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ABSTRACT

The observed images are usually noisy due to data acquisi-
tion and transmission process. Therefore, image denoising
is a necessary procedure prior to post-processing application-
s. The proposed algorithm exploits the self-similarity based
low rank technique to approximate the real-world image in the
multivariate analysis sense. It consists of two successive step-
s: adaptive dimensionality reduction of similar patch groups,
and the collaborative filtering. For each target patch, the sin-
gular value decomposition (SVD) is used to factorize the sim-
ilar patch group collected in a local search window by block-
matching. Parallel analysis automatically selects the principal
signal components by discarding the nonsignificant singular
values. After the inverse SVD transform, the denoised image
is reconstructed by the weighted averaging approach. Finally,
the collaborative Wiener filtering is applied to further remove
the noise. Experimental results show that the proposed algo-
rithm surpasses the state-of-the-art methods in most cases.

Index Terms— Dimensionality reduction, parallel analy-
sis, eigenvalue decomposition, low-rank approximation

1 Introduction

The scene captured in data acquisition is often a single im-
age or multiple images deteriorated by various noise sources.
Consequently, image denoising has become a key focus of on-
going studies in recent years. The goal of image denoising is
to reconstruct a high-quality signal from its noise-corrupted
observation. As it is a typically ill-posed inverse problem,
the solution is generally not unique. To find a better solution,
many powerful methods have appeared over the past several
years for image denoising. After a brief review, there are two
basic categories for image denoising algorithms. One cate-
gory is the spatial filters, which can be further classified into
linear filters and non-linear filters. Some recent popular lin-
ear spatial filters are NLM (Nonlocal Means filter) [1, 2, 3],
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and TLS (Total Least Squares) [4]. The other category is
transforming domain filtering methods, which also can be
further divided into the non-data adaptive transform includ-
ing wavelet-based variants, and the data adaptive transform,
such as, K-SVD [5], BM3D [7], and PCA [8, 9]. The patch-
based PLPCA method [9] employs the hard thresholding tech-
nique directly applied on the elements of the eigenvectors,
whereas it also damages the sharp edges and the fine struc-
tures. However, its thresholding value is based on the known
noise deviation. In fact, the noise deviation is unknown in
most cases. The existing best state-of-the-art filtering meth-
ods are mostly based on the optimal Wiener filter [7] or equiv-
alently Linear-Minimum Mean Squared Error (LMMSE) [8].
Although they have very good performance for reducing ad-
ditive white Gaussian noise (AWGN) from the noisy image,
they have not yet reached the limit of noise removal [11].

It is found that the patch-based techniques based on glob-
al basis or dictionary can provide efficient representations for
global features, while the data-driven local bases have the po-
tential to capture local structures and details. As yet, their d-
ifficulties have existed in finding suitable training samples as
well as choosing the proper signal components. Similar to the
framework of BM3D [7], in this paper, we propose the joint
denoising algorithm consisting of two successive steps: the
self-similarity based low-rank approximation, and the empir-
ical Wiener filtering. Our main contributions of the proposed
algorithm include both the combined denoising strategy, and
adaptive dimensionality reduction approach of similar patch
groups by parallel analysis. The experimental results show
that the proposed algorithm achieves a state-of-the-art denois-
ing performance, and outperforms recently published leading
alternative denoising methods in most cases from subjective
and objective measures of image quality.

The rest of this paper is organized as follows. In Section
2, we briefly review the related concepts, and describe the
proposed joint denoising algorithm using the self-similarity
based low-rank approximations. Section 3 shows the simu-
lation and experimental results of the developed algorithm as
compared to the state-of-the-arts methods. The discussions
and conclusions are given in Section 4.



2 The Proposed Algorithm

In real-world digital-imaging devices, the acquired im-
ages are often corrupted by device-specific noise. A simpli-
fied model of an independent additive noise usually used to
denote the degradation process of the noisy images is given
in this formula [1, 10]:

y(x) = s(x) + υ(x) (1)

where x is the coordinate; y is the observed image, s is the
clean image, and υ represents additive noise source, such as
Gaussian noise.

2.1 Image Patch Clustering

Since each patch contains a pixel and its nearest neighbors
that can better preserve edge structures and texture patterns,
the patch-based image representation is modeled instead of
the pixel-based image for noise reduction. For an observed
noisy image Y with its coordinate domain X ⊂ RM×N , let
y (x) be a pixel at a position x in the image Y. The patch-
based image Yx denotes a patch of fixed size

√
P ×

√
P ex-

tracted from Y, where x is the coordinate of the central pixel
of the patch. That is, Yx is a reshaped vector of size P × 1,
which contains the

√
P ×

√
P pixels consisting of a central

pixel y (x) and its nearest neighbors in the observed image Y.

For each target pixel y (x) located in the central position
of the target patch Yx, there are totally L possible training
patches of the same size

√
P ×

√
P in the

√
L ×

√
L local

search window. However, there may be very different adja-
cent patches from the given target patch so that taking all the√
L×
√
L patches as the training samples will cause inaccu-

rate estimation of the target patch vector Yx. As is known to
all, the high degree of self-similarity and redundancy exists
within any natural image. Thus, it’s necessary to choose and
cluster the training samples that are similar to the target patch
for the full use of both local and nonlocal information. Then,
the data-adaptive SVD transform is used to separate the im-
age signal and the noise from the similar patch groups. The
problem of patch classification has several different solutions,
e.g., block matching [7] and K-means clustering [6]. For sim-
plicity, we employ the block matching algorithm for image
patch clustering.

For each target patch Yx, the block matching algorithm
chooses Ls similar patches of the same size

√
P ×

√
P in

the
√
L×
√
L search window Ψx. The relationships between

the central pixel, the target patch, the adjacent patch and the
local search window are described in Figure 1. The similarity
measurement between the adjacent patch and the target patch
can be calculated based on Euclidean distance in this formula:

el =
1

P

P∑
p=1

(yl (p)− yx (p))
2 (2)

where l = 1, 2, · · · , L. After the error vector e =
[e1, · · · , eL]T is sorted in the ascending order, the top most
similar patches are chosen to construct the patch group. As-
sume that we select Ls similar patch vectors to reconstruct the
patch group Zυ

x for the target patch Yx, where Ls is a preset
number. For each target patch Yx, the patch group Zυ

x con-
sisting of the training patches can be expressed in this form:

Zυ
x = [Yx,Y1, · · · ,YLs−1]

T (3)

To separate the image signal and the noise effectively, the
number Ls of most similar patches should be large enough.
The patch clustering matrix Zυ

x or its transposition (Zυ
x)

T will
be used to avoid the problem of rank deficiency in computing
the SVD of the covariance matrix of Zυ

x. For each noisy mea-
surement Zυ

x, the next procedure is to estimate its underlying
noiseless counterpart dataset Zx = [Sx,S1, · · · ,SLs−1]

T .

Fig. 1: The relationships between the central pixel, the target
patch, the adjacent patch and the local search window.

2.2 Adaptive Dimensionality Reduction

After singular value decomposition (SVD) of noisy im-
age data, it’s observed that most of image signal is mainly
concentrated on the top several principal components, where-
as the eigenvectors of the small singular values are almost
all noises. The denoising problem of the noisy patch group
Zυ

x is indeed how to select the optimal number of the princi-
pal components in the SVD transform domain. In this paper,
we employ dimensionality reduction technique to analyze the
eigenvalues of the covariance matrix of the patch group Zυ

x.
By subtracting the sample mean value from each column, we
have computed the zero-centered matrix from the patch group
Zυ

x in this formula:

Z̄υ
x (l, p) = Zυ

x (l, p)−Mx (l, p) (4)

where Mx (l, p) = [1, · · · , 1]T× 1
Ls

Ls∑
l=1

Zυ
x (l, p); [1, · · · , 1]T

is the column vector of size Ls × 1; l = 1, · · · , Ls; and p =
1, · · · , P .

To reduce calculation time in an efficient way, the co-
variance matrix

(
Z̄υ

x

)T
Z̄υ

x instead of the zero-centered patch
group Z̄υ

x is used to be factorized in this form:(
Z̄υ

x

)T
Z̄υ

x = VΣ2VT (5)



where the symbol T denotes the transpose operator, and V is
the unitary matrix of eigenvectors derived from

(
Z̄υ

x

)T
Z̄υ

x. Σ
is a P×P diagonal matrix with its singular values λ1 ≥ λ2 ≥
· · · ≥ λr ≥ 0 and r = rank

(
Z̄υ

x

)
.

In fact, the eigenvalues of the covariance matrix of the
noise υ are not the same constant. Therefore, we can not take
a preset fixed threshold to select the signal components. As
we know, if the eigenvalues are very small and the size of the
image patch from a single noisy image is large enough, the
discard of less significant components does not lose much in-
formation. From the diagonal singular values, only the first
K primary eigenvectors are retained based on dimensional-
ity reduction techniques. However, the parameter K should
be not only large enough to allow fitting the characteristics of
the data, but also small enough to filter out the non-relevant
noise and redundancy. There are various dimensionality re-
duction methods proposed in the literatures for determining
the number of components to retain in data analysis. The par-
allel analysis (PA) method firstly introduced by Horn [12, 13]
compares the observed eigenvalues to be analyzed with those
of an artificial data set. It proves that PA is one of the most
successful methods for determining the number of true princi-
pal components. In this paper, we adopt the proposed parallel
analysis with Monte Carlo simulation to choose the top K
largest values.

Let λp for p = 1, · · · , P denote the singular values of
the zero-centered patch group Z̄υ

x sorted in the descending
order. Similarly, let αp denote the sorted singular values of
the artificial data. Therefore, the proposed parallel analysis
estimates the number of signal components in noisy data as
follows:

K = max {p = 1, · · · , P |λp ≥ αp} (6)

Currently, it is recommended to use the singular value that
corresponds to a given percentile, such as the 95th of the
distribution of singular values derived from the random data
set. In our algorithm, without any assumption of a given ran-
dom distribution, we generate the artificial data by randomly
permuting each element of all the patch vectors located in a
search window. Then singular values of the random artificial
data are computed by the SVD transform. For the Ls by P
synthetic matrix Cs, after multiple times (e.g. 10) of Monte
Carlo simulations, summary statistics (e.g. 95th percentile)
can be used to extract the P singular values αp in the de-
scending order. Then parallel analysis is applied and the two
lines denote singular values of the simulated data Cs and the
zero-centered patch group Z̄υ

x, respectively. The intersection
of the two lines is the cutoff for determining the number of
the signal components presented in the noisy image.

While the traditional principal component analysis (PCA)
[14] takes the thresholding technique to estimate data dimen-
sionality, the proposed adaptive PCA approach can automat-

ically determine signal subspace dimensions in noisy data by
the parallel analysis technique. Our developed refined paral-
lel analysis using Monte Carlo simulation, and the traditional
PCA [14] were compared for dimensionality reduction in our
experiments. Suppose that a 25× 25 fragment of lena image
corrupted by additive zero-mean Gaussian noise with stan-
dard deviation 20. In this case, the signal dimensionality of
the given noisy patch group Zυ

x with patch size 5 × 5 pixels
was separately estimated by the proposed adaptive PCA and
the traditional PCA [14]. Figure 2 shows the numbers of its
signal components estimated by the proposed adaptive PCA
technique, and the traditional PCA [14] are separately 5, and
19. We can see that the proposed adaptive PCA approach is
better than the traditional PCA method for separating the sig-
nal and the noise from the noisy image.

Fig. 2: The eigenimages, the singular values, and the recon-
structed images generated from a 25 × 25 image block with
patch size 5× 5 pixels of the test lena image corrupted by ad-
ditive zero-mean Gaussian noise with standard deviation 20.
(a) the original image block; (b) the noisy image block; (c) the
eigenimages; (d) the numbers of its signal subspace dimen-
sionality estimated by the proposed adaptive PCA approach,
and the traditional PCA [14] are 5, and 19,respectively; (e)
the reconstructed image block (K = 19); (f) the reconstruct-
ed image block (K = 5).



2.3 SVD-Based Low-Rank Approximation

For each target pixel y (x), the similar candidate patches
are selected by the block matching algorithm to constitute the
patch group Zυ

x = [Yx,Y1, · · · ,YLs−1]
T . The patch-based

correlated patch groups Zυ
x (x ∈ X) [see (3)] can be used for

component analysis of the noisy image Y. The low-rank ap-
proximation [15, 16] is used to estimate the original noiseless
image S by reducing noise of the observed image Y. There-
fore, the zero-centered patch group Z̄υ

x is factorized by the
SVD transform in this formula:

Z̄υ
x = UΣVT (7)

where Σ is the diagonal matrix with the singular values
λ1 ≥ λ2 ≥ · · · ≥ λr. V = [V1,V2, · · · ,VP ] and
U = [U1,U2, · · · ,ULs ] are the unitary matrices of eigen-
vectors, which represent the orthogonal dictionaries of non-
local bases and local bases, respectively. The zero-centered
noisy patch group Z̄υ

x is decomposed into a sum of compo-
nents from the largest to the smallest singular values. In fac-
t, most of the energy of the true image is concentrated on
few high-magnitude transform coefficients, whereas the cor-
responding eigenimages of the small singular values are al-
most all noises.

After adaptively determining the signal dimension of the
noisy zero-centered patch groups Z̄υ

x [see (6)], the denoised
image can be reconstructed by the SVD-based low rank ap-
proach. The straightforward way to restore a noiseless image
is to directly apply the inverse SVD transform to the noisy
similar patch groups Zυ

x in a reduced dimensionality repre-
sentation. That is, the inverse SVD transform is implemented
to approximate the true noise-free image with the matrices
ΣK = diag {λ1, λ2, · · · , λK}, UK = [U1,U2, · · · ,UK ],
and VK = [V1,V2, · · · ,VK ]. For each target pixel, the
denoised patch group Ẑx and its weight matrix Wx are sepa-
rately estimated as follows:

Ẑx = UKΣKVT
K +Mx (8)

Wx (l, p) =

{
1−K/P,K < P ;
1/P, K = P.

(9)

where Mx is the mean value [see (4)] of the patch group Zυ
x.

After applying such procedures to each pixel y (x), the
relevant denoised patch group is estimated according to Equa-
tion (8), and its weight is empirically determined in Equation
(9). Since these denoised patches are overlapping, multiple
estimates of each pixel in the image are combined to recon-
struct the whole image. The weighted averaging procedure is
carried out to suppress the noise further. The whole filtered
image Ŝt is obtained by aggregating all the estimates of each

pixel in this formula:

Ŝt =
1

Wt

M×N∑
x=1

ẐxWx (10)

where the total weight Wt =
M×N∑
x=1

Wx.

Moreover, the proposed efficient algorithm is implement-
ed by reducing the number of the image patch groups. A step
of Js ∈ X pixels is used for the noisy image in both horizon-
tal and vertical directions. Thus, the number of similar patch
groups is approximately MN/J2

s rather than MN . Hence
most of the noise will be removed by using the adaptive di-
mensionality reduction approach and the weighted averaging
scheme in Sections 2.2-2.4. However, there is still some un-
pleasant residual noise in the denoised image, especially for
terribly noisy images. As the observed image contains the
strong noise, the image patches are seriously corrupted by
noise, which leads to image patch clustering errors and the
biased estimation of the SVD transform. Consequently, it
is necessary to further suppress the noise residual of the de-
noised output Ŝt.

After the first phase of noise removal by the low rank ap-
proximation, the empirical Wiener filtering [7] is employed
for the second phase to further improve the denoising perfor-
mance of the output Ŝt. Because there is less noise in the
output Ŝt, the close approximation of the true patch distance
is calculated with the denoised output Ŝt instead of the noisy
image Y [see (2)]. Therefore, the final whole noiseless im-
age Ŝf is obtained after the empirical Wiener filtering. In
addition, the pseudo codes of Algorithm 1 gives further clar-
ification of the proposed denoising algorithm.

3 RESULTS AND ANALYSIS

The qualitative and quantitative evaluation of the pro-
posed algorithm was implemented on lots of test benchmark
images including Lena, Baboon, Barbara, House and brain
from standard image databases [18]. To perform a quantita-
tive comparison between the performances of the proposed
denoising algorithm and the state-of-the-art methods pub-
lished recently [7, 9], the two well-known noise-reduction
full reference quality metrics: PSNR (Peak Signal to Noise
Ratio) and SSIM (Structural SIMilarity) [17] are considered
for measuring the similarity between the denoised image and
original noise-free image. In this experiment, the test images
were degraded by additive Gaussian noise with zero means
and different deviations 10, 20, 30 and 50 respectively. The
performance of our developing algorithm was compared with
the current state-of-the-art methods, such as BM3D [7] and
PLPCA [9]. The PSNR results for five test images are pre-
sented in Table 1. The detailed visual results for the proposed
algorithm, BM3D [7] and PLPCA [9] for the fragments of



Algorithm 1 Pseudocode of the Proposed Algorithm

Input: YM×N , P,L and Ls.
Output: Ŝf

for each x = 1 to M ×N do
for each i, j = 1 to

√
P do

p = (i− 1)×
√
P + j;

H (x, p) = Y
(
m+ i−

√
P , n+ j −

√
P
)

;
end for

end for
Ŝt = zeros (M ×N,P ); W t = zeros (M ×N,P );
for each x = 1 to M ×N do
Ψx ← L; Yx = H (x, :); YΨx = H(Ψx, :);
Ψs

x = BlockMatching (Yx, YΨx , Ls);
Zυ
x = H(Ψs

x, :); Mx = mean (Zυ
x );

Z̄υ
x = Zυ

x −Mx;
(
Z̄υ
x

)T
Z̄υ
x = V Σ2V T ;

CTC = V Λ2V T ;
λ = diag (Σ); α = diag (Λ);
K = max {p = 1, · · · , P |λp ≥ αp};
Ẑx = UKΣKV T

K +Mx;
Ŝt (Ψs

x, :) = Ŝt (Ψs
x, :) +WxẐx;

W t (Ψs
x, :) = W t (Ψs

x, :) +Wx;
end for
I = zeros

(
M +

√
P − 1, N +

√
P − 1

)
;

Q = zeros
(
M +

√
P − 1, N +

√
P − 1

)
;

for each a, b = 1 to
√
P do

id = (b− 1)×
√
P + a;

Πa = a : M + a− 1; Πb = b : N + b− 1;
TS= reshape

(
Ŝt (:, id) , [M,N ]

)
;

I (Πa,Πb) = I (Πa,Πb) + TS ;
TW= reshape (Wt (:, id) , [M,N ]);
Q (Πa,Πb) = Q (Πa,Πb) + TW ;

end for
Ŝt = I/Q;
Ŝf = WienerFiltering

(
Ŝt

)
;

the Lena, and Barbara images are shown in from Figure 3 to
Figure 4. Further, our adaptive dimensionality reduction ap-
proach can discard considerable part of noises almost without
loss of signal information.

Besides this set of experiments on the simulated noisy im-
ages, we also validate our denoising algorithm on real mag-
netic resonance (MR) images acquired from the MR scanner
at 3T (MAGNETOM Tim Trio, Siemens, Germany). They
were scanned with the pulse sequences including spin echo
(SE) in the study. The T1 SE image provides a testing set
which presents a good diversity: different organs (White mat-
ter/Grey matter). Figure 5 presents the results for the different
real MR images and different denoising methods. These ex-
periments verify that the proposed algorithm can be effective-

ly applied to real MR images. It is evident that the proposed
algorithm achieves a better edge and structure preservation.
As seen from the experimental results of both synthetic Im-
ages and real MR images, the proposed algorithm can reach
better results than other state-of-the-art methods in most cas-
es. Moreover, it works well for a wide variety of noisy im-
ages and also has better noise reduction effect, especially on
regions of rich textures and edges.

Table 1: The final PSNR(dB) results of the restored images
obtained by these different denoising methods for test images
with different noise levels. The values in parenthesis are the
PSNR results of the first stage in the corresponding denoising
methods. For each image, the three rows correspond to the
noise standard deviation 10, 20, 30, and 50, respectively.

Images [7] [9] Proposed

Lena
(35.67)35.94 35.54 (35.28)35.94
(32.47)33.00 32.32 (32.03)32.91

512× 512 (30.47)31.20 30.26 (30.53)31.33
(27.77)28.74 27.21 (27.78)28.86

Baboon
(30.74)30.96 31.08 (29.33)30.62
(26.79)27.15 27.03 (26.94)27.28

512× 512 (24.89)25.20 25.04 (25.24)25.42
(22.82)23.13 23.01 (23.17)23.46

Barbara
(34.62)34.96 34.75 (34.63)35.18
(31.16)31.75 31.08 (31.34)31.86

512× 512 (28.86)29.74 28.89 (29.61)30.10
(25.77)27.21 25.98 (26.46)27.54

House
(36.27)36.69 35.78 (35.83)36.72
(33.47)33.90 32.61 (32.78)33.87

256× 256 (31.41)32.09 30.46 (31.18)32.10
(28.50)29.80 27.21 (28.65)29.86

Brain
(33.58)33.75 33.61 (33.09)33.66
(29.97)30.24 29.57 (29.49)30.38

256× 256 (27.66)28.04 27.13 (27.78)28.26
(24.74)25.33 24.47 (24.95)25.65

(a) (b) (c)

Fig. 3: Visual comparisons of the denoising result-
s for the Lena image corrupted with Gaussian noise
with standard deviation 30. From left to right: (a)
BM3D [7] (PSNR=31.20dB, SSIM=.8440); (b) PLPCA
[9] (PSNR=30.26dB, SSIM=.7956); and (c) Proposed (P-
SNR=31.33dB, SSIM=.8424).



(a) (b) (c)

Fig. 4: Visual comparisons of the denoising result-
s for the Barbara image corrupted with Gaussian noise
with standard deviation 50. From left to right: (a)
BM3D [7] (PSNR=27.21dB, SSIM=.7928); (b) PLPCA
[9] (PSNR=25.98dB, SSIM=.6792); and (d) Proposed (P-
SNR=27.54dB, SSIM=.8014).

(a) (b)

(c) (d)

Fig. 5: Visual comparisons of the denoising results for the
T1 SE image. (a) Noisy MR image; (b) BM3D [7]; (c) PLP-
CA [9]; and (d) Proposed.

4 CONCLUSIONS

In this paper, we addressed the joint denoising framework
using the self-similarity based low-rank approximation. Par-
allel analysis adaptively selects the proper signal components
of similar patch groups from the noisy images. Thus this di-
mensionality reduction approach discards a considerable part
of noises almost without loss of signal information. Then the
inverse SVD transform, whose left and right orthogonal ba-
sis denote local and nonlocal image features, respectively, is
implemented to obtain the first-stage denoised image by the
weighted averaging aggregation operator. After applying the

empirical Wiener filtering to the first-stage denoised image,
the reconstructed noise-free image is achieved with better de-
noising performance. The results of test images corrupted
with variant noise levels demonstrate that the proposed joint
denoising algorithm is better than the state-of-the-art methods
both visually and quantitatively in most cases.
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