }m
i=1

]
.

l = 0;
Initialize S(0) with OMP results;
while l < maxIter do

l = l + 1;
Estimation of the model parameters
θ(l) =

[
W̃ (l), b(l), υ(l)

]
;

Pursuing the sparsity patterns S(l) using the updated
parameters;

end
return Ŝ,W̃ , b, υ.

condition the sparse recovery of S is close to the results by
independently using the plain OMP algorithm on each patch.
In our implementation, we use OMP algorithm to initialize
the sparsity pattern recovery. Model parameters are updated
by using the current sparsity pattern recovery results. Once
the parameters are updated, improved recovery of sparsity
patterns can be obtained. Each iteration contains these two
stages and the algorithm stops when it converges or reaches the
maximum iteration number. The pseudocode of the proposed
block-coordinate maximization algorithm is summarized in
Algorithm 1.

A. Model Parameters Estimation

Given X = {yk, Sk, αk , S̃k}K
k=1 as examples sampled

from the model, we suggest using the Maximum Likelihood
Estimation (MLE) for learning the model parameters θ =
[W̃ , b, {σ 2

α,i }m
i=1] ∈ �. Mathematically, we have

θ̂M L = arg max
θ

Pr (X |θ)

= arg max
θ

m∑
i=1

L(σ 2
α,i )+ L(W̃ , b), (24)

where

L(σ 2
α,i ) = 1

2

K∑
k=1

f k
i ,

L(W̃ , b) = 1

2

K∑
k=1

(
Sk

)T (
W̃ S̃k + b

)
− K ln Z(W̃ , b), (25)

are log-likelihood functions for the model parameters and

f k
i =

⎧⎪⎨
⎪⎩

(
αk

i

)2

σ 2
α,i

+ ln(σ 2
α,i ), Sk

i = 1,

0, Sk
i = −1.

(26)

For the estimation of variances, a closed-form estimator is
obtained by:

σ̂ 2
α,i =

∑K
k=1 (α

k
i )

2 · qk
i∑K

k=1 qk
i

(27)
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where

qk
i =

{
1, Sk

i = 1,

0, Sk
i = −1.

However, ML estimation of W̃ and b is computationally
intensive due to the exponential complexity in m associated
with the partition function Z(W̃ , b). In [15], a gradient-
based optimization algorithm with Gibbs sampling and mean-
field techniques is used. Faktor et al. [20], [21] proposed a
more efficient algorithm using the MPL estimation [37] and
sequential subspace optimization (SESOP) method [38]. In our
work, we adopt the same procedure as in [21]. Details can be
found in that paper.

B. Recovery of Sparsity Patterns

Once the parameters are known, one way to compute the
global optimal configuration for the MRFs model in (23) is
to provide a set of possible candidates for each node, then
approximately solve it by the Belief Propagation (BP) algo-
rithm. However, since the number of possible configurations
of each node is exponential to the number of the dictionary
atoms (i.e., there are 2m possible candidates for S), it is
computationally intractable in practice. Instead, we present an
approximated numerical solution that iteratively recovers the
sparsity pattern of each patch, as in the Gauss-Seidel iterative
method.

In the proposed algorithm, all the patches are processed in
raster-scan order in an image, i.e., from left to right and top to
bottom. When processing the current center patch, all sparsity
patterns of the neighboring patches S̃ are utilizing the latest
updated value and kept fixed during the recovery of sparsity
pattern for center patch. Due to the overlapping of extracted
patches, the updated sparsity pattern of the current patch
is immediately used in the processing of next neighboring
patch. The procedure is performed repeatedly to propagate the
contextual information among all the nodes.

The above simplification for solving the whole set of
sparsity patterns of the MRFs can also be viewed as a
block-coordinate method, in which when updating one single
sparsity pattern, the others are known and fixed. Under this
configuration, the recovery of individual sparsity pattern is
rewritten as

Ŝ = arg max
S

Pr(S|y) = arg max
S

{ln Pr (y|S)+ ln Pr (S)}

= arg max
S

(
1

2σ 2 yT �̃SQ−1
S �̃T

S y − 1

2
ln det(QS)

−1

2
ln

⎛
⎝ ∏

Si=1

σ 2
α,i

σ 2

⎞
⎠ + ST

(
W̃ S̃ + b

)
⎞
⎠. (28)

In this configuration, the exact MAP estimator requires
an exhaustive search over all 2m possible configurations.
Therefore, we propose a greedy algorithm as an approximate
MAP estimation for solving (28). The greedy algorithm starts
with an initialization with Si = −1,∀i , and then iteratively
changes the value of entry Si to 1 that makes the posterior
probability in (28) with the biggest growth comparing to all

Algorithm 2: MRF-based Sparsity Patterns Recovery
Algorithm

Input: Noisy observations {yk}K
k=1, dictionary �̃, noise

variance σ 2, model parameters
θ =

[
W̃ , b, υ = {σ 2

α,i }m
i=1

]
, initialization S(0),

maxPass.
Output: Recovery of sparsity patterns Ŝ = {Ŝk}K

k=1.
p = 0;
while p < maxPass do

p = p + 1;
for every patch yk in raster-scan order do

Collect the sparsity patterns of neighboring
patches, S̃k ;
Let Z (0) = (Sk)(0);
Let ∀i, Z (0)i = −1;
l = 1;
repeat

for ∀i, Z (l−1)
i = −1 do

for j = 1, 2, . . . ,m do
if j �= i then Z (l)j = Z (l−1)

j ;

else Z (l)j = 1;
end
Evaluate P(i) = Pr(Z (l)|y) using (28);

end
i∗ = arg maxi {P(i)};
for j = 1, 2, . . . ,m do

if j �= i∗ then Z (l)j = Z (l−1)
j ;

else Z (l)j = 1;
end
l = l + 1;

until Pr
(
Z (l)|y)

< Pr
(
Z (l−1)|y)

;
Ŝk = Z (l−1);

end
end
return Ŝ = {Ŝk}K

k=1.

other candidates. The iteration stops until the the posterior
probability in (28) reaches a local optimal value.

The pseudocode of the MRF-based recovery algorithm is
summarized in Algorithm 2.

C. Fast and Efficient Implementation

A straightforward implementation of the method presented
in this section is highly demanding in time-space complexity.
In order to achieve a practical and efficient algorithm, we
introduce some constraints and exploit certain optimization
strategy as follows:

1) The full number of parameters in W̃ is very large. For
example, if the patch size is n = 8 × 8, and the redun-
dancy ratio of a dictionary is set to be 4, the dictionary
size is m = n × 4 = 256. When we choose to use
the 8-connected MRFs to model the spatial connections,
the number of parameters in W̃ is 8 × m2 = 524288.
To reduce the number of parameters while maintaining
the performance of the proposed model, we impose a
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TABLE I

SUMMARY OF DENOISING RESULTS ON DIFFERENT KINDS OF DICTIONARIES (PSNR: dB). THE BEST RESULT

FOR EACH PAIR OF COMPARING METHODS FOR DIFFERENT NOISE LEVELS IS HIGHLIGHTED

σ Image
Redundant DCT Global K-SVD Adaptive K-SVD

OMP CASD �PSNR OMP CASD �PSNR OMP CASD �PSNR

5

Barbara 34.33 34.74 0.42 34.17 34.34 0.18 34.74 34.88 0.13

Boats 34.62 35.05 0.43 34.88 35.14 0.27 35.11 35.22 0.12

House 35.62 35.92 0.29 35.83 36.02 0.19 36.13 36.27 0.13

Lena 34.84 35.14 0.31 35.20 35.32 0.12 35.12 35.28 0.16

Average 34.85 35.21 0.31 35.02 35.21 0.19 35.28 35.41 0.14

10

Barbara 29.89 30.41 0.53 29.72 30.00 0.29 30.56 30.78 0.22

Boats 30.30 30.88 0.58 30.79 31.17 0.37 31.07 31.28 0.21

House 31.94 32.35 0.41 32.42 32.73 0.30 32.57 32.80 0.23

Lena 30.49 30.85 0.36 31.04 31.27 0.22 30.89 31.07 0.18

Average 30.66 31.12 0.47 30.99 31.29 0.30 31.27 31.48 0.21

15

Barbara 27.38 27.98 0.60 27.26 27.61 0.34 28.27 28.59 0.31

Boats 27.92 28.59 0.68 28.52 28.97 0.45 28.82 29.12 0.31

House 29.87 30.41 0.55 30.53 30.94 0.41 30.69 31.09 0.41

Lena 28.10 28.57 0.46 28.74 29.04 0.29 28.69 28.92 0.23

Average 28.32 28.89 0.57 28.76 29.14 0.37 29.12 29.43 0.32

20

Barbara 25.69 26.35 0.65 25.63 26.01 0.39 26.62 27.02 0.40

Boats 26.29 27.05 0.76 26.99 27.51 0.53 27.21 27.62 0.42

House 28.38 29.07 0.69 29.11 29.66 0.54 29.22 29.73 0.51

Lena 26.50 27.06 0.56 27.21 27.57 0.36 27.15 27.49 0.34

Average 26.72 27.38 0.67 27.24 27.69 0.46 27.55 27.97 0.42

25

Barbara 24.44 25.16 0.72 24.43 24.85 0.42 25.34 25.81 0.47

Boats 25.09 25.94 0.85 25.82 26.41 0.59 25.93 26.46 0.53

House 27.18 28.05 0.88 27.97 28.67 0.70 28.02 28.77 0.75

Lena 25.29 25.98 0.69 26.04 26.51 0.47 25.98 26.45 0.47

Average 25.50 26.28 0.79 26.07 26.61 0.55 26.32 26.87 0.56

50

Barbara 21.01 21.88 0.86 21.13 21.74 0.62 21.37 21.96 0.59

Boats 21.58 22.54 0.96 22.15 22.87 0.72 21.85 22.52 0.67

House 23.33 24.48 1.15 23.96 24.96 1.00 23.71 24.63 0.92

Lena 21.74 22.69 0.94 22.41 23.14 0.73 22.11 22.82 0.70

Average 21.92 22.90 0.98 22.41 23.18 0.77 22.26 22.98 0.72

constraint on each W	t , t = 1, 2, . . . , 8. That is only
the elements on the main diagonal are considered to
be updated while all other elements are set to be 0.
It means that we eliminate the correlations between
different atoms �̃i and �̃ j , i �= j . We make the above
constraint based on the observation of the experiment in
Section IV-A. As shown in Fig. 3, the strong correlations
of natural images exist mostly on the main diagonal.
When imposing this constraint on the proposed model,
W̃ is constructed as follows:

W̃ = [diag(W	1), . . . , diag(W	8)]
where diag is the operator that erases all the elements
of a matrix to zero except the diagonal ones. Under this
constraint, the number of parameters in W̃ is reduced to
8 × m = 2048.

2) In Algorithm 1, the model parameters are updated
after the every recovery stage of the sparsity patterns.
However, the model parameters estimation algorithm
is time consuming, and we find it change slightly in
the iterations. Therefore, to reduce the computational

complexity of the proposed algorithm, model parameters
are only updated several times during the iteration of
sparsity patterns recovery.

VI. EXPERIMENTAL RESULTS AND ANALYSIS

The proposed method is evaluated with two applications:
image denoising and super-resolution. As described before,
for image denoising, the degradation operator H is an identity
matrix. For super-resolution, the degradation operator H is a
downsampling operation matrix. Therefore, �̃ = H� corre-
sponds to the low-resolution dictionary. Instead of explicitly
constructing the degradation operator H , we directly learn a
pair of low- and high-resolution dictionaries as proposed in
[4], [39]. In particular, we adopt the dictionary learning algo-
rithm proposed by Zeyde et al. [39] that splits joint learning
into separable low-resolution and high-resolution dictionary
learning to improve the recovery accuracy. We collect a set of
high quality natural images1 as the training dataset for dictio-
nary learning. For learning a pair of low and high-resolution

1Downloaded from website Available at: http://www.ifp.illinois.edu/∼
jyang29/.
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TABLE II

SUMMARY OF DENOISING RESULTS ON DIFFERENT DICTIONARY SIZES m = r · 82, r = 3–5 (PSNR: dB).

THE BEST RESULT FOR EACH PAIR OF COMPARING METHODS IS HIGHLIGHTED

σ Image
r = 3 r = 4 r = 5

OMP CASD �PSNR OMP CASD �PSNR OMP CASD �PSNR

5

Barbara 34.76 34.78 0.02 34.74 34.88 0.13 34.73 34.69 -0.04

Boats 35.14 35.14 0.00 35.11 35.22 0.12 35.12 35.09 -0.04

House 36.11 36.18 0.07 36.13 36.27 0.13 36.11 36.15 0.04

Lena 35.14 35.20 0.06 35.12 35.28 0.16 35.12 35.14 0.02

Average 35.29 35.33 0.04 35.28 35.41 0.13 35.27 35.27 0.00

10

Barbara 30.57 30.69 0.12 30.56 30.78 0.22 30.56 30.66 0.10

Boats 31.06 31.17 0.11 31.07 31.28 0.21 31.07 31.17 0.10

House 32.63 32.80 0.18 32.57 32.80 0.23 32.55 32.76 0.20

Lena 30.90 31.00 0.10 30.89 31.07 0.18 30.88 30.95 0.07

Average 31.29 31.41 0.12 31.27 31.48 0.21 31.26 31.38 0.12

15

Barbara 28.28 28.51 0.23 28.27 28.59 0.31 28.26 28.47 0.21

Boats 28.83 29.05 0.22 28.82 29.12 0.31 28.80 29.02 0.22

House 30.69 31.04 0.36 30.69 31.09 0.41 30.62 30.96 0.34

Lena 28.71 28.87 0.17 28.69 28.92 0.23 28.69 28.86 0.18

Average 29.12 29.37 0.24 29.12 29.43 0.32 29.09 29.33 0.24

20

Barbara 26.65 26.97 0.32 26.62 27.02 0.40 26.61 26.90 0.30

Boats 27.23 27.56 0.33 27.21 27.62 0.42 27.16 27.51 0.35

House 29.24 29.74 0.50 29.22 29.73 0.51 29.16 29.66 0.49

Lena 27.23 27.49 0.25 27.15 27.49 0.34 27.15 27.45 0.30

Average 27.59 27.94 0.35 27.55 27.97 0.42 27.52 27.88 0.36

25

Barbara 25.41 25.79 0.38 25.34 25.81 0.47 25.33 25.71 0.38

Boats 25.97 26.40 0.44 25.93 26.46 0.53 25.91 26.39 0.48

House 28.05 28.76 0.71 28.02 28.77 0.75 27.98 28.71 0.73

Lena 26.00 26.41 0.41 25.98 26.45 0.47 25.95 26.40 0.45

Average 26.36 26.84 0.48 26.32 26.87 0.55 26.29 26.80 0.51

50

Barbara 21.45 22.08 0.62 21.37 21.96 0.59 21.28 21.87 0.59

Boats 21.96 22.68 0.72 21.85 22.52 0.67 21.77 22.47 0.70

House 23.80 24.78 0.99 23.71 24.63 0.92 23.58 24.55 0.97

Lena 22.17 22.92 0.75 22.11 22.82 0.70 22.04 22.77 0.73

Average 22.35 23.11 0.77 22.26 22.98 0.72 22.17 22.91 0.75

dictionaries, the high-resolution images are downsampled by
a factor of 3 to simulate the low-resolution images.

We test the proposed method on several standard test images
which are commonly used in previous work on denoising
and super-resolution. Four test images are shown in Fig. 5.
To evaluate the performance of image denoising, we add the
additive Gaussian white noise with 6 levels of known standard
deviations σ into the original clean images. For image super-
resolution, we first downsample the high-quality images by
bicubic interpolation with a factor of 3, and add unit variance
Gaussian noise to the downsampled images to obtain the noisy
downsampled low-resolution images.

In our implementation, for denoising, the test images are
divided into 8 × 8 patches with 7-pixel patch overlapping,
which means that the overlaps between neighboring patches
in Left, Up-Left, Up directions are [8 ×7], [7 ×7] and [7 ×8]
(as illustrated in Fig. 2(h), (a), (b)), respectively. For 3× super-
resolution, the patch sizes are set to be 9 × 9 and 3 × 3
in high- and low-resolution domain, respectively. The patch

(a) (b) (c) (d)

Fig. 5. Four examples of test images. (a) Barbara. (b) Boats. (c) House.
(d) Lena.

overlapping in low-resolution domain is set to be 2-pixel.
Therefore, it is 6-pixel patch overlapping in the high-resolution
domain.

A. Image Denoising

1) Denoising Over Redundant Dictionaries: The proposed
method does not rely on any assumption about the dictio-
nary structure. To verify the effectiveness and robustness
of the proposed method over different types of redundant
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Fig. 6. PSNR curves of different models on the four test images with various noise levels. (a) Barbara. (b) Boats. (c) House. (d) Lena.
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Fig. 7. SSIM curves of different models on the four test images with various noise levels. (a) Barbara. (b) Boats. (c) House. (d) Lena.
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Fig. 8. Denoising results and corresponding SSIM maps of different prior models (σ = 50). (a) Denoised images. (b) SSIM maps. From left to right: plain
OMP, fixed-Wb, adaptive-b, and adaptive-Wb model.

dictionaries, we conduct a set of experiments to compare
the denoising performance of the proposed method (CASD)
with the basic sparse coding algorithm, OMP. Three types of
dictionaries are considered, including the pre-specified Redun-
dant DCT dictionary and two dictionaries trained by K-SVD
algorithm [27]. Specifically, these two dictionaries include a
globally trained dictionary (denoted as Global K-SVD) and
an adaptively trained dictionary (denoted as Adaptive K-SVD)
learned from a general set of natural images and each input

image, respectively. The redundant ratio of the dictionary is set
to be r = 4. Therefore, the dictionary size is m = r ·82 = 256
for each dictionary.

The result is summarized in Table I. The proposed method
outperforms the baseline in denoising with 6 levels of standard
deviations (σ = 5, 10, 15, 20, 25, 50). It is robust to the
dictionary type in terms of peak signal-to-noise ratio (PSNR)
before patch averaging. Nevertheless, the effectiveness of the
proposed context-aware prior is different. For Redundant DCT,
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Fig. 9. SSIM gains of different prior models over the OMP method (σ = 50). (a) Fixed-Wb. (b) Adaptive-b. (c) Adaptive-Wb.
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Fig. 10. Improvement in the denoising results after each iteration of the
proposed numerical algorithm (σ = 20).

the average gains in PSNR are from 0.31 dB to 0.98 dB for 6
levels of noise, while for Global K-SVD and Adaptive K-SVD,
the average gains are 0.19 ∼ 0.77 dB and 0.14 ∼ 0.72 dB,
respectively.

2) Effect of Redundant Ratio of Adaptive Dictionary: To
verify the robustness of the proposed method to dictio-
nary size, we conduct the following experiment on Adaptive
K-SVD dictionary. The dictionary size is m = r · 82 in which
the redundant ratio r is set to be 3–5, respectively. Over
these adaptive dictionaries of different redundant ratios, the
denoising results of the OMP method and the proposed CASD
method are summarized in Table II (in terms of PSNR). The
average PSNR gains of the proposed method with 6 standard
noise deviations are 0.04 ∼ 0.77 dB, 0.13 ∼ 0.72 dB,
0.0 ∼ 0.75 dB for redundant ratio r = 3–5, respectively.
Therefore, it is concluded that the proposed method is robust
to the dictionary size. Since the proposed method is more
effective when r = 4 in the low noise level, we use
r = 4 redundant dictionary for the rest of the denoising
experiments.

3) Comparisons of Prior Models: The proposed prior in
(20) consists of two parts of model parameters W̃ , b. We
denote the proposed prior model as Adaptive-Wb. When
the interaction matrix W̃ is zero, the proposed prior model
reduces to the independent adaptive model in (13), denoted as
Adaptive-b. Meanwhile, Fixed-Wb represents the model with
(W̃ = 0, b = 0). It is a statistical approximation to the deter-
ministic baseline algorithm, OMP. We analyze the contribution

TABLE III

SUMMARY OF DENOISING PSNR RESULTS ON FOUR METHODS IN

DECIBELS. IN EACH CELL. TOP LEFT: RESULTS OF FoE [6].

TOP RIGHT: BM3D [41]. BOTTOM LEFT: K-SVD [2].

BOTTOM RIGHT: THE PROPOSED

σ Barbara Boats House Lena

5
37.42 38.34 37.93 38.71 38.29 39.72 38.46 39.02

38.16 38.24 38.41 38.45 39.34 39.38 38.64 38.67

10
32.97 34.75 33.65 34.95 35.11 36.64 34.21 35.17

34.28 34.38 34.62 34.69 35.92 35.99 34.64 34.66

15
30.21 32.70 31.39 32.81 33.52 34.91 31.83 32.97

32.10 32.22 32.39 32.46 34.2 34.31 32.45 32.46

20
28.19 31.20 29.79 31.29 32.24 33.75 29.97 31.45

30.52 30.64 30.81 30.90 32.95 33.10 30.92 30.94

25
26.82 30.01 28.54 30.14 31.27 32.84 29.03 30.28

29.23 29.33 29.58 29.69 31.94 32.18 29.77 29.81

50
23.39 26.33 24.61 26.47 27.50 29.71 24.96 26.77

25.13 25.18 25.6 25.75 28.11 28.44 26.10 26.25

TABLE IV

COMPARISONS OF METHODS ON 3× SUPER-RESOLUTION

IN TERMS OF PSNR (dB)

Method Barb. Boats House Lena C.Man Pepper Avg

Bicubic 24.1 27.4 29.8 27.2 23.8 27.0 26.6
ScSR [4] 24.2 28.2 31.0 28.3 24.5 28.1 27.4
Proposed 24.3 28.7 31.5 28.7 24.7 28.5 27.7

of each component of the proposed context-aware prior model.
As illustrated in Fig. 6, Adaptive-Wb and Adaptive-b models
consistently outperform the baseline for the four test images
in terms of PSNR before patch averaging. The gains over
the baseline are approximately linear with the noise standard
deviation when σ ≥ 15. Specifically, Adaptive-b achieves
most of the improvements over the baseline. However, the
proposed context-aware model Adaptive-Wb further improves
the recovery accuracy of denoising. For the Fixed-Wb model,
it is comparable to the baseline when σ ≤ 20 and superior to
the baseline in the high noise levels (σ ≥ 20).

In Fig. 7, the SSIM [40] results of the denoised images
corresponding to different prior models and various noise
levels are illustrated. Due to the patch averaging processing,
the gains of the three prior models over the baseline are
reduced. However, the superiorities of these prior models are
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Fig. 11. Visual comparisons of denoised results with state-of-the-art methods. From left to right: original image, noisy image (σ = 15), FoE [6], BM3D
[41], K-SVD [2], and the proposed method.

preserved. Note that there are exceptions for the prior model
Fixed-Wb on Barbara and Boats images. Fig. 8 shows the final
denoised images and their corresponding SSIM maps [40] in
noise level σ = 50. Specifically, the SSIM gains of these
prior models over the OMP method are illustrated in Fig. 9.
There are more serious structure distortion in the stripe texture
region in the denoised image of Fixed-Wb model than that of
the OMP method.

4) Iteration Number: In the numerical solution presented in
Section V, an iterative scheme is proposed to solve the joint
estimation problem. Fig. 10 demonstrates the improvement
over the initial recovery result in terms of PSNR (before
patch averaging). As illustrated in the Fig. 10, all curves start
at zero, going towards positive values. The initial result is
marked as Iteration Number 0. After the first iteration, there
is a significant performance gain in PSNR for each image
(0.3 ∼ 0.5 dB for different images). The following iterations
give additional but slight improvements over the first iteration
(about 0.2 dB after 10 iterations). Therefore, we use the first
iteration result as a trade-off between recovery quality and
computational complexity.

5) Comparisons to the State-of-the-Art Methods: Finally,
we compare the proposed denoising method over Adaptive
K-SVD dictionary with the typical state-of-the-art methods,
including FoE [6], K-SVD [2] and BM3D [41]. Table III sum-
marizes these denoising results for the three methods and the
proposed method. As demonstrated in Table III, the average
PSNR results of FoE method and K-SVD method are 31.30 dB

and 32.32 dB, computed on all test images results with six
noise levels. The average result of the proposed method is
32.42 dB, showing average improvements of 1.12 dB and
0.1 dB in favor of FoE and K-SVD, respectively. BM3D
method performs the best in average result of 32.54 dB which
exploits the nonlocal similarity in natural images beyond the
sparsity prior model. Integrating the self-similarity property
in natural images into the proposed method is one of our
future work. The visual comparison of the proposed method
with these state-of-the-art methods in noise level σ = 15
is illustrated in Fig. 11. The proposed method significantly
alleviates the visual artifacts of K-SVD method and reveals
more texture details (especially in the brick texture region).

B. Image Super-Resolution

In this subsection, we present the experimental results of
3× single-image super-resolution with noise level σ = 1.
We compare the proposed method with bicubic method and
the sparsity-based method (ScSR) in [4]. The dictionary size
for both ScSR [4] and the proposed method are set to be 1024.

For objective evaluation, Table IV shows the PSNR results
of the three methods. From Table IV, the sparsity-based
method [4] is superior to the bicubic method about 0.8 dB
in average and the proposed method further improves the
performance of sparsity-based baseline about 0.3 dB. We
also illustrate the visual quality of SR results for subjective
assessment in Fig. 12. The figures show that the bicubic
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Fig. 12. Visual comparisons of super-resolution results of different methods. From left to right: original image, low-resolution image, ScSR [4], and the
proposed method.

method constantly produces the lowest visual quality with
blurring and jagging artifacts along the edge regions. The
sparsity-based method [4] produces SR images with sharp
edges. However, there are some artifacts around the edges.
It is mainly because of the noise in the low-resolution input
image and the separate reconstruction of each patch without
considering the structural correlations of neighboring patches.
The proposed method alleviates the artifacts by incorporating
the structural correlations of dictionary atoms into the sparse
coding algorithm. Richer texture can also be super-resolved
by the proposed method, e.g., the hat of Lena image.

VII. CONCLUSION

In this paper, we propose a context-aware prior model
and a MRF-based global extension to improve the sparsity-
based prior model. To exploit the contextual information of
neighboring image patches, we explicitly model the structural
correlation of the sparsity patterns for overlapped patches.
Specifically, the probabilistic dependencies between dictionary
atoms in adjacent spatial locations are modeled as in the BM
model. MRF-based modeling is utilized to tune the local prior
into a global one for dealing with arbitrary size images. In
order to solve the joint estimation of model parameters and

sparsity recovery, iterative numerical solution is presented to
approximate the global optimization result. We conduct several
experiments on image denoising and super-resolution to eval-
uate the effectiveness and robustness of the proposed method.
Experimental results show that the proposed method stably
improves the performance of sparsity-based prior model.
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