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ABSTRACT
To improve the performance of sparsity-based single image
super-resolution (SR), we propose a joint SR framework of
structure prior based sparse representation (SPSR). The pro-
posed SPSR algorithm exploits the multi-scale spatial struc-
tural self-similarities, the gradient prior and nonlocally cen-
tralized sparse representation to formulate a constrained op-
timization problem for high-resolution image recovery. The
high-resolution image is firstly initialized by exploiting cross-
scale patch redundancy in an image pyramid from single input
low-resolution image. Then the sparse modeling of the image
SR problem is proposed to refine it further, where the gradient
histogram preservation is incorporated as a regularization ter-
m. Finally, an iterative solution is provided to solve the prob-
lem of model parameter estimation and sparse representation.
Experimental results on image super-resolution validate the
generality, effectiveness and robustness of the proposed SP-
SR algorithm.

Index Terms— Image super-resolution, sparse represen-
tation, self-similarities, sparse coding, dictionary learning.

1. INTRODUCTION

Single image super-resolution is still a challenging problem in
the field of image restoration [5, 8]. It refers to the recovery
of a suitable high-resolution (HR) image from an observed
low-resolution (LR) image. The learning-based methods that
exploit the information from training images have become the
focus of the study in recent years [4, 6, 9]. Specifically, the
sparse representation is used to train the dictionary and to es-
timate the target HR image. Recently, sparse coding with
adaptive dictionary learning in LR and HR spaces has been
received great attention in image super-resolution since it is
an efficient technique for signal modeling. Yang et al. [9]
proposed the coupled dictionaries trained from the LR and
HR image patch pairs for single image super-resolution. Al-
though the assumed similarities of geometry and sparse repre-
sentation exist between the LR and HR spaces [9], they ignore
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the case that there are many possible HR counterparts related
to the LR input. Considering the sparse coding noise, Dong
et al. [4] proposed a nonlocally centralized sparse represen-
tation (NCSR) model with very encouraging performance,
which exploits patch redundancy within and across scales to
train adaptive sub-dictionaries [6]. However, for the images
with complex structures, these methods [4, 6, 9] cannot recov-
er the small edges and the fine structural details. In addition,
an obvious drawback of these methods is that their SR perfor-
mance depends heavily on the noise level of input LR images.
Therefore, there is still much space to further improve the per-
formance of single image SR by exploiting prior knowledge
of natural images.

It is observed that the image structures have high correla-
tion between an image and its resized one with small-scale
changes. Inspired by the redundancy of the multi-scale s-
patial image structures, we propose a novel joint framework
of structure prior based sparse representation for single im-
age super-resolution. The initial HR image is constructed
through multistep magnification by exploiting the structural
self-similarities in the scale and space domains. The gradi-
ent histogram of the observed LR image is incorporated as
a gradient regularization term of sparse modeling. The pri-
ors of image gradient and nonlocally centralized sparsity are
exploited for dictionary training and HR image reconstruc-
tion. The main contributions of our work can be summarized
as follows: The prior knowledge of multi-scale spatial im-
age structures is investigated and combined with other priors
about the gradients and the sparsities to form the joint frame-
work of single image super-resolution.

The remainder of this paper is organized as follows. Sec-
tions 2 provides the detailed descriptions of the proposed SP-
SR algorithm. Experimental results are given in Section 3.
The conclusions are drawn in Section 4.

2. SINGLE IMAGE SUPER-RESOLUTION

2.1. SR Model

For an observed LR image y, the problem of image super-
resolution is generally modeled as

y = DHx+ υ, (1)
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where the degradation matrices D and H are separately the
down-sampling and blurring operators, x is the original im-
age, and υ is the noise term. Given a LR image, our goal
is to produce a HR image such that its underlying high fre-
quency details are recovered while preserving the structures
from the original HR image. The flowchart of our proposed
SPSR approach is shown in Figure 1, where the initialized
HR image IP is the enlarged output from a given LR image
y by the multistep magnification technique, Φ is the learned
dictionaries by k-means clustering and principal component
analysis (PCA), wS is the related weights of the similar patch
groups by block matching, xM is the updated HR image by
the nonlocal means, xG is the updated HR image by the gra-
dient regularization with gradient histogram preservation, xB

is the updated HR image by the data fidelity constraint, and
xH is the final reconstructed HR image.

Fig. 1: The flowchart of our SPSR algorithm.

The initialization of the target HR image is a key proce-
dure for single image super-resolution reconstruction. Moti-
vated by the observations of the patch similarity widespreadly
existing within scale and across scales of natural images [6],
different from the bicubic interpolation method, we design the
multistep magnification scheme for the HR image initializa-
tion. The scale factor of each step is small enough so that
more similar patches from an image pyramid are found for
HR image reconstruction. In the image pyramid, assume that
the relationship between HR image IH and LR image IL is
given by

IL = (IH ∗G) ↓s, (2)

where ∗ is a convolution operator, G is an isotropic Gaussian
kernel, and ↓s is a downsampling operator with the scaling
factor of s.

For an input LR image I0 (I0 = y), the downsampled L-
R images In (n = −1, · · · ,−N ) are generated to build the
patch pair database B. Similarly, the input LR image I0 is
assumed to be a downsampled result from an unknown HR

image Ip (p = 1, · · · , P ). For a total scaling factor z, the
number of magnification steps is P = ceil (log (z) / log (zs))
where zs is the magnification factor of each step. Therefore,
we can exploit patch similarity across scales to reconstruc-
t the HR image Ip. For a given patch Ωs of the input image
I0, the approximate nearest neighbor (ANN) method is used
to search most similar patches in the database B from the LR
images In (n = −1, · · · ,−N ). Assume that Qi is the simi-
lar patch of Ωs, Γi and Πi denote its corresponding regions of
larger size in the given image I0 and the HR image I1, respec-
tively. Note that Qi and Ωs are very similar, but they are not
completely the same. This relationship between them is also
applied to Γi and Πi. The overlapped HR patches Πi and their
weights exp

(
−∥Ωs −Qi∥2/σ2

)
are gathered together to re-

construct the HR image I ′1, where σ is a control parameter
for similarity measure. Since there may be some uncovered
regions in the initial reconstructed HR image, the back projec-
tion algorithm is used to improve image resolution. Then the
refined reconstructed HR image I1 is added to the patch pair
database B. These steps mentioned above are implemented
iteratively until the final HR image I ′P is obtained. After P
magnification steps, the HR image I ′P is downsampled to get
the ×z HR image IP by the bicubic interpolation. Next the
HR image IP is used as the initialized value of image super-
resolution reconstruction.

Mathematically, our proposed sparse coding model of s-
ingle image super-resolution is given as follows:

αy = argmin
α,F

 ∥y −DHΦ ◦ α∥22 + λ
∑

i
∥αi − βi∥1

+µ∥F (∇x)−∇x∥2

 ,

s.t. hF = hr,
(3)

where λ and µ are the regularization parameters, αi is the
coding coefficients of each patch xi over the dictionary Φ, α
denotes the concatenation of all αi, βi is the nonlocal means
of αi in the sparse coding domain, ∇ denotes the gradien-
t operator, F is the transform function, hr is the reference
histogram of x, and hF is the histogram of the transformed
gradient image |F (∇x)|. Note that F is an odd function that
is monotonically non-descending in the domain (0,+∞). On
the right side of (3), the first term is the data fidelity of the
solution, the second term is the sparse nonlocal regularization
[4] and the third term is the gradient regularization [12]. Con-
sidering the natural images often contain repetitive patterns,
the nonlocal similar patches to the given patch xi centered
at pixel i are searched not only in the image spatial domain
but also across different scales [6]. For the current estimate
x̂, the similar patches of x̂i are denoted by x̂c

i , whose coding
coefficients are αc

i . Then βi can be computed as the weighted
average of the sparse codes of the associated nonlocal similar
patches:

βi =
∑

c
wc

iα
c
i , (4)
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where the weight wc
i is defined as

wc
i =

1

W
exp

(
−∥x̂i − x̂c

i∥
2
2 /τ

)
, (5)

where τ is a control parameter to adjust the decay rate and W
is a normalized factor to insure that

∑
i w

c
i = 1.

2.2. Iterative Solution

In our algorithm, we proposed an alternating minimization
method to solve the image SR problem in (3) so that the con-
strained optimization is carried out with some variables fixed
in cyclical fashion. First, the noise level συ is also estimat-
ed from the selected patches without high frequency from the
LR image y by the PCA technique [7, 10, 11]. Next, the
initial value IP of the HR image is acquired from the input
LR image y by the multistep magnification method that ex-
ploits structural self-similarities in both scale and space do-
mains. Then for the current estimation IP of HR image x,
the k-means clustering is used to separate the patches of its
multi-scale images into K clusters from each of which a PCA
sub-dictionary is trained. Subsequently, for each patch, the
PCA sub-dictionary of which cluster it belongs to is automat-
ically selected as the dictionary Φ. For the fixed αi, βi and
Φ, the SR problem in (3) is reduced to the sub-problem of
gradient histogram preservation:

min
F

∥F (∇x)−∇x∥2, s.t. hF = hr. (6)

Thus according to the estimated noise deviation συ, we can
compute the reference histogram of image gradients and up-
date the transform function F by solving the reduced sub-
problem in (6). After that, for the fixed Φ and F , the image
SR problem in (3) is reduced to the sub-problem in the fol-
lowing form:

argmin
α

 ∥y −DHΦ ◦ α∥22 + λ
∑

i
∥αi − βi∥1

+µ∥F (∇x)−∇x∥2

 . (7)

where λ is a constant to weight the l1-norm sparsity regular-
ization. To improve the reconstruction of sparse signals, we
adopt an adaptively reweighting method [4] that exploits the
image nonlocal redundancy to estimate the parameter λ. To
solve the convex minimization sub-problem in (7), we first
update the HR image x by the gradient descent method:

x̂(t+1/2) = x̂(t) + δ

 (DH)
T
(
y −DHx̂(t)

)
+µ∇T

(
f −∇x̂(t)

)
 , (8)

where δ is a constant. The update process of HR image in
(8) can be divided into two stages: the gradient regularization
and the fidelity constraint. Assume that Ri denotes the matrix

extracting the patch xi from the image x at the location i. The
sparse coding coefficients αi are updated as follows:

α
(t+1/2)
i = ΦT

kRix̂
(t+1/2), (9)

where Φk, k = 1, · · · ,K is the PCA sub-dictionary of which
cluster the patch x̂i falls into. The nonlocal means βi of αi

can be estimated by using (4). By employing the iterative
shrinkage operator [3] applied to each element of αi, we can
further update the coding coefficients αi:

α
(t+1)
i = Sλ/c

(
ΦT ◦ (DH)

T
Θ/c+ α

(t+1/2)
i − βi

)
+ βi,

(10)
where Θ = y − DHΦ ◦ α

(t+1/2)
i , Sλ/c is the soft thresh-

olding function, and c is a regulatory parameter to ensure the
convexity of the shrinkage function. Finally, the whole HR
image is reconstructed as follows:

x̂(t+1) = Φ(t+1) ◦ α(t+1)

=

(∑l

i=1
RT

i Ri

)−1 ∑l

i=1

(
RT

i Φ
(t+1)
k α

(t+1)
i

)
.

(11)

The above iterative procedures are executed repeatedly until
the convergence is achieved [1]. To give further clarification
of the specific implementation of our proposed SPSR algo-
rithm, it is summarized in Algorithm 1.

Algorithm 1 Pseudocodes of SPSR-Based Super-Resolution

Input: a LR image y and a total scaling factor z.
Output: a HR image xH .

I. Initialization

• Set the initial parameters λ, µ, δ and c;

• For the LR image y, the HR image is initialized as IP
for sparse modeling by the multistep magnification;

II. Outer loop: for each iteration t = 1 to T do

• Update {Φk} by k-means clustering and PCA;

• Update x̂(t) by the gradient regularization;

• Inner loop: for each iteration j = 1 to J do

1) Compute x̂(t+1/2) by the data fidelity;

2) Compute α
(t+1/2)
i = ΦT

kRix̂
(t+1/2), where

Φk is the dictionary assigned to x̂
(t+1/2)
i ;

3) Compute λ and βi of α(t+1/2)
i ;

4) Update α
(t+1)
i again by using (10);

5) Reconstruct the estimate x̂(t+1) using (11);

• Update the HR image xH = x̂(t+1).
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3. EXPERIMENTAL RESULTS

The basic parameters of our SPSR algorithm are set as fol-
lows: the patch size is 6 × 6 with the overlap width equal to
4 between the adjacent patches, K = 64, T = 9, J = 80,
µ = 0.005 and δ = 7. The proposed SPSR algorithm was
compared with the state-of-the-art methods published recent-
ly [4] for verifying its validity subjectively and objectively.
Just like the other methods [4], the simulated LR image is
generated by the blurring and downsampling operator. That
is, a HR image is first blurred with a 7 × 7 Gaussian ker-
nel with standard deviation 1.6, and then downsampled by a
scaling factor in both horizontal and vertical directions. In
practice, the acquired LR image is often corrupted by noise
that makes the super-resolution more difficult. Thus, it is al-
so necessary to verify the robustness of the super-resolution
methods to noise. The Gaussian noise with standard deviation
5 was added to the clean LR images to produce the simulated
noisy LR images. For a set of test images, the PSNR results of
our SPSR algorithm, the bicubic interpolation method and the
NCSR method [4] on the simulated noiseless or noisy LR im-
ages are shown in Table 1, respectively. As can be seen from
Table 1, it is found that the average PSNR gains of our SPSR
algorithm over the existing best method, i.e., NCSR [4], are
0.14 and 0.10 dB for the noiseless and noisy cases, respec-
tively. The detailed reconstructed HR results of the different
methods for the test images are shown in Figure 2 to 3. The
visual comparisons demonstrate that the proposed SPSR algo-
rithm have better recovery results of fine structures and sharp
edges than them [4]. As seen from the experimental results,
the proposed SPSR algorithm works well for a wide variety
of images, and can reach better super-resolution results than
the state-of-the-art methods.

4. CONCLUSIONS

In this paper, we addressed the single image super-resolution
problem. The multi-scale spatial structural self-similarities
are studied and then incorporated in our proposed SPSR
framework. The initial estimation of HR image is obtained
from an input LR image by the multistep magnification tech-
nique. The final HR image is reconstructed by building the
sparse representation model with regularization constraints
of both the nonlocally centralized sparsity and the gradient
histogram preservation. Experimental results demonstrated
that our SPSR algorithm is promising and competitive to the
state of the arts, and outperforms other leading SR methods
both visually and quantitatively.
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