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Rate-Distortion Analysis of Dead-Zone Plus
Uniform Threshold Scalar Quantization and
Its Application—Part I: Fundamental Theory
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Abstract— This paper provides a systematic rate-distortion
(R-D) analysis of the dead-zone plus uniform threshold scalar
quantization (DZ + UTSQ) with nearly uniform reconstruc-
tion quantization (NURQ) for generalized Gaussian distribution
(GGD), which consists of two aspects: R-D performance analysis
and R-D modeling. In R-D performance analysis, we first derive
the preliminary constraint of optimum entropy-constrained
DZ + UTSQ/NURQ for GGD, under which the property of
the GGD distortion-rate (D-R) function is elucidated. Then for
the GGD source of actual transform coefficients, the refined
constraint and precise conditions of optimum DZ + UTSQ/NURQ
are rigorously deduced in the real coding bit rate range, and
efficient DZ + UTSQ/NURQ design criteria are proposed to
reasonably simplify the utilization of effective quantizers in
practice. In R-D modeling, inspired by R-D performance analysis,
the D-R function is first developed, followed by the novel rate-
quantization (R-Q) and distortion-quantization (D-Q) models
derived using analytical and heuristic methods. The D-R, R-
Q, and D-Q models form the source model describing the
relationship between the rate, distortion, and quantization steps.
One application of the proposed source model is the effective two-
pass VBR coding algorithm design on an encoder of H.264/AVC
reference software, which achieves constant video quality and
desirable rate control accuracy.

Index Terms— Dead-zone plus uniform threshold quantization,
generalized Gaussian distribution, rate-distortion theory, video
coding.

I. INTRODUCTION

IN DIGITAL coding realm, rate-distortion (R-D) analysis
has been attracting considerable attentions. R-D analysis

includes two related aspects, R-D performance analysis
and R-D modeling, both are of great importance. The
concept of optimal R-D performance originates from
Shannon’s rate-distortion function (R(D)) and its inverse
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function called the D-R function (D(R)) [1]. Shannon
showed that when coding at rate R, the minimum distortion
can arbitrarily approach the value of D(R), which is only
determined by the source statistics. Typically, the statistical
properties of the source coefficients (also known as the
memoryless sources [2]) are characterized by distributions
like Gaussian [3], Laplacian [4], Cauchy [5] and the
generalized Gaussian distribution (GGD) [6]. For zero-
mean memoryless Gaussian source, the explicit Shannon
R-D and D-R functions have already been obtained [7],
denoted by RG(D) and DG (R). For zero-mean memoryless
Non-Gaussian sources especially the GGD which has been
proved of perfect accuracy [5]–[11] in statistical modeling,
only the upper and lower bounds of the D-R function are avail-
able. The upper bound of D(R) is DG(R) and the lower bound
is the Shannon lower bound [2]. The D-R function of any zero-
mean memoryless Non-Gaussian source lies below DG (R),
while the Shannon lower bound can only be approached
at very high bit rate [12]. Shannon R-D function (or D-R
function) defines the best performance of all compression
methods, which is obviously not applicable in practical video
coding systems. Moreover, the probabilities of the real source
coefficients always do not conform to Gaussian distribution.
As a result, the existing explicit Shannon R-D and D-R func-
tions RG(D) and DG (R) cannot be directly applied to video
coding.

In practical video coding systems, transform-based quan-
tization scheme is the most universal compression tech-
nology [13]. In quantization theory, the meaning of R-D
function is generally extended [14] to the R-D performance
of applying a certain quantization scheme such as multi-
dimensional vector quantizer [15] or scalar quantizer [16]
to a given source distribution. Accordingly, the attainable
R-D function under applicable quantization scheme is defined
as operational R-D function. Although the multi-dimensional
vector quantizer can even approximate the performance of
Shannon R-D function, it requires exponential computations
[17] which are unbearable in application. Therefore, the sim-
ple and effective scalar quantization scheme is extensively
adopted as the most suitable solution in practice. Focusing
on the operational R-D function under scalar quantization
scheme, a series of important achievements have been made
in R-D performance analysis. The earlier contributions were
mainly about the quantizer design for minimum distortion
[18]–[20]. Later, considering the rate restriction in practical
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video communication, the optimum scalar quantizer design
with output entropy rate constraint gradually became one
of the hottest topics in R-D performance analysis. Among
different scalar quantization schemes, the uniform threshold
scalar quantizer (UTSQ) is intensively concerned for its
excellent R-D performance in high bit rate. For Gaussian
distribution, the optimal performance of the scalar quan-
tizer in high bit rate was obtained using UTSQ under
mean square error (MSE) distortion measure, which only
exceeds Shannon R-D function by 0.255 bits/sample [21],
[22]. And for various Non-Gaussian sources, UTSQ was
also confirmed to be efficient [23]. In recent years, the
study of scalar quantizer is further enriched by compar-
ing UTSQ with other quantization schemes under typical
distributions [24]. In addition, the dead-zone (DZ) region
and the nearly uniform-reconstruction quantizer (NURQ)
were introduced, which finally came into the quantization
scheme of DZ + UTSQ/NURQ [25]. The performance of
DZ + UTSQ/NURQ is affected by two important parameters
z and f , as is shown in Fig. 1. The dead-zone ratio z is half
size of the region with quantization index 0 and f is the recon-
struction offset from the corresponding index. Both z and f are
normalized by the quantization step �. DZ + UTSQ/NURQ
stands for a large family of quantizers denoted by different
z and f . When z = 1, DZ + UTSQ/NURQ degrades into
UTSQ. Compared with UTSQ, DZ + UTSQ/NURQ can more
flexibly adjust coding efficiency by selecting proper values
of z and f . DZ + UTSQ/NURQ is nowadopted by all
the major international video coding standards [26]–[31] as
recommendation.

Although the integration of GGD and DZ + UTSQ/NURQ
can accurately reflect the practical video coding system,
to the best of our knowledge, neither the R-D property of
GGD under DZ + UTSQ/NURQ nor the exact ranges of z
and f for efficient DZ + UTSQ/NURQ has been obtained,
indicating that further effort is required in R-D performance
analysis. Taking DZ + UTSQ/NURQ design as an example,
the only related work was provided by Gary [25], where
the relationship of z and � was analyzed for Laplacian
and Gaussian sources under theoretical optimal conditions.
In addition, the performance comparison between uniform
reconstruction quantization (URQ) and NURQ for DZ +
UTSQ was provided and further extended to GGD. However,
these contributions are not enough for real video applications
due to the following reasons. First, there arestill no available
conclusions of z to guide thedesign of efficient DZ +
UTSQ/NURQ for GGD. Second, the existing results of z and
f were mostly derived at very high bitrate. The restrictive
condition of real coding bitrate (below 1.0 bits/sample)
leads to totally different selection of z and f , which well
explains why Gary’s proposal of DZ + UTSQ/URQ rounding
technique to H.264/AVC only effectively improves coding
efficiency in very high bitrate range [25]. Besides the optimum
quantizer designsolution, the knowledge of operation R-D
function is also of significant importance, since it serves as
the fundamental basis for R-D modeling. As a result, the
lack of available R-D property of DZ + UTSQ/NURQ for
GGD in the existing R-D performance analysismay bring

Fig. 1. Illustration of the DZ + UTSQ/NURQ scheme.

great difficulties to the derivation of the corresponding R-D
models.

In R-D modeling, both rate and distortion of practical video
coding systems are generally controlled by the quantization
step under transform based quantization scheme, and the R-D
function is typically characterized by the rate-quantization
(R-Q) function and the distortion-quantization (D-Q) function.
The R-D (or D-R), R-Q and D-Q functions together form
the source model describing the relationship between rate,
distortion and quantization step. By using analytical or
heuristic method, several representative R-Q and D-Q models
have been developed [5], [13], [32]–[37], providing useful
references for video coding. However, the existing work
of R-D modeling still has limitations in the following two
aspects. First, for the heuristic models [34]–[37], the control
parameters are determined according to the actual coding
data or rate control performance. Without rigorous analysis
of video source, these models can be efficient in some
situations but may not effectively contribute todifferent video
applications. Second, the analytical models [5], [13] are
deduced base on the R-D relationship and quantization design
which are applicable only in very high bit rate. As a result,
these models may deviate from the practical video coding
systems in actual or relatively low bit rate.

In our paper, we focus on R-D analysis of DZ +
UTSQ/NURQ for GGD. The three main contributions of this
paper are:

1) We rigorously demonstrate that the derivative GGD
D-R function is not affected by the standard deviation
β of GGD. Furthermore, we find that the derivative
of GGD D-R function first decreases then increases
to the traditional bound of 6.02under efficient DZ +
UTSQ/NURQ patterns, which not only well explains the
R-D property of GGD under DZ + UTSQ/NURQ but
also simplifies the quantizer design and benefits the R-D
modeling process.

2) The preliminary constraint on z and f of optimum DZ +
UTSQ/NURQ for GGD is derived: z ≤ 1+ f ≤ z +1/2.
On this basis, z and f are further proved linear correlate
in actual coding rate for GGD, and the ranges of z and
f for optimal performance are also deduced, expressed
as 1/2 < z ≤ 1 and 0 < f ≤ 1/2. Finally, the efficient
design criteria of DZ + UTSQ/NURQ are presented
by fixing f and adjusting z within the proposed range,
which reasonably simplifies the implementation of effec-
tive quantizers.

3) The GGD D-R model for MPEG-4 FGS coding is
extended to general DZ + UTSQ/NURQ, and the novel
GGD R-Q and D-Q models under efficient DZ +
UTSQ/NURQ are developed using analytical and heuris-
tic approaches. The R-D modeling process is greatly
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inspired by the R-D performance analysis, and the
superior accuracy of the proposed models in estimating
rate and distortion for GGD source is verified via the
simulation experiments.

The remainder of this paper is organized as follows. In
Section II, the DZ + UTSQ/NURQ scheme is briefly investi-
gated and then applied to GGD to obtain the R-D property of
GGD source under DZ + UTSQ/NURQ. In Section III, the
relationship and the optimum ranges of z and f are derived,
followed by the efficient design criteria of DZ + UTSQ/NURQ
for application. The deduction and theoretical evaluation of
the novel R-Q and D-Q models for GGD under efficient
DZ + UTSQ/NURQ are provided in Section IV and conclu-
sions are drawn in Section V.

II. GENERAL R-D PERFORMANCE ANALYSIS OF

DZ + UTSQ/NURQ WITH GGD

In this section, we first introduce the basic concepts of GGD
and DZ + UTSQ/NURQ. Then the preliminary constraint of
z and f on R-D optimized DZ + UTSQ/NURQ is derived
for GGD. On this basis, detailed description is provided to
illustrate the R-D property of efficient DZ + UTSQ/NURQ
for GGD.

A. Zero-Mean GGD

For simplicity, we use GGD to denote zero-mean GGD in
this paper. The probability density function (PDF) of GGD
can be expressed as follows:

p(x) = g1(α)

β
exp

(
−

[
g2(α)

|x |
β

]α)
(1)

with

g1(α) = α · �(3/α)1/2

2 · �(1/α)3/2 and g2(α) =
[
�(3/α)

�(1/α)

]1/2

(2)

where α is the shape parameter and β is the standard deviation.
Specifically, for GGD shapes α = 1.0, α = 2.0 and α → ∞,
GGD becomes Laplacian, Gaussian and uniform distribution,
as is shown in Fig. 2. By adjusting the parameters α and β,
GGD can well adapt to the transform coefficients of various
sources.

B. Preliminary Constraints of z and f

The complete DZ + UTSQ/NURQ scheme is illustrated
in Fig. 1, which consists of the DZ + UTSQ classification
rule and NURQ reconstruction rule, both are symmetric about
zero. In classification, each input is mapped to the integer-
valued quantization index according to quantization threshold
T. In reconstruction, a real-valued reconstruction level R is
produced for each index. For the quantization index k ≥ 1,
the decision interval is [Tk, Tk+1) and for k ≤ −1, the interval
is (T−k−1, T−k ]. For the index 0, the interval is the dead-zone
region given by (T−1, T1). The quantization threshold Tk and
the reconstruction level Rk are expressed as:

Tk =
{

(k−1+z)�, k ≥ 1
T−k , k ≤ −1 and Rk =

⎧⎨
⎩

0, k = 0
(k+ f )�, k ≥ 1
R−k , k ≤ −1.

(3)
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Fig. 2. Zero-mean generalized Gaussian distribution with different shape
parameters.

For the symmetric quantization scheme, we first consider
only positive axis for convenience, without loss of generality
to the similar problem posed for the negative axis.

Throughout our work, we refer optimum quantizer as the
one minimizes the average distortion under given limit of
output entropy rate. The necessary conditions for optimum
quantizer were formulated in [23], represented by the well-
known conclusion from Max [18] under the mean square error
(MSE) measure: for any distribution, the reconstruction level
Rk should locate at the centroid of the PDF p(x) in the
decision interval [Tk, Tk+1) where k ≥ 1. Thus the optimum
DZ + UTSQ/NURQ requires that

Rk =
∫ (k+z)�

(k+z−1)�
x p(x)dx

/∫ (k+z)�

(k+z−1)�
p(x)dx, k ≥ 1.

(4)
Since x > 0 and p(x) ≥ 0, it is obvious that

Rk > (k + z − 1)�

∫ (k+z)�

(k+z−1)�
p(x)dx

/∫ (k+z)�

(k+z−1)�
p(x)dx

= (k + z − 1)� (5)

and

Rk < (k + z)�
∫ (k+z)�

(k+z−1)�
p(x)dx

/∫ (k+z)�

(k+z−1)�
p(x)dx

= (k + z)�. (6)

From (3), (5) and (6), the result of z < 1 + f < z + 1
can be directly obtained. Specifically, in some regions where
p(x)=1 everywhere, Rk should locate at (z + 1)�. Thus we
have

z ≤ 1 + f < z + 1. (7)

The expression (7) is the constraint on z and f of optimum
DZ + UTSQ/NURQ for all types of distributions. To refine
(7) for GGD, here we first prove the important inequality of

∫ (k+z)�

(k+z−1)�
x p(x)dx ≤ (k+z− 1

2
)�

∫ (k+z)�

(k+z−1)�
p(x)dx, k ≥ 1.

(8)
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In arbitrary positive interval [a, b) we have∫ b

a
x p(x)dx =

∫ (b−a)/2

0
(x + a)p(x + a)dx

+
∫ 0

(b−a)/2
(b − x)p(b − x)d(b − x)

=
∫ (b−a)/2

0

[
(x + a)p(x + a)

+(b − x)p(b − x)
]
dx . (9)

The PDF of GGD is monotonically decreasing in the
positive axis, indicating that [(x + a) − (b − x)][p(x + a) −
p(b − x)] ≤ 0 when x ∈ [0, (b − x)/2], by which it is
easy to know that (x + a)p(x + a) + (b − x)p(b − x) ≤
(b − x)p(x + a)+ (x + a)p(b − x). Therefore, we can deduce
that

(x + a)p(x + a) + (b − x)p(b − x)

≤ 1

2
[(x + a)p(x + a) + (b − x)p(b − x)]

+1

2
[(b − x)p(x + a) + (x + a)p(b − x)]

= 1

2
(a + b)[p(x + a) + p(b − x). (10)

Using (9) and (10), the important inequality of (8) is easily
proved. Then with (4) and (8), it is clear that

Rk ≤
(

k + z − 1

2

)
�

∫ (k+z)�

(k+z−1)�
p(x)dx

/∫ (k+z)�

(k+z−1)�
p(x)dx

=
(

k + z − 1

2

)
�. (11)

Finally, based on (3) and (11), the constraint of (7) is refined
as:

z ≤ 1 + f ≤ z + 1

2
(12)

which specifies the preliminary constraint on z and f of
optimum DZ + UTSQ/NURQ for GGD. In the following part
of this paper, on basis of (12), the R-D property of efficient
DZ + UTSQ/NURQ for GGD is concluded, and the stricter
constraint of z and f are obtained for optimum quantizer
design.

C. R-D Property of Efficient DZ + UTSQ/NURQ for GGD

In this subsection, we observe and analyze the property
of the operational GGD D-R function under the preliminary
constraint of (12) with two purposes: 1) to simplify the study
of z and f for optimum DZ + UTSQ/NURQ with GGD;
2) to provide useful guidelines for R-D modeling. In [9] and
[10], the R-D performance was observed for MPEG-4 FGS
and H.264/SVC FGS coding, both are special instances of
DZ + UTSQ/NURQ with fixed z and f . Here we extend this
analysis to general DZ + UTSQ/NURQ.

With the variable δ > 0, we rewrite the quantization step
� as �β = βδ. In the symmetric DZ + UTSQ classification
rule, the entropy rate is calculated by the R-Q function (RQF):

H(�β) = −P0(�β) log2 P0(�β) + 2
+∞∑
k=1

−Pk(�β) log2 Pk(�β)

(13)

with the probability of quantization index k

Pk(�β) =
⎧⎨
⎩
∫ zδ
−zδ g1(α) exp(− [g2(α)|x |]α)dx , k = 0∫ (z+k)δ
(z+k−1)δ g1(α) exp(− [g2(α)|x |]α)dx, k ≥ 1.

(14)
For the specific shape parameter α and the constant dead-

zone ratio z, it can be seen that Pk(�β) is determined only
by the variable δ. So the entropy rate is just a function of δ:

H (�β) = Wα,z(δ). (15)

Likewise, in the symmetric NURQ reconstruction rule, the
MSE reconstruction distortion is denoted by the D-Q function
(DQF)

D(�β) = 2
+∞∑
k=0

Dk(�β) (16)

with the distortion of the kth reconstruction level

Dk(�β) =

⎧⎪⎪⎨
⎪⎪⎩

β2
∫ zδ

0 x2g1(α) exp(− [g2(α)|x |]α)dx, k = 0

β2
∫ (z+k)δ
(z+k−1)δ [x − ( f + k)δ]2 g1(α)

exp(− [g2(α)|x |]α)dx , k ≥ 1.
(17)

According to the equation (16) and (17), it is easy to know
that for any given α, z and offset f , the distortion can also
be regarded as a function of variable δ, while β only serves
as a scaling factor: D(�β = β2Ta,z, f (δ)). Using PSNR as the
distortion measure, the DQF is expressed as

PSN R(�β ) = 10 log10(2552/D(�β))

= 20 log10(255/β) − 10 log10 Ta,z, f (δ). (18)

Normally, the RQF and DQF are combined to directly
obtain the D-R function (DRF) or R-D function (RDF). Since
the complex exponential expression of Wa,z(δ) and Ta,z, f (δ)
cannot be simplified to derive the explicit relationship between
rate and distortion, we turn to the derivative RQF and DQF.
In Appendix, the existence of the derivative RQF and DQF
on δ is rigorously demonstrated. Therefore, by combining the
derivative functions of (15) and (18), the derivative DRF is
expressed as

dPS N R(�β)

dH(�β)
= dPS N R(�β)/dδ

dH(�β)/dδ
= − 10 T ′

α,z, f (δ)

ln 10 Tα,z, f (δ) W ′
α,z(δ)

(19)
where W ′

a,z(δ) and T ′
a,z, f (δ) respectively denote the derivative

function of Wa,z(δ) and Ta,z, f (δ) on δ.
Based on the derivative DRF, two important conclusions

are derived. First, from (19) it is obvious that the GGD
standard deviation β is not relative to the derivative DRF.
Since different β only lead to the parallel displacement of the
entire DRF curve, we just need to observe the R-D property of
GGD with different shapes of α under DZ + UTSQ/NURQ.
Second, the R-D property of GGD sources under typical
DZ + UTSQ/NURQ patterns is learned from simulation
experiments. Related results for α = 0.5 and 1.0 are
shown in Fig. 3, from which the derivative of the DRF
can be concluded to first decrease and then increase to
the traditional limitation 6.02 dB/bit with the increment
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Fig. 3. D-R derivative curve of GGD under the preliminary constraint of
optimum DZ + UTSQ/NURQ patterns.

of bit rate. The GGD shape α only affects the inflex-
ion of the derivative curve, which is smaller when α is
larger, with the value of 2.5 bits/sample for α = 0.5 and
1.2 bits/sample for α = 1. Since most actual transform
coefficients are modeled using GGD with shape between
0.5 and 1.0 [8], and the practical coding rate is often
below 1.0 bits/sample, it can be concluded that in real video
applications where DZ + UTSQ/NURQ is implemented, the
derivative of the DRF continuously decreases as the bit rate
increases. It should also be noted that in Fig. 3 the R-D
property of efficient DZ + UTSQ/NURQ for GGD is observed
under all the patterns of z and f satisfying the preliminary con-
straint of (12), which indicates that this property of GGD DRF
is always guaranteed under efficient DZ + UTSQ/NURQ.

In sum, the above two conclusions are important to the R-D
analysis of DZ + UTSQ/NURQ for GGD. On one hand, with
the first conclusion, the R-D efficiency under different patterns
of z and f only need to be evaluated for typical GGD shapes
without concerning the standard deviation, which effectively
simplifies the quantizer design problem. On the other hand,
the second conclusion describes the property of GGD DRF
under efficient DZ + UTSQ/NURQ from low to high bit
rate, which helps to obtain the accurate GGD D-R model
in Section IV-A.

III. IN-DEPTH ANALYSIS OF Z AND F

In this section, for GGD source, we first prove that z
and f of optimum DZ + UTSQ/NURQ can be effectively
described as linear correlate in the real coding bit rate range.
Then, the exact ranges of z and f for optimum DZ +
UTSQ/NURQ are rigorously deduced. Based on this inves-
tigation, a rational solution is proposed to implement efficient
DZ + UTSQ/NURQ in practice.

A. Linear Constraint of z and f

For optimum DZ + UTSQ/NURQ, the necessary con-
dition is that the reconstruction level should locate at
the centroid of the PDF in each quantization interval
(see Section II-C), implying that different selections of z and f
can result in similar R-D performances. It is verified that most
actual transform coefficients have GGD shape α between 0.5
and 1.0 [8], and the GGD with α between 0.1 and 1.0 provides
a useful model of broad-tailed process [23]. Therefore, it can
be assumed that for the real source, in intervals other than
the dead-zone region, the GGD PDF can be regarded linear
with a slope approximating 0 which is determined by α.

Fig. 4. Illustration of two groups of z and f that result in different DZ +
UTSQ/NURQ instances with similar (optimal) R-D performance.
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optimum DZ + UTSQ/NURQ in real coding bit-rate range. (a) z − f = 1/2.
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Taking interval [Tk, Tk+1) for example, for an optimum DZ +
UTSQ/NURQ instance, Rk is the centroid that divides the
region into two parts Tk Rk and Rk Tk+1, as is shown in Fig. 4.
With the given α between 0.1 and 1.0, the slope of GGD PDF
in [Tk, Tk+1) can be treated as fixed value, which indicates that
Tk Rk/Rk Tk+1 should keep constant. Using z1, f1 and z2, f2
to represent two groups of different z and f , we have

(k + f1) − (k − 1 + z1)

(k + z1) − (k + f1)
= (k + f2) − (k − 1 + z2)

(k + z2) − (k + f2)
. (20)

From (20) we can derive that z1 − z2 = f 1 − f 2, which
means z and f are linear correlate. Based on the preliminary
constraint of (12), the stricter linear constraint on z and f is
deduced:

z − f = c,
1

2
≤ c ≤ 1 (21)

where c is constant.
Simulation experiments of the D-R derivative curves with

GGD shapes 0.5 and 1.0 under the linear constraint are
observed through four typical efficient DZ + UTSQ/NURQ
patterns z− f = 1/2, z− f = 2/3, z− f = 5/6 and z− f = 1.
The corresponding results in the real coding bit rate range
are provided in Fig. 5 and Fig. 6, which shows that different
DZ + UTSQ/NURQ designs conforming to the same pattern
of z and p are of similar R-D performances. More specifically,
the curves generated by z− f = 1 coincide perfectly from low
to high bit rate as is exhibited in Fig. 7. And for the instances
satisfying z − f = c where 1/2 ≤ c ≤ 1, the difference of
the D-R derivative curves gradually accumulates as bit rate
increases, from which we can conclude that under the same
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Fig. 6. D-R derivative curve of GGD shape 1.0 under the linear constraint of
optimum DZ + UTSQ/NURQ in real coding bit-rate range. (a) z − f = 1/2.
(b) z − f = 2/3. (c) z − f = 5/6. (d) z − f = 1.

pattern of z − f = c, 1/2 ≤ c ≤ 1, the quantizer with smaller
z provides better R-D efficiency.

To sum up, the linear constraint of (21) is a good approxima-
tion of the relationship between z and f in the real coding bit
rate range for GGD. Different DZ + UTSQ/NURQ designs
conforming to the same pattern of z and f lead to similar
efficiency, thus the optimum DZ + UTSQ/NURQ design can
be simplified to the selection of the DZ + UTSQ/NURQ
patterns with optimal R-D performance. Since z and f are
linear correlate, for convenience it is reasonable to represent
each pattern of DZ + UTSQ/NURQ by fixing one of z
and f and properly adjusting the other one. Therefore, the
R-D comparison between different patterns can be further
simplified to the observation of the R-D performance under
DZ + UTSQ/NURQ where only one of z and f is adjusted.
In this case, there are still two questions to be answered:
1) what are the exact ranges of z and f in which they can
be fixed or adjusted; 2) how to decide which one of z and
f should be fixed and which one should be adjusted. In
the following two subsections we give answers to the above
questions. For the first one, the optimal ranges of z and f are
rigorously deduced, and for the second one, the strategy is pre-
sented by fixing f and adjusting z within the proposed range.

B. Optimal Ranges of z and f

Since the linear constraint still provides infinite ways to
select z and f , it is meaningful to further excavate the exact
ranges of z and f for optimum DZ + UTSQ/NURQ with
GGD. In [24], for Laplacian distribution, Gary derived the
range of z in the design of optimum UTSQ, known as 1/2 <
z < 1. Here we rigorously deduce a more comprehensive
conclusion of z and f for optimum DZ + UTSQ/NURQ with
the GGD source of actual transform coefficients in the real
coding bit rate range.

First, with the linear constraint (21) and f ≥ 0, it is easy to
know z ≥ 1/2. When z = 1/2, the DZ + UTSQ degrades into
the special case of UTSQ, a well-known quantization scheme.
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Fig. 7. D-R derivative curve for GGD under the DZ + UTSQ/NURQ pattern
z − f = 1 from low to high bit-rate range.

In the earlier works [23], [24] and [38], UTSQ was proved
optimal at very high bit rate, while in relatively lower bit
rate, the requirement of infinite thresholds cannot be satisfied.
Hence in real coding bit rate, UTSQ is not the choice for
optimality, which refines the range of z into z > 1/2.

On the other hand, the NURQ degrades into the special case
of URQ by fixing f to 0. More particularly, when z = 1 and
f = 0 are both satisfied, URQ further degrades into uniform
reconstruction with unity ratio quantizer (URURQ). URQ and
URURQ are both widely used for their simplicity in design
and operation. It has been verified by Gary that URURQ gives
the lower bound on the performance of the best URQ [24],
while URQ is proved sub-optimal for GGD [25]. Although for
GGD, the R-D difference between URQ and optimum NURQ
is negligible [25], to be strict, URQ is still not the choice
for optimality, not to mention URURQ. Note that URURQ
conforms to z − f = 1. Since the quantizers conforming to
the pattern z − f = 1 with the same α are of exactly the
same R-D performance, it is reasonable to use z − f = 1
as a benchmark of sub-optimal efficiency to evaluate other
DZ + UTSQ/NURQ patterns in the real coding bit rate range.
As a result, z − f = 1 and f = 0 are both excluded from the
optimal ranges, making the interim result of f > 0 with the
refined linear constraint of z − f = c, where 1/2 ≤ c < 1.

Furthermore, the conclusion of linear constraint shows that,
under the same quantization pattern of z− f = c, 1/2 ≤ c < 1,
the better R-D performance is obtained by the quantizer with
smaller z. Thus, for any z > 1 we can find a new value of
z∗ ≤ 1 and the corresponding f ∗ satisfying z∗ − f ∗ = c
with better R-D efficiency. Therefore, the optimal performance
is achieved only when z ≤ 1, which also implicates that
f ≤ 1/2.

Through above rigorous deduction, we finally derive the
optimal ranges of z and f for DZ + UTSQ/NURQ with GGD
source of actual transform coefficients:

1

2
< z ≤ 1 (22)

and

0 < f ≤ 1

2
(23)

under the linear constraint of (21).

C. Efficient DZ + UTSQ/NURQ Design for Practice

The optimum ranges have provided an acceptable scope
to decide the values of z and f . However, in video coding
application, different standards support different proposals of
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Fig. 9. D-R derivative curve of GGD shape 1.0 under the linear constraint
of optimum DZ + UTSQ/NURQ in real coding bit-rate range. (a) f = 0.
(b) f = 1/6. (c) f = 1/3.(d) f = 1/2.

setting f for quantization [25], which still causes confusion.
To inspire a rational solution of efficient DZ + UTSQ/NURQ
design for practice, we carefully analyze the D-R curves of
GGD in the real coding bit rate range through two groups of
simulation experiments.

The first group of experiments is designed to evaluate
the influence of z on R-D performance. For GGD shapes
α between 0.5 and 1.0, four f values 0, 1/6, 1/3 and 1/2
are selected, each generating four D-R curves from four
DZ + UTSQ/NURQ linear patterns: z− f = 1/2, z− f = 2/3,
z − f = 5/6 and z − f = 1. In this way, z is the only variable
to affect R-D performance. The results for α = 0.5 and
α = 1.0 are illustrated in Fig. 8 and Fig. 9 respectively, and the
important conclusions referred in our previous analysis are also
verified. First, the UTSQ represented by z = 1/2 is shown in
Fig. 8(a) and Fig. 9(a), which is of explicitly poor performance
in the real coding bit rate range. Second, Fig. 8 and Fig. 9
illustrate the R-D comparison between z − f = 1 and other
patterns, confirming that the optimum DZ + UTSQ/NURQ
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Fig. 10. D-R curves of GGD under three different patterns of optimum
DZ + UTSQ/NURQ in real coding bit-rate range. (a) α = 0.5 and z = 1.
(b) α = 1.0 and z = 1.
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Fig. 11. D-R curves of GGD under three different patterns of optimum
DZ + UTSQ/NURQ in real coding bit-rate range. (a) α = 0.5 and z = 5/6.
(b) α = 1.0 and z = 5/6.

patterns should at least outperform the benchmark of URURQ.
The first group of experiments well demonstrates that the
R-D performance is greatly affected by the selection of z.
The superiority in R-D performance is observed only when z
approaches the optimal range of (22). Thus, to achieve the best
coding efficiency, it is necessary to keep z within the optimal
range as the most important prerequisite.

The second group of experiments is designed to evaluate
the influence of f on optimal R-D performance, which is
further divided into two parts. The former part observes the
R-D difference of various p within the optimal range of (23),
while the latter one is for the evaluation of URQ ( f = 0). In
each part, D-R curves generated by three patterns z − f =
1/2, z − f = 2/3, z − f = 5/6 are exhibited for GGD
shapes α = 0.5 and α = 1.0. To keep optimality, z is
required to be within the range of (22). For convenience,
we fix z to 1 in the former part and 5/6 in the latter one.
Corresponding results are illustrated in Fig. 10 and Fig. 11
for the two parts respectively. from which it is explicit that for
the same z, different f satisfying (23) result in very similar
R-D performances. In addition, Fig. 11 shows that the R-D
difference between optimum DZ + UTSQ/NURQ and URQ
is also unnoticeable in the real coding bit rate range. The
second group of experiments implies that in real coding bit
rate range, when z is within the optimum range, different f
from 0 ≤ f ≤ 1/2 actually will not affect the optimality of
coding efficiency.

In the end, with all the above analysis and experiments,
the efficient DZ + UTSQ/NURQ design criteria for practice
are formed. Normally, we can fix f to an arbitrary value
satisfying the optimal range 0 < f ≤ 1/2 and merely
adjust z within the range 1/2 < z ≤ 1 to achieve optimal
R-D performance. For the simplicity of operation in practice,
we can also choose URQ by simply setting f to 0. In this
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case, we need to keep z in the range of 1/2 < z < 1 to
avoid URURQ and obtain nearly-optimal coding efficiency.
The convenience and effectiveness of URQ are the most
important reason of its prevalence in the latest video coding
standard H.264/AVC. In sum, with our proposed solution, the
implementation of efficient DZ + UTSQ/NURQ is effectively
and reasonably simplified in practice.

IV. R-D MODELINGOF GGD UNDER DZ + UTSQ/NURQ

Guided by the R-D performance analysis in Section II and
III, in this section, a heuristic D-R model is first developed.
Then we theoretically deduce the novel R-Q and D-Q models
of GGD under DZ + UTSQ/NURQ using analytical and
heuristic methods. Simulation experiments are provided to
verify the excellence of the proposed models compared with
other representative R-Q and D-Q models.

A. Proposed R-D Model of DZ + UTSQ/NURQ for GGD

As we have concluded in Section II-C, the derivative DRF
of DZ + UTSQ/NURQ for GGD keeps decreasing in the
real coding bit rate range, which is consistent with our prior
R-D analysis under MPEG-4 FGS coding [9]. Therefore, our
heuristic D-R model in [9] under PSNR distortion measure
can be extended to DZ + UTSQ/NURQ scheme as a more
universal conclusion:

PSN R(R) = a R + A − (A − B)/(1 + bR). (24)

In this D-R model, R is the bit-rate, B is the PSNR
when R = 0, (which is also known as the distortion of the
starting point in D-R curve calculated by the variance of the
input signals), α and A are the asymptote parameters, b is a
parameter controlling the approach of the actual D-R function
to the asymptote. In the second part of the whole work, this
model is rigorously validated by the actual coding experiments
under the quantization scheme of H.264/AVC and is used to
help design the novel two-pass method for H.264/AVC.

B. Proposed R-Q Model of DZ + UTSQ/NURQ for GGD

Since the exponential RQF of GGD formulated in (15)
cannot be directly simplified, we composite the analytical and
heuristic approaches to give a precise approximation of the
RQFof DZ + UTSQ/NURQ for GGD. First, the RQF for
GGD shape α = 1.0 (Laplacian distribution) is theoretically
deducedunder DZ + UTSQ/NURQ. Then the Laplacian result
is reasonably extended to cover other GGD cases with α and
β introduced, implying the interrelation between the general
and special forms of GGD sources. The PDF of GGD shape
α = 1.0 (Laplacian distribution) can be expressed as

p(x) = μ

2
e−μ|x | (25)

with the standard deviation β = √
2/μ. For Laplacian distrib-

ution, from (14) the probability of quantization index k under
DZ + UTSQ classification rule is obtained as:

Pk(�) =

⎧⎪⎪⎨
⎪⎪⎩

∫ z�
−z� p(x)dx = 1 − e−zμ�, k = 0∫ (z+k)�
(z+k−1)� p(x)dx

= 1
2 e−(z+k−1)μ�(1 − e−μ�), k ≥ 1.

(26)

According to equation (13), the entropy rate is calculated:

H(�) = −P0(�) log2 P0(�)

−(1−e−μ�) log2
[ 1

2 (1−e−μ�)
]+∞∑

k=1
e−(z+k−1)μ�

+(1 − e−μ�) log2 e
+∞∑
k=1

[
(z+k−1)μ�e−(z+k−1)μ�

]
= −P0(�) log2 P0(�)

− [
(1 − e−μ�)e−(z−1)μ� log2

[ 1
2 (1−e−μ�)

]]+∞∑
k=1

e−kμ�

+ [
μ(z − 1)�(1 − e−μ�)e−(z−1)μ� log2 e

]+∞∑
k=1

e−kμ�

+ [
(1 − e−μ�)e−(z−1)μ� log2 e

]+∞∑
k=1

kμ�e−kμ�

= −(1 − e−μ�) log2(1 − e−μ�)

− [
(1 − e−μ�)e−(z−1)μ� log2

[ 1
2 (1 − e−μ�)

]]+∞∑
k=1

e−kμ�

+ 1
ln 2

[
(z − 1)μ�(1 − e−μ�)e−(z−1)μ�

]+∞∑
k=1

e−kμ�

+ 1
ln 2

[
(1 − e−μ�)e−(z−1)μ�

]+∞∑
k=1

kμ�e−kμ�. (27)

By simple accumulation of the infinite series, it is easy to
prove the following results:

+∞∑
k=1

e−kμ� = e−μ�

1 − e−μ�
and

+∞∑
k=1

kμ�e−kμ� = μ�e−μ�

(1 − e−μ�)2 .

(28)
Using (27) and (28), the RQF of DZ + UTSQ/NURQ for

Laplacian sources is obtained as:

H (�) = e−zμ� − ln(1 − e−zμ�)/ ln 2

+μ�e−zμ�(z + e−μ�−ze−μ�)/
[
(1−e−μ�) ln 2

]
.

(29)

In particular, when z = 1, (29) is further simplified as:

H (�) = e−μ� − ln(1 − e−μ�)/ ln 2

+μ�e−μ�/
[
(1 − e−μ�) ln 2

]
. (30)

which is the RQF we obtained in [9] for Laplacian source
under MPEG-4 FGS coding.

Laplacian distribution is an important special case of GGD
with shape α = 1.0 and standard deviation β = √

2/μ. It is
observed from the GGD PDF that apart from in the gamma
function �(·), α only appears as the exponential part of the
input variable. Heuristically, by introducing α and β to extend
the Laplacian RQF to various GGD sources, we can rewrite
μ� of (29) into (

√
2�/β)α or

√
2�α/β. Note that with an

arbitrary variable δ > 0 satisfying δ = �/β, the RQF for
GGD is only a function of δ and is not related to β (see
Section II-C). Therefore, it is reasonable to use (

√
2�/β)α

rather than
√

2�α/β to replace μ� so that the GGD R-Q
model is consistent with our deduction. Thus, (29) is changed
into

H (�) = − ln(1 − e−z(
√

2�/β)α )

ln 2
+ e−z(

√
2�/β)α

+ (
√

2�/β)αe−z(
√

2�/β)α (z + e−(
√

2�/β)α−ze−(
√

2�/β)α )[
ln 2(1 − e−(

√
2�/β)α )

] .

(31)
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Fig. 12. Comparison of different R-Q models with the theoretical GGD rate
obtained under two efficient DZ + UTSQ/NURQ patterns with GGD shape
0.5. (a) β = 6 and z = 2/3. (b) β = 6 and z = 5/6. (c) β = 8 and z = 2/3.
(d) β = 8 and z = 5/6.

Equation (31) is the proposed R-Q model of DZ +
UTSQ/NURQ for GGD, providing the support for different
GGD parameters and dead-zone ratios to adapt to various
sources and quantization settings.

To confirm the effectiveness of our finding, the theoretical
GGD rate is used to evaluate different R-Q models under
DZ + UTSQ/NURQ. The theoretical rate is simulated using
(13) and (14), where efficient DZ + UTSQ/NURQ design
with z conforming to (22) is applied. GGD shape α is chosen
from 0.5 to 1.0 and β is set between 2 and 10 to conform
to the statistics of actual transform coefficients [9], [10],
[39]. Therefore, the theoretical GGD rate can well reflect the
entropy rate of the stationary source in the practical video
coding systems. For comparison, the Cauchy R-Q model [5]
and the quadratic R-Q model [34] are selected to represent
the analytical and heuristic methods respectively. The corre-
sponding expressions are Hc(�) = ac�

−ac and Hq(�) =
aq�−1 + bq�−2, where ac, αc and aq , bq are the model para-
meters. And we also compare with the separable R-Q model
Hs(�)C(as�

−1+bs�
−2) [37]. For each model, the non-linear

data fitting method is employed and the quantization step
ranges from 0.625 to 208, corresponding to the quantization
parameter of H.264/AVC from 0 to 50. Note that the separable
R-Q model has similar expression to the quadratic model,
for simplicity we use the results of the quadratic R-Q model
to well represent the results of the separable model since
the quadratic and the separable R-Q models have completely
overlapping curves. Related results are illustrated in Fig. 12
and Fig. 13 under typical DZ + UTSQ/NURQ patterns for
α = 0.5 and α = 1.0. It should be noted that the entropy
rate is measured in bits/sample, which means that even slight
difference can result in significant prediction error in the bit
rate of the whole system. Therefore, it is clearly exhibited
that the proposed R-Q model matches the theoretical rate of
the practical video coding systems perfectly from low to high
bit rate while other models are of some deviations. In the
second part of this paper, the accuracy of the proposed GGD
R-Q model is further verified in the actual coding environment
of H.264/AVC.
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Fig. 13. Comparison of different R-Q models with the theoretical GGD rate
obtained under two efficient DZ + UTSQ/NURQ patterns with GGD shape
1.0. (a) β = 6 and z = 2/3. (b) β = 6 and z = 5/6. (c) β = 8 and z = 2/3.
(d) β = 8 and z = 5/6.

C. Proposed D-Q Model of DZ + UTSQ/NURQ for GGD

Similar to the process of obtaining the R-Q model, we
first deduce the Laplacian DQF of DZ + UTSQ/NURQ. For
Laplacian distribution, the MSE of each reconstruction level
under NURQ reconstruction rule is obtained from (17) as:

Dk(�) =
⎧⎨
⎩

∫ z�
0 x2 μ

2 e−μxdx, k = 0∫ (z+k)�
(z+k−1)� [x − ( f + k)�]2 μ

2 e−μx dx, k ≥ 1.
(32)

Using integration by part, (32) can be evaluated separately.
When k = 0, we have

D0(�) = μ−2

2

[
2 − e−zμ�

[
(zμ�)2 + 2zμ� + 2

]]
. (33)

And when k ≥ 1, we have

Dk(�) = −1

2
[(z + k)�]2 e−(z+k)μ�

+1

2
[(z + k − 1)�]2 e−(z+k−1)μ�

− 1

μ

[
(z + k)�e−(z+k)μ�

−(z + k − 1)�e−(z+k−1)μ�
]

− 1

μ2

[
e−(z+k)μ� − e−(z+k−1)μ�

]

+( f + k)�2
[
(z + k)e−(z+k)μ�

−(z + k − 1)e−(z+k−1)μ�
]

+ ( f + k)�2

μ

[
e−(z+k)μ� − e−(z+k−1)μ�

]

− ( f + k)2�2

2

[
e−(z+k)μ� − e−(z+k−1)μ�

]
. (34)

Although (34) is already an analytical expression to
denote the distortion originated from the reconstruction value
( f + k)� with the quantization index k, it still needs to
be effectively simplified for accumulation. In the real coding
rate range, URQ has been proved to be a nearly optimal
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reconstruction rule for GGD (see Section III-C). Thus by using
URQ to replace NURQ, we set f to 0 in (34) and obtain a
precise approximation:

Dk(�) = μ−2

2

[
[(z−1)μ�]2+2(z−1)μ� + 2

]
e−(z+k−1)μ�

−μ−2

2

[
(zμ�)2 + 2zμ� + 2

]
e−(z+k)μ�. (35)

Using (28), (33) and (35), according to equation (16), the
D-Q function of DZ + UTSQ/NURQ for Laplacian distribu-
tion is calculated as follows:

D(�) = μ−2
[
2 − e−zμ�

[
(zμ�)2 + 2zμ� + 2

]]

+μ−2
[

[(z − 1)μ�]2

+2(z − 1)μ� + 2
]
e−(z−1)μ�

+∞∑
k=1

e−kμ�

−μ−2
[
(zμ�)2 + 2zμ� + 2

]
e−zμ�

+∞∑
k=1

e−kμ�

= 1

μ2

[
2 − e−zμ�

[
(zμ�)2 + 2zμ� + 2

]]

+ e−zμ�

μ2(1 − e−μ�)

[
[(z−1)μ�]2 + 2(z−1)μ�+2

]

− e−(z+1)μ�

μ2(1 − e−μ�)

[
(zμ�)2 + 2zμ� + 2

]

= 2

μ2 + e−zμ�

μ2(1 − e−μ�)

[
μ2�2(1 − 2z) − 2μ�

]
(36)

In particular, when z = 1, (36) is further simplified as follows:

D(�) = e−μ�

μ2

[
2eμ� −

[
(μ�)2 + 2μ� + 2

]]

+ e−2μ�

μ2(1 − e−μ�)

[
2eμ� −

[
(μ�)2 + 2μ� + 2

]]

=
[
2eμ� −

[
(μ�)2 + 2μ� + 2

]]
/
[
μ2(1 − e−μ�)

]
(37)

which is the DQF we obtained in [9] for Laplacian sources in
MPEG-4 FGS coding. Finally, with the same heuristic method
in developing the GGD R-Q model, (36) is modified into

D (�) = β2

⎡
⎢⎢⎢⎣1+ e

−z

( √
2�
β

)α

2

⎛
⎝1−e

−
( √

2�
β

)α⎞
⎠

[(√
2�
β

)2α
(1 − 2z) − 2

(√
2�
β

)α
]
⎤
⎥⎥⎥⎦ .

(38)
Equation (38) is the proposed D-Q model of DZ +
UTSQ/NURQ for GGD.

In the validation experiments, the theoretical GGD distor-
tion is generated to evaluate different D-Q models under the
MSE criterion. The theoretical GGD distortion is calculated
using equation (16) and (17), and the same settings of input
signals, GGD parameters α and β as in the R-Q model
validation are used, where efficient DZ + UTSQ/NURQ
design conforming to Section III-C is implemented. Therefore,
the theoretical GGD distortion can well reflect the actual
coding properties of the practical video coding systems. For
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Fig. 14. Comparison of different D-Q models with the theoretical GGD rate
obtained under two efficient DZ + UTSQ/NURQ patterns with GGD shape
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comparison, the Cauchy D-Q model [5] and the quadratic
D-Q model [34] are selected with expressions of Dc(�) =
bc�

−βc and Dq (�)1/[αqe(aq�−1+bq�−2)] respectively, where
bc, βc and αq , aq , bq are the corresponding model parame-
ters. And we also compare with the separable D-Q model
Ds(�) = (ks� + ts�2) [37] to make the simulation experi-
ments more comprehensive. The non-linear least-square curve
fitting method is applied to each model. And the corresponding
results for α = 0.5 and α = 1.0 are illustrated in Fig. 14 and
Fig. 15, from which it is well demonstrated that the proposed
D-Q model matches the theoretical GGD distortion accurately
from low to high bit rate while other three models are all of
some deviations. In Fig. 14, it is observed that the quadratic
D-Q model is also a good approximation of the GGD distortion
when α = 0.5, which mainly because it has one more
parameters to further refine the model calculation. However,
for GGD shape 1.0, obvious prediction error of the quadratic
model is shown in Fig. 15, which indicates the effectiveness
of this model is unable to be guaranteed for various source
signals. It should also be noted that the proposed model is
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derived under URQ which is a sub-optimal case of NURQ for
GGD. As a result, the proposed D-Q model obtainsslightly
greater distortion than the theoretical data when bit rate is
very high under the NURQ pattern z = 5/6, f = 1/6. And
for z = 2/3, f = 0 where URQ is employed, the proposed
model can perfectly match the theoretical distortion. In the
second part of this paper, the accuracy of the proposed GGD
D-Q model is further verified in the actual coding environment
of H.264/AVC.

V. CONCLUSION

In this paper, detailed R-D analysis of DZ + UTSQ/NURQ
for GGD is provided from the perspective of R-D perfor-
mance analysis and R-D modeling. There are three main
points we have contributed in this work. First, the R-D
property of GGD under efficient DZ + UTSQ/NURQ is
investigated from low to high bit rate and the standard
deviation of GGD is proved independent from the deriva-
tive GGD DRF. Second, we rigorously deduce the optimal
ranges of z and f for GGD of actual transform coefficients
in real coding bitrate range, and develop the efficient DZ
+ UTSQ/NURQ design criteriato reasonably simplify the
implementation of effective quantizers in practice. Third, for
R-D modeling, the novel R-Q and D-Q models of DZ +
UTSQ/NURQ for GGD are developed based on analytical
and heuristic approaches, which are of superior accuracy in
estimating the rate and distortion of DZ + UTSQ/NURQfor
GGD. One application of the proposed source model, as is
shown in the second part of this paper, is the effective two-pass
rate control method for H.264 VBR coding, which achieves
constant video quality and desirable rate control accuracy.

APPENDIX

In the appendix, we prove the existence of deriva-
tive RQF and DQF. For RQF, using Hk(�β) to denote
−Pk(�β)log2 Pk(�β), it is easy to prove Hk(�β) is conver-
gent when δ > 0. The derivative function of Hk(�β) on δ is

H ′
k(�β)=dHk(�β)/dδ = −P ′

k(�β)
[
log2 Pk(�β) − log2 e

]
(A1)

where P ′
k(�β) is the derivative function of Pk(�β) on δ. By

the first mean value theorem for integration [40], for k ≥ 1,
(16) can be written as

Pk(�β) = δg1(α) exp(− [g2(α)|ξ |]α)

ξ ∈ [(z + k − 1)δ, (z + k)δ] . (A2)

For DQF, under the MSE criterion, by distortion of (17)
it is easy to prove Dk(�β) is convergent when δ > 0. The
derivative function of Dk(�β) on δ is D′

k(�β). By the first
mean value theorem for integration, for k ≥ 1, (17) can be
written as

Dk(�β) = δ [ξ − (p + k)δ]2 g1(α) exp(− [g2(α)|ξ |]α)

ξ ∈ [(z + k − 1)δ, (z + k)δ] (A3)

Let O(·) be of the same order. Given arbitrary δ1 and δ2
satisfying δ2 > δ1 > 0, for any δ ∈ [δ1, δ2) and α > 0, log2δ

and δα are both finite which is the same to g1(α) and g2(α).
Thus H ′

k(�β) can be evaluated by (A1) and (A2):

O[H ′
k(�β)] = O

{−P ′
k(�β)

[
log2 Pk(�β) − log2 e

]}
= O

{ [
m−(z+k−1)α − m−(z+k)α

]

× [
log2 Pk(�β) + log2 e

] }

= O
{

m−(z+k−1)α
[
log2 Pk(�β) + log2 e

]}

+O
{

m−(z+k)α
[
log2 Pk(�β) + log2 e

]}

= O
{

m−(z+k−1)α
[

log2(δg1(α))

−(g2(α) |ξ |)α log2 e + log2 e
]}

+O
{

m−(z+k)α
[

log2(δg1(α))

−(g2(α) |ξ |)α log2 e + log2 e
]}

= O
[
m−(z+k−1)α ξα

]
+ O

[
m−(z+k)α ξα

]

= O
{

m−(z+k−1)α [(z + k − 1)δ]α
}

+O
{

m−(z+k)α [(z + k)δ]α
}

= O
[
m−(z+k−1)α (z + k − 1)α

]

+O
[
m−(z+k)α (z + k)α

]

= O
[
m−kkα

]
(A4)

where m = exp([g2(α) |δ|]α) > 1. Since we have
lim

k→+∞ mkα−(k+1)α < m0 and lim
k→+∞(1 + 1/k)α = 1, we have

the following deduction:

lim
k→+∞[m−(k+1)α (k + 1)α/m−kα

kα]
= lim

k→+∞[mkα−(k+1)α (1 + 1/k)α]
= lim

k→+∞ mkα−(k+1)α lim
k→+∞(1 + 1/k)α < 1 (A5)

According to D’Alembert’s ratio test [41], the series∑+∞
k=1 m−kkα is convergent. Denoted by (A3) and (A4), it

is easy to know that O[∑+∞
k=1 H ′

k(�β)] = O(
∑+∞

k=1 m−kkα),
thus the uniform convergence of

∑+∞
k=1 H ′

k(�β) is confirmed
for δ ∈ [δ1, δ2), with the arbitrary δ1 and δ2 given by P ′

k(�β).
Meanwhile, it is easy to prove the continuity of P ′

k(�β) from
(14) and (A2), which means H ′

k(�β) is also continuous. There-
fore, according to (13), the uniform continuity of H ′(�β) can
be deduced, indicating the existence of derivative RQF.

By employing the similar methods in demonstrating the
existence of derivative RQF provided in (A4) and (A5), we can
also confirm the uniform convergence as well as the continuity
of

∑+∞
k=1 D′

k(�β) and D′
0(�β). According to (18), D′(�β) is

derived:

D′(�β) = 2
+∞∑
k=0

D′
k(�β). (A6)

Thus we have proved the uniform continuity of D′(�β),
which indicates the existence of derivative DQF under MSE
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criterion. On this basis, the uniform continuity of PSNR′(�β)
can also be demonstrated:

PSN R′(�β) = −10D′(�β)

ln 10D(�β)
=

−10
+∞∑
k=0

D′
k(�β)

ln 10
+∞∑
k=0

Dk(�β)

(A7)

which indicates the existence of derivative DQF under PSNR
criterion.
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