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Abstract: There are various image filtering approaches in computer vision and image processing that are effective for some types
of noise, but they invariably make certain assumptions about the properties of the signal and/or noise which lack the generality for
diverse image noise reduction. This study describes a novel generalised guided image filtering method with the reference image
generated by signal subspace projection (SSP) technique. It adopts refined parallel analysis with Monte Carlo simulations to select
the dimensionality of signal subspace in the patch-based noisy images. The noiseless image is reconstructed from the noisy image
projected onto the significant eigenimages by component analysis. Training/test image are utilised to determine the relationship
between the optimal parameter value and noise deviation that maximises the output peak signal-to-noise ratio (PSNR). The
optimal parameters of the proposed algorithm can be automatically selected using noise deviation estimation based on the
smallest singular value of the patch-based image by singular value decomposition (SVD). Finally, we present a quantitative
and qualitative comparison of the proposed algorithm with the traditional guided filter and other state-of-the-art methods with
respect to the choice of the image patch and neighbourhood window sizes.
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1 Introduction

Image denoising is still a challenging task in the procedures of
image and video processing systems, for example acquisition,
processing, coding, storage, transmission, reproduction and
printing. Whereas preserving image features such as edges,
textures, and details, it refers to the recovery of a digital
image that has been contaminated by some types of noise,
for example Gaussian noise (AWGN), Rician noise, salt
and pepper noise, speckle noise, impulse or Poisson noise.
As far as we know, image denoising was first studied by
Nahi [1] and Lev et al. [2] in 1970s. Then in 1980s, Lee
[3] introduced local statistics to study image enhancement
and noise filtering. Donoho [4] and Simoncelli and Adelson
[5] studied noise removal with wavelet transforms in late
1990s. Subsequently many wavelet-based image denoising
algorithms have appeared in these literatures [6–11].
However, these methods often blur fine details and smooth
out the edges.
Since the non-local mean (NLM) algorithm by Buades

et al. [12] has renewed the interest into this classical inverse
problem, many more powerful denoising techniques have
been proposed in the past several years [13–29]. However,
the vast majority of image denoising algorithms have
implicit assumptions on signal or attenuation properties,
which limits the generality. The NLM algorithm [12] is
based on the image spatial self-similarity with better
performance than traditional denoising methods, but its
similarity measurement between the target pixel and its
270
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associated pixels is related to noise types. The discrete
universal denoising (DUDE) method proposed by
Weissman et al. [14] uses the similarity of the statistical
region for text correction, character recognition, and image
denoising and achieves good performance, whereas DUDE
is less effective to eliminate the additive noise. In addition,
it depends on the statistical probability of the pixel’s
neighbourhood and the signal is limited to discrete values.
The unsupervised, information-theoretic, adaptive image
filtering (UINTA) in [15] adopted Markov nature of the
input image from different contexts to learn the conditional
probability density function (PDF) and update the pixel
values in order to reduce the randomness. However, UINTA
employs information entropy as decision criterion that also
damages the details and textures of the image. The
TLS-based algorithm proposed by Hirakawa and Parks in
[18], needs accurate estimation of noise parameters. The
kernel regression (KR) method with recursive iterations
proposed by Takeda et al. [22] has expensive computation,
and is difficult to achieve real-time processing. The
denoising algorithm using grey polynomial proposed by
Zhang et al. [23] can acquire better filtering effect of salt
and pepper noise, but has poor results for additive Gaussian
noise. The guided filter approach [24] can remove image
noise and preserve edges. However, it has poor
performance in the low SNR images. It also lacks of
reliable approach to optimally select parameters, which
seriously affects its practicality. The bilateral filter [21, 25]
compares only intensity level values in a single pixel,
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doi: 10.1049/iet-ipr.2012.0351



www.ietdl.org

which is not robust when these values are corrupted by high
level noise. Nevertheless, if the assumptions contained in the
denoising techniques cannot be met, such filters will lead to
blurred edges and loss of fine structures.
As we know, for a single input noisy image, it is also

used as the reference image of guided image filtering
method for weight calculation [24, 30]. Inspired by both the
Karhunen–Loeve transform (KLT) filter [26] and joint
bilateral filter approach [31], we develop a novel algorithm
based on local linear minimum mean-square error
(LMMSE) predictors to achieve resolution enhancement for
noisy images and to improve the preservation of edge
sharpness. Comparing to the existing guided filtering
technique [24, 30], the proposed method utilises the
projection of the patch-based image onto signal subspace
determined by improved parallel analysis with Monte Carlo
simulation as the reference image. The smallest singular
value of the patch-based image matrix is the estimate of the
noise standard deviation, and the regularisation parameters
are automatically selected by polynomial fitting technique.
A comparison of the proposed approach with the state of
the arts is also presented.
The rest of this paper is organised as follows. In Section 2,

we briefly review the related concepts, and the proposed
scheme of single image denoising is described here. Section
3 shows the simulation and experimental results of the
proposed algorithm, and the comparison to the state-of-
the-arts methods. Finally, we discuss the key findings and
conclude our study in Section 4.

2 Proposed algorithm

In real-world digital-imaging devices, the acquired images are
often corrupted by device specific noise. Mathematically, the
goal of image denoising methods is to recover the clean image
from an observed noisy measurement. And the mixed noise
model of independent additive and multiplicative types is
generally used to describe the noisy image [18]

x = s+ n0 + n1s (1)

where x is the observed image, s is the ideal noiseless image,
and n0 and n1 represent additive and multiplicative noises,
respectively. Many literatures prefer working with an
independent additive noise [12, 15, 22], such as Gaussian
noise model. That is to say, a simplified noise model
instead of (1) denoting the degradation process, is given in
the following formula

x = s+ n0 (2)

Where x and s are defined in (1). Note that (2) is a special case
of (1). Although the mathematical elegance and simplicity
makes (2) attractive for the complex task of designing a
denoising algorithm and describing a natural image, this
noise model often requires additional techniques to describe
the real-world systems. The image denoising algorithm
attempts to obtain the best estimate of s from x. The
optimisation criterion can be mean-squared error
(MSE)-based or perceptual quality driven, whereas the
problem of image quality assessment has not been resolved,
especially in the absence of an original reference.
IET Image Process., 2013, Vol. 7, Iss. 3, pp. 270–279
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2.1 Formulation of stacked patches

The scene captured in data acquisition or data storage is often
a single image or multiple images deteriorated by various
noise sources. Consequently, the image denoising has
become a key focus of ongoing studies in recent years.
Assume that xi denotes the ith pixel in the observed image
X∈RM ×N and Y is a column stacked patch-based
representation of X, that is, Y is a matrix of size L × P
where L =M ×N, whose each row contains the

��
P

√ × ��
P

√
patch around the location of xi in the image X. Moreover,
image patch centred at a pixel on the matrix border is
padded with mirror copies of the array elements.

2.2 Matrix decomposition of patch-based image

The singular value decomposition (SVD) operator, which
transfers a set of correlated variables into a new set of
uncorrelated variables, has the interesting properties that
they capture the variation of functions defined on the graph
from the largest to the smallest singular values. These
eigenfunctions form the basis for a real or complex matrix.
We find that most of the energy of a function defined on
the graph is concentrated at several principal components.
Moreover, the eigenfunctions generated from noisy data are
able to capture the main characteristics of the corresponding
clean signal, whereas the eigenvectors of the smaller
singular values are almost all noise.
By removing the mean value from each row, the difference

vectorised image from the patch-based image matrix is
computed as

Z(i, p) = Y (i, p)− 1

L

∑L
i=1

Y (i, p) (3)

where i = 1, 2,…, L, and p = 1, 2,…, P.
To reduce computation time, the covariance matrix ZTZ

instead of Z is used to be factorised by this form

ZTZ = US2
UT (4)

where the symbol T denotes the transpose operator, and U is
the unitary matrix of eigenvectors derived from ZTZ. Σ is a
P × P diagonal matrix with its singular values λ1 ≥ λ2≥
…≥ λr≥ 0 and r = rank (ZTZ).
After the projection of Z onto the new basis U, the

reformed uncorrelated matrix Ẑ is

Ẑ = Z× U (5)

Therefore the new axes are the eigenvectors of the correlation
matrix of the original variables, which capture the similarities
of the original variables based on how data samples projected
onto them. As we know, if the eigenvalues are very small and
the size of image patch from a single noisy image is large
enough, the removing eigenmodes of the less significance
do not lose much information. From the diagonal singular
values, only the first K eigenvectors are chosen based on
their eigenvalues. Since the parameter K should be not only
large enough enough to allow fitting the characteristics of
the data, but also small enough to filter out the non-relevant
noise and redundancy. Therefore, the top K largest values
are properly selected by PA with Monte Carlo simulation.
271
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2.3 Proposed number of factors to retain

The PA firstly introduced by Horn [32, 33], which in fact is a
Monte Carlo simulation technique, compares the observed
eigenvalues extracted from the correlation matrix to be
analysed with those of an artificial data set obtained from
uncorrelated normal variables. This data set is generated by
drawing samples from a multivariate normal distribution
with the dimensionality P, the same number of observations
L, and the same marginal standard deviations as the actual
data. Let λp for 1≤ p≤ P denote the singular values of the
vectorised patch-based image Z sorted in descending order.
Similarly, let αp denote the descendingly sorted singular
values of the artificial data matrix. Therefore PA estimates
data dimensionality as

K = max 1 ≤ p ≤ P|lp ≥ ap

{ }( )
(6)

The intuition is that αp is a threshold for λp below which the
p’th component is judged to have occurred because of chance.
Currently, it is recommended to use the singular value of the
artificial data that corresponds to a given percentile, such as
the 95th of the distribution of singular values derived from
the random data.
In our algorithm, without the assumption of a given

random distribution, we generate the artificial data by
randomly permuting each element of the neighbourhood
vector centered at each pixel. Let yi, p denote the p’th
element of the patch-based neighbourhood vector yi, centred
at pixel position xi. For each P elements of the vector yi, a
random permutation of the index sequence p = 1, 2,…, P is
generated by uniform distribution. Thus the mean value,
maximum, minimum and random distribution of the
artificial data is satisfied for each image patch-based vector.
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Then the singular values α of the random artificial data are
computed by SVDs which keeps the marginal distributions
intact whereas breaking any interdependencies between
them. For the L by P synthetic matrix C, after multiple
times (e.g. 50) of Monte Carlo simulations, summary
statistics (e.g. 95th percentile) can be used to extract the P
singular values and order them from largest to smallest.
Then PA is applied and the intersection of the two lines
denoting singular values of the simulated data C and
difference vectorised image Z is the cutoff for determining
the number of signal subspace dimensions present in the
noisy image. As we know, the noise variance is intimately
related with the smallest singular value of simulated data
[34]. From the theory and simulation, we found that the
singular values of noise matrix are different, which
approximately linearly decrease gradually with the
dimension. Therefore the increment between the smallest
singular value and the largest one from the simulated noise
matrix can be used for dimensionality reduction of the
noisy image data. The our proposed approach of the
corrected singular values of the artificial data was given in
this formula

a(p) = b(p)− b(P)+ l(P)+ t(b(1)− b(P)) (7)

where p = 1, 2,…, P; β is the 95th percentile of singular values
of the simulated data; and the parameter τ is constant.
For a given image patch size 5 × 5 pixels, Figs. 1 and 2

show the eigenimages, the singular values λ and α, and PA
for the normalised ‘camera’ and ‘house’ images corrupted
by the AWGN with zero mean and standard deviation σ =
0.1, respectively. The numbers of significant components of
‘camera’ and ‘house’ images are separately estimated as 16
and 9. The larger dimension number can be attributed to
Fig. 1 Eigenimages, the singular values λ and α computed in this manner from the camera image

Left: the eigenimages from the ‘camera’ image, Right: two lines of the singular values by PA
IET Image Process., 2013, Vol. 7, Iss. 3, pp. 270–279
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Fig. 2 Eigenimages, the singular values λ and α computed in this manner from the house image

Left: the eigenimages from the ‘house’ image, Right: two lines of the singular values by PA
the textured nature of the ‘camera’ image which verifies the
robustness and effectiveness of the proposed approach. As
can be seen, the improved PA method can automatically
choose the threshold to separate signal and noise [35]. Note
that when the number of factors K = P, the chosen
eigenvaluses by the proposed approach are equivalent to
those of the original data.

2.4 Signal subspace projection

The eigenvectors of the generated vectorised patch-based matrix
Z can be used for principal component analysis (PCA) of the
noisy image X. Based on the observation that most of the
energy of the clean image is concentrated at principal
components whereas the eigenimages of the small singular
values are almost all noises, we develop one novel denoising
scheme based on projection onto the signal subspace spanned
by the first K eigenvectors almost without loss of signal
information. The M by N noisy image matrix X is converted
into a column vector I of size M ×N by 1 in this form

I (m− 1)N + n
( ) = x(m, n) (8)

where m = 1, 2,…, M; and n = 1, 2,…, N.
The straightforward way to restore an image is to directly

project the noisy image vector I onto the subspace spanned
by the top K eigenvectors. The projected weight matrix on
the signal subspace basis is

Wp = Ẑi,p\Ii (9)

where p = 1, 2,…, P, and \ denotes the matrix left division
operator. After the top K weights are truncated by the
IET Image Process., 2013, Vol. 7, Iss. 3, pp. 270–279
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refined PA with Monte Carlo simulation, the projected
reconstructed image based on weighted subspace basis is

Ri = Ẑi,p ×Wp +
1

L

∑L
i=1

Ii (10)

where i = 1, 2,…, L; and p = 1, 2,…, K. Then the reorganised
reference image is reshaped as

R(m, n) = Ri((m− 1)N + n) (11)

where m = 1, 2,…, M; and n = 1, 2,…, N.

2.5 Proposed filtering approach

The guided filter [24] is to apply the filter kernel weights
computed from guided image to the more noisy image.
Specifically, the filtering output image f at a pixel i is
computed as a weighted average of pixel neighbourhoods

fi =
∑

j
Wijxj (12)

where i and j are pixel indexes, and a pixel i is involved in all
the windows ωk that contain i.
The filter kernel Wij is a function of the guidance image I

and independent of the noisy image X, and Wij is
normalised weight, viz.

∑
j Wij(I ) = 1. The kernel weights

can be explicitly written by

Wij(I ) =
1

|v|2
∑

k:(i,j)[vk

1+
Ii − mk

( )
Ij − mk

( )

s2
k + 1

⎛
⎝

⎞
⎠ (13)
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where |ω| is the total number of pixels in a window ωk; μk and
s2
k are the mean and variance in a window ωk of the guide

image I; and ε is a regularisation parameter.
In previous literatures [24, 30], the guided image I and

input noisy image X are identical when the guided filter is
used for single image denoising. However, the noise
existing in guided image brings about distortion of the
restored image, and also the parameter ε seriously affects
the filtering results. To solve this problem, in the proposed
algorithm, we select the reconstructed reference image R
even though it still has some residual noise after signal
subspace projection (SSP) as the guided image I, and
simultaneously optimise the parameter ε under different
window size by noise deviation estimation for noise
reduction further.
For a given noisy image and a window ωk of pixel

neighbourhood, the optimal choice of the parameter ε in
(13) yields the best output in terms of PSNR. After the
reference image from (11) is taken as the guide image in
the literature [24], the improved PCA guided filter and the
traditional guided filter in [24] with various ε were
compared in Fig. 3, which shows the PSNR of the estimator
output f as a function of the parameter ε for ‘lena’ image
corrupted with AWGN with zero mean and standard
deviation σ = 0.10. In this simulation, while the window
size (5 × 5 pixels) is used for both of them, our reference
image is reconstructed using the 10 largest singular values
of patch-based image from an input noisy image with patch
size (9 × 9 pixels). We used search procedures of gold
standard to find the parameter value ε with the error less
than 10− 6 that maximises the output PSNR.
In Fig. 4, the optimal ε values of the proposed PCA

guided filter and the traditional guided filter are shown
as a function of noise deviation σ and 5 × 5 image
neighbourhoods, respectively. The proposed PCA guided
filter finds the guide image in the following way: it
reconstructs the guide image from noisy image by
projecting onto the corresponding eigenvectors of the 10
largest singular values. In our experiments, the eight test
images selected from the USC-SIPI Image database [36] are
shown in Fig. 5. Five of them, that is, ‘Lena’, ‘house’,
‘Barbara’, ‘camera’ and ‘aerial’, were corrupted with variant
noise deviation σ = 0.04, 0.07, 0.10, 0.12, 0.14 were used to

Fig. 3 Comparison of PSNR (dB) as a function of the parameter ε
for improved PCA guided filter and the traditional guided filter
individually applied on the normalised noisy lena image
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verify the relationship between optimal parameter ε and
noise deviation σ. The optimal value of ε behaves in a very
predictable way with the use of noise deviation σ. As can
be seen, for a fixed window size, for example, 5 × 5 pixels,
the relationship between optimal ɛ and σ is approximately
quadratic relation for both the proposed PCA guided filter
and the traditional guided filter using variant test images,
but the coefficients of quadratic functions are different.
Therefore, under the given r × r image neighbourhoods and
the dimensionality K of factors for noisy images, we utilise
the quadratic fit to estimate the parameter ɛ as a function of
noise deviation σ.

1 = a2s
2 + a1s+ a0 (14)

Muresan and Parks [34] employed the smallest singular value
of sample image neighbourhoods to estimate noise deviation
with quite small bias error, that is, ŝ = lP/255. Therefore
this noise estimate technique can be used together with (14)
to automatically select a suboptimal parameter ε value
under the given image neighbourhood size r × r and
dimensionality of factors K for a single noisy image.
Through five training images, Table 1 illustrates the
quadratic fit parameters of the proposed PCA guided filter
for the chosen dimensionality K = 10 of factors in the
patch-based noisy images with block size 9 × 9 pixels, and
also shows the quadratic fitting error and resulting loss of
PSNR in the denoised image. It can be seen that the PSNR
loss resulting from using the automatic parameter ε
selection in substitution for the optimal ε is negligible
because of the smooth broad maximum PSNR output
curves shown in Fig. 3. Therefore, the robust estimation of
the parameter ɛ is to take much larger set of training images
to select it by these quadratic fits. The same analysis
approach can be applied to other patch size and denoising
algorithms. As we know, the suboptimal parameter ε also
depends on the neighbourhood size. However, this
automatic selection problem of the optimal neighbourhood
window ωk with the size r × r is difficult to solve, which is
our future work to be done.

2.6 Image quality metrics

To perform a quantitative comparison between the
performances of the different denoising algorithms, we
computed some well-known noise-reduction full reference
quality metrics [37–39]. The first measure criterion is the
PSNR, defined by (15), where I(x, y) denotes the samples
of the normalised original image, Î(x, y) denotes the

Fig. 4 Suboptimal parameterε value as a functionof noise deviationσ
IET Image Process., 2013, Vol. 7, Iss. 3, pp. 270–279
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Fig. 5 Test images used in the experiments: Lena, House, Barbara, Camera, Aerial, Airplane, Clock, and Chemical plant
samples of the filtered image. AndM and N are the number of
pixels in row and column directions, respectively.

PSNR = 10 log10
1

(1/MN )
∑

x

∑
y I (x, y)− Î(x, y)
∣∣ ∣∣2 (15)

Another criterion is the structural similarity (SSIM) index for
measuring the similarity between two images, which is
designed to improve on the traditional methods like PSNR
and MSE, which have proved to be inconsistent with
human eye perception. The SSIM metric between two
images x and y of common size M ×N is calculated as

SSIM(x, y) =
2mxmy + c1

( )
2sxy + c2

( )

m2
x + m2

y + c1

( )
s2
x + s2

y + c2

( ) (16)

Table 1 Curve-fitting coefficients used for determining ε under
signal subspace dimensionality of 9 × 9 image patch with L2
error in fit to optimal ε where there is about 0.05 dB loss in
output PSNR

Coefficients a2 a1 A0 L2 error

K = 10 1.8922 − 0.1188 0.0043 0.0169
IET Image Process., 2013, Vol. 7, Iss. 3, pp. 270–279
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where μx denotes the average of the image x; μy denotes the
average of the image y; s2

x is the variance of the image x;
s2
y is the variance of the image y; σxy is the covariance of x

and y; the two variables c1 = (k1L)
2 and c2 = (k2L)

2 stabilise
the division with weak denominator where L represents
the dynamic range of the pixel-values, and k1 = 0.01 and
k2 = 0.03 by default. The resultant SSIM index is a decimal
value between 0 and 1, and value 1 is only reachable in the
case of two identical sets of data.

3 Results and analysis

3.1 Dimensionality of signal subspace

A numerical simulation was designed for the proposed
SSP-based denoising algorithm to determine the
dimensionality of signal subspace under different image
patch size. The numerical model with additive independent
Gaussian noises with zero mean value and noise deviation
σ = 0.04, 0.10,0.14 individually was constructed according
to (2). The improved PA with Monte Carlo simulation was
used to choose the dimensionality of signal subspace in the
vectorised patch-based noisy image formulated from the
series of image patches centered at each pixel, and Table 2
shows the results of dimensionality selected from the eight
test images. It can be seen that the dimensionality of signal
subspace in noisy image decreases when noise level
increases. Furthermore, it is conducive to distinguish
Table 2 PCA-based signal subspace dimensionality selected by the refined PA with Monte Carlo simulation

Patch size (pixels) 3 × 3 5 × 5 7 × 7 9 × 9

noise deviation 0.04 0.10 0.14 0.04 0.10 0.14 0.04 0.10 0.14 0.04 0.10 0.14
Lena 8 5 4 15 10 8 23 15 9 33 19 14
house 7 6 3 18 8 7 28 14 12 41 23 15
Barbara 7 6 6 17 12 7 14 10 7 18 12 9
camera 8 7 7 21 17 16 41 33 17 65 50 26
aerial 8 8 7 21 15 13 30 21 15 39 29 21
airplane 5 4 3 8 7 5 14 11 8 20 13 11
clock 7 6 6 16 11 10 33 18 13 43 25 19
plant 7 7 6 14 10 8 25 13 13 35 20 16
275
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Table 3 PSNR and SSIM results for images denoised by the proposed algorithm with image patch size 9 × 9 pixels, and the traditional
guided filter [24]

Deviation σ 5 × 5 Proposed 5 × 5 [24] 7 × 7 Proposed 7 × 7 [24] 9 × 9 Proposed 9 × 9 [24]

Lena 31.86/0.875 31.35/0.845 31.27/0.858 30.87/0.831 30.85/0.844 30.53/0.819
27.23/0.737 24.47/0.536 26.51/0.706 24.24/0.521 25.64/0.641 24.00/0.507
25.88/0.673 22.43/0.432 25.20/0.642 22.27/0.416 24.58/0.609 22.07/0.403

house 33.22/0.859 32.33/0.810 32.81/0.853 32.05/0.806 32.47/0.844 31.79/0.798
28.01/0.680 24.82/0.452 27.53/0.668 24.69/0.444 27.05/0.649 24.52/0.435
26.78/0.638 22.64/0.351 26.30/0.631 22.57/0.342 25.75/0.611 22.42/0.334

Barbara 31.11/0.879 30.84/0.861 30.68/0.867 30.40/0.847 30.27/0.852 30.01/0.833
26.51/0.750 24.21/0.584 25.81/0.717 23.92/0.566 25.16/0.680 23.61/0.549
25.17/0.695 22.17/0.480 24.45/0.662 21.96/0.463 23.76/0.622 21.69/0.447

camera 32.03/0.859 31.82/0.844 31.77/0.855 31.59/0.839 31.53/0.848 31.37/0.833
25.66/0.604 24.49/0.517 25.48/0.599 24.36/0.510 25.18/0.582 24.19/0.501
23.86/0.528 22.12/0.412 23.77/0.534 22.02/0.404 23.34/0.503 21.87/0.395

aerial 29.52/0.913 29.44/0.909 29.09/0.903 29.05/0.900 28.83/0.895 28.81/0.893
24.06/0.754 23.12/0.706 23.35/0.718 22.73/0.685 22.90/0.695 22.44/0.671
22.58/0.678 21.20/0.607 21.85/0.635 20.84/0.583 21.32/0.605 20.54/0.566

airplane 36.10/0.923 33.56/0.797 35.69/0.920 33.40/0.796 35.18/0.911 33.15/0.789
29.97/0.768 25.35/0.382 29.72/0.774 25.35/0.379 29.29/0.761 25.26/0.374
28.17/0.728 23.12/0.289 27.98/0.749 23.17/0.288 27.59/0.739 23.12/0.283

clock 33.09/0.889 32.33/0.835 32.67/0.884 32.01/0.829 32.32/0.875 31.74/0.822
27.02/0.694 24.91/0.494 26.60/0.682 24.76/0.487 26.27/0.671 24.60/0.479
25.31/0.647 22.74/0.403 25.22/0.696 22.64/0.396 24.55/0.627 22.50/0.389

plant 30.40/0.868 30.19/0.860 29.98/0.856 29.85/0.850 29.72/0.849 29.61/0.843
25.56/0.700 23.82/0.598 24.97/0.667 23.58/0.581 24.55/0.645 23.38/0.570
24.41/0.643 21.84/0.490 23.68/0.594 21.67/0.472 23.28/0.576 21.49/0.461

For each image, the 3 rows correspond to the noise deviation σ = 0.04, 0.10 and 0.14, respectively

Table 4 PSNR and SSIM results for images denoised by the proposed algorithm with image patch size 9 × 9 pixels, and the bilateral
filter [21]

Deviation σ 5 × 5 Proposed 5 × 5 [21] 7 × 7 Proposed 7 × 7 [21] 9 × 9 Proposed 9 × 9 [21]

Lena 31.86/0.875 30.37/0.804 31.27/0.858 30.40/0.804 30.85/0.844 30.37/0.802
27.23/0.737 23.77/0.512 26.51/0.706 23.89/0.513 25.64/0.641 23.89/0.509
25.88/0.673 21.40/0.401 25.20/0.642 21.58/0.400 24.58/0.609 21.60/0.396

house 33.22/0.859 31.10/0.748 32.81/0.853 31.30/0.758 32.47/0.844 31.33/0.759
28.01/0.680 24.01/0.421 27.53/0.668 24.25/0.430 27.05/0.649 24.31/0.429
26.78/0.638 21.47/0.315 26.30/0.631 21.73/0.320 25.75/0.611 21.80/0.318

Barbara 31.11/0.879 30.10/0.831 30.68/0.867 30.13/0.831 30.27/0.852 30.10/0.829
26.51/0.750 23.54/0.560 25.81/0.717 23.63/0.561 25.16/0.680 23.61/0.557
25.17/0.695 21.21/0.448 24.45/0.662 21.34/0.447 23.76/0.622 21.34/0.443

camera 32.03/0.859 30.94/0.781 31.77/0.855 31.10/0.788 31.53/0.848 31.15/0.790
25.66/0.604 24.07/0.495 25.48/0.599 24.30/0.503 25.18/0.582 24.37/0.504
23.86/0.528 21.51/0.390 23.77/0.534 21.75/0.396 23.34/0.503 21.82/0.396

aerial 29.52/0.913 29.29/0.905 29.09/0.903 29.28/0.904 28.83/0.895 29.25/0.903
24.06/0.754 22.77/0.701 23.35/0.718 22.75/0.695 22.90/0.695 22.68/0.690
22.58/0.678 20.53/0.593 21.85/0.635 20.54/0.585 21.32/0.605 20.47/0.578

airplane 36.10/0.923 31.83/0.701 35.69/0.920 32.11/0.713 35.18/0.911 32.22/0.717
29.97/0.768 24.65/0.349 29.72/0.774 24.97/0.360 29.29/0.761 25.08/0.363
28.17/0.728 22.26/0.256 27.98/0.749 22.58/0.265 27.59/0.739 22.70/0.266

clock 33.09/0.889 31.26/0.757 32.67/0.884 31.43/0.766 32.32/0.875 31.47/0.768
27.02/0.694 24.46/0.469 26.60/0.682 24.66/0.478 26.27/0.671 24.71/0.479
25.31/0.647 22.20/0.379 25.22/0.696 22.42/0.386 24.55/0.627 22.47/0.386

plant 30.40/0.868 29.69/0.846 29.98/0.856 29.68/0.844 29.72/0.849 29.65/0.843
25.56/0.700 23.28/0.586 24.97/0.667 23.33/0.580 24.55/0.645 23.31/0.576
24.41/0.643 20.97/0.469 23.68/0.594 21.08/0.462 23.28/0.576 21.09/0.457

For each image, the three rows correspond to the noise deviation σ = 0.04, 0.10 and 0.14, respectively
between signal and noise for the eigenimages with fine-scale
structures when the patch size increases.

3.2 Implementation and experiments

Several experiments using multiple test images have been
done to verify the performance of our proposed algorithm.
The eight selected test images including ‘airplane’,
‘clock’, ‘Chemical plant’ and previous five training
images used for our experiments are a subset of the
276
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USC-SIPI image database [36]. The original images
were added with AWGN with different variance, for
both the subjective evaluation and the objective
evaluation of the denoising performance between the
proposed SSP-based algorithm and the state of the arts
[21, 24, 25]. Moreover, for different types of test
images, numerous experiments for noise reduction have
been implemented and the results were compared to
verify the validity and the robustness of the proposed
algorithm.
IET Image Process., 2013, Vol. 7, Iss. 3, pp. 270–279
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Experiments are performed on well-known 8-bit grey-scale
test images. We compared our work based on PSNR and
SSIM, which is a method for measuring the similarity
between two images (the original and the processed images)
reportedly assessing image qualities more reliably than
PSNR [39]. In this experiment, the test images were
degraded by additive Gaussian noise with zero means and
different deviations σ = 0.04, 0.10 and 0.14, respectively.
The performances of our developing algorithm were

Table 5 Comparison for the computation time between the
proposed algorithm and the denoising methods in [21, 24],
respectively

Methods [24] [21] Proposed

time, s 0.25 1.52 1.63
IET Image Process., 2013, Vol. 7, Iss. 3, pp. 270–279
doi: 10.1049/iet-ipr.2012.0351
compared with the state-of-the-art denoising methods
published recently [21, 24, 25]. The PSNR and SSIM
results for test images under different neighbourhood
windows (e.g. 5 × 5, 7 × 7 and 9 × 9 pixels) are shown in
Tables 3 and 4. Here the image patch size used in the
proposed algorithm is 9 × 9 pixels, which is also the same
with that of the traditional guided filter [24] for a fair
comparison. The spatial-domain and the intensity-domain
deviation of the bilateral filter [21] are 3 and σ,
respectively. Moreover, Table 5 demonstrates that the
proposed algorithm and the methods in the literatures [21,
24] were compared in computation time using Matlab
version 7.8 on the platform of Pentium(R) Dual-Core CPU
E5800 @3.20 GHz 2 GB cache for 256 × 256 test images,
respectively. Compared with the state-of-the-art methods,
the proposed algorithm can greatly improve filtering results
with loss of a little increase in computational time. Fig. 6
Fig. 6 Visual comparison of the noisy images, the proposed algorithm, the traditional guided filter [24], and the bilateral filter [21] using the
same image neighbourhoods 5 × 5 pixels
277
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shows the detailed results of noise removal for the proposed
method, the traditional guided filter [24], and the bilateral
filter [21] for the fragments of the normalised ‘Barbara’ and
‘Airplane’ images. As seen from the experimental results,
the proposed algorithm, which can reach better results than
the state-of-the-art methods on noise removal, works well
for a wide variety of noisy images, and can remove more
noise, restore clearer images, preserve more details and
sharper edges.

4 Conclusion and future work

In this paper, we presented a novel denoising algorithm which
is based on the guided filter. The reference image of the
proposed algorithm is reconstructed from the noisy image
projected onto the lower-dimensional signal subspace based
on global PCA determined by refined parallel analysis
with Monte Carlo simulation for the high-dimensional
patch-based noisy image matrix. We have addressed the
problem of determining the dimensionality of the signal
subspace in the noisy image under certain image patch size
and the automatic selection of the optimal parameters of the
guided image filter. The smallest singular value of the
patch-based image matrix by SVD is used to estimate
image noise deviation, which is adopted to automatically
choose the optimal parameter value of the improved guided
filter algorithm. The relationship between noise deviation
and the optimal parameter value can be established by
fitting polynomial model through pre-computing the output
maximum PSNR of test image corrupted with different
noise level. Although the proposed algorithm is
generalisation of the guided image filter with small loss of
computational efficiency, it was observed that our SSP-
based denoising algorithm performs much better than the
traditional guided image filter and other state-of-the-arts
methods both visually and quantitatively. Moreover, the
reconstructed image from the lower-dimensional projections
using the improved PA approach with Monte Carlo
simulations can also be easily applied on other denoising
and filtering algorithms for weight function calculation.
Finally, the automatic selection of the optimal image
neighbourhood size of the denoising algorithm and the
further reduction of computation time are left for our future
research.
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