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The non-local means (NLM) has attracted enormous interest in image denoising problem in
recent years. In this paper, we propose an efficient joint denoising algorithm based on adap-
tive principal component analysis (PCA) and self-similarity that improves the predictability
of pixel intensities in reconstructed images. The proposed algorithm consists of two succes-
sive steps without iteration: the low-rank approximation based on parallel analysis, and the
collaborative filtering. First, for a pixel and its nearest neighbors, the training samples in a
local search window are selected to form the similar patch group by the block matching
method. Next, it is factorized by singular value decomposition (SVD), whose left and right
orthogonal basis denote local and non-local image features, respectively. The adaptive
PCA automatically chooses the local signal subspace dimensionality of the noisy similar
patch group in the SVD domain by the refined parallel analysis with Monte Carlo simulation.
Thus, image features can be well preserved after dimensionality reduction, and simulta-
neously the noise is almost eliminated. Then, after the inverse SVD transform, the denoised
image is reconstructed from the aggregate filtered patches by the weighted average method.
Finally, the collaborative Wiener filtering is used to further remove the noise. The experi-
mental results validate its generality and effectiveness in a wide range of the noisy images.
The proposed algorithm not only produces very promising denoising results that outper-
forms the state-of-the-art methods in most cases, but also adapts to a variety of noise levels.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Image denoising is still a challenging problem in the fields of image processing and computer vision. It refers to the recov-
ery of a digital image that has been contaminated by some types of noise, e.g., Gaussian noise, or Rician noise, while preserving
image features such as the edges and the textures. The problem of image denoising [34,29] was first studied in 1970s. After the
development of wavelet transform in late 1980s, many denoising methods based on wavelet transform and its variants have
appeared in the literatures [13,39,6,17,40,35]. However, they often blur the sharp edges and smooth out the fine structures.

Since the non-local means (NLM) algorithm [5] was published by Buades et al., many more powerful denoising techniques
have been proposed in the past several years [1,14,30,15,9,42,52,53,12,27,56,2,55,21,31]. After a brief review, there are two
basic categories for image denoising approaches. One of them is the spatial filters, which can be further classified into linear
filters and non-linear filters. Some of the recent popular linear spatial filters are bilateral filtering [38], Wiener filtering [18],
NLM [5] and Total Least Squares (TLS) [23]. Furthermore, many variants of the NLM method [5] were also developed to
improve its weight calculation, e.g., Stein’s unbiased risk estimate (SURE) [43,36], the principle neighborhood dictionary
(PND) [42] and the MMSE approach [28]. Similarly, the typical non-linear spatial filters are total variation regularization
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(TV) [37], Kernel Regression (KR) [41] and the diffusion filter [4]. The other category is transforming domain filtering meth-
ods, which can also be further divided into the non-data adaptive transforms including wavelet-based variants [40,35] and
data adaptive transforms, such as K-SVD [1], BM3D [9], principal component analysis (PCA) [54,10] and independent com-
ponent analysis (ICA) [8].

One main direction of these works is to find sparse representations of signals built on the globally or locally adaptive ba-
sis. Assuming that each image patch can be sparsely represented, K-SVD algorithm [1] and its variant [51] learn a sparse and
redundant basis of image neighborhoods to remove noise. But they ignore the characteristics of the human visual perception
that the edges and textures of the image contribute greatly to the subjective assessment of image quality. The KR method
with recursive iterations proposed by Takeda et al. [41] has expensive computation, which is difficult to achieve real-time
processing. He et al. [22] proposed an image denoising method using the adaptive thresholding scheme by singular value
decomposition. However, its denoising performance depends on three free parameters, which are quite tricky and difficult
to tune for optimal values. The patch-based PLPCA method [10] adopts the hard thresholding technique directly for the ele-
ments of the eigenvectors, whereas it also damages the sharp edges and the fine structures. Furthermore, its thresholding
value is based on the known noise deviation. However, in fact, the noise deviation is unknown in most cases. To the best
of our knowledge, the best existing state-of-the-art filtering methods are mostly based on the optimal Wiener filter [9] or
equivalently Linear-Minimum Mean Squared Error (LMMSE) [54]. Although they have very good performance for reducing
additive white Gaussian noise (AWGN) from the noisy image, they have not yet reached the limit of noise removal [7].

These denoising methods mentioned above have the drawback that while removing noise, they may also smooth the edges
and the fine structures in the image. To mitigate this drawback, different from the existing denoising methods, we propose an
advanced denoising algorithm based on adaptive principal component analysis and self-similarity (APCAS). The proposed
algorithm consists of two successive steps without iteration: the low-rank approximation based on parallel analysis, and
the collaborative filtering. The image self-similarity is exploited to construct similar patch groups. Parallel analysis is used
to choose the signal dimensionality of the coefficients in the SVD domain of the similar patch group. This dimensionality
reduction technique can adaptively determine the number of signal components in noisy environments. The low-rank
approximation of the true image is employed to perform the empirical Wiener filtering to further reduce the noise. Our main
contributions of the proposed algorithm include the joint denoising strategy without iteration, the self-similarity based image
patch clustering and parallel analysis based adaptive principal component analysis for the low-rank approximation. Experi-
mental results show that the proposed algorithm achieves highly competitive performance with the best state-of-the-art
methods from subjective and objective measures of image quality, and can outperform them in most cases.

The rest of this paper is organized as follows. In Section 2, the proposed APCAS algorithm for image denoising is described.
Section 3 shows the simulation and experimental results of the developed algorithm, and the comparison to the state-of-the-
art methods. Finally, the discussions and conclusions are drawn in Section 4.

2. Proposed denoising algorithm

2.1. Method preview

In real-world digital-imaging devices, the acquired images are often contaminated by device-specific noise. Due to the
existence of random noise in the acquisition process, magnetic resonance (MR) images are generally the most noisy. In
the MR literatures [20,32], the noise in MR images is assumed to be Rician distributed with uniform or non-uniform variance
across the image. However, Most of denoising methods in the literatures [9,54,10] have been developed assuming a Gaussian
noise distribution with a spatially independent variance. In fact, the Gaussian assumption could be valid on MR images when
SNR is larger than two [20]. For simplicity, the additive Gaussian noise model is adopted to simulate the noisy MR images for
validation and evaluation of the denoising methods. As in the previous literatures [9,54,10], a simple noise model of inde-
pendent additive type is generally used to describe the noisy image for simulation in the following formula:
yðxÞ ¼ sðxÞ þ tðxÞ ð1Þ
where x is a two-dimensional spatial coordinate; y is the observed image, s is the ideal noise-free image, and t represents
additive white Gaussian noise (AWGN) with zero mean and standard deviation rn.

Besides giving an image an undesirable appearance, the noise can cover and reduce the visibility of certain features within
the image, which weakens the clinical diagnostic accuracy. Thus, it is necessary to remove the noise from MR images. Be-
cause of its advantage of not increasing the acquisition time and motion artifacts, postprocessing filtering techniques have
been traditionally and extensively used in MR image denoising. In brief, the overview of procedures of our proposed method
is described as follows (See Fig. 1):

1 Image pacth clustering. For each target patch, its corresponding patch group is formed by finding similar patches in the
observed noisy image.

2 Signal dimension estimation. Parallel analysis is used to estimate the signal dimension of each similar patch group.
3 SVD-based low-rank approximation. The denoised image is obtained with the weighted averaging of the aggregate

filtered patches that are constructed with the low-rank approximation.



Fig. 1. The workflow of the proposed APCAS algorithm.
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Empirical Wiener filtering. With shrinkage coefficients from the denoised result in the first step, the collaborative Wiener
filtering further removes the noise.

2.2. Image patch clustering

Since most of the human visual perception and understanding of an image is conveyed by its edge structures and texture
patterns. To preserve the edge and the texture, the patch-based image representation is modeled instead of the pixel-based
image for noise reduction, where each patch contains a pixel and its nearest neighbors. For an observed noisy image Y with
its coordinate domain X � RM�N, let y(x) be a pixel at a position x in the image Y. Assuming that P is the number of pixels in
the patch, the patch-based image Yx denotes a patch of fixed size
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extracted from Y, where x is the coordinate of the
central pixel of the patch. That is, Yx is a reshaped vector of size P � 1, which contains the
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pixels consisting of a
central pixel y(x) and its nearest neighbors in the observed image Y.

In order to remove the noise from the input noisy image Y, the data-adaptive SVD transform is used to separate the image
signal and the noise. The high degree of self-similarity and redundancy widespreadly exists within any natural image.
Through effective analysis of a signal or image, the various sub-dictionaries with atoms should be picked up that are morpho-
logically similar to the features in the signal or image, respectively. For each target pixel y(x) located in the central position of
the target patch Yx, there are totally L possible training patches of the same size
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local search window.
However, there may be very different adjacent patches from the given target patch so that taking all the
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patches as
the training samples will cause inaccurate estimation of the target patch vector Yx. Thus, it is necessary to choose and cluster
the training samples that are similar to the target patch for the full use of both local and non-local information before applying
the SVD transform. The problem of patch classification has several different solutions, e.g., block matching [9], K-means clus-
tering [3] and affinity propagation (AP) [16]. For simplicity, we employ the block matching method for image patch clustering.

Let Yx = [yx(1), yx(2), . . ., yx(P)]T denote the central target patch. For typographical convenience, Yl, l = 1, 2, . . ., L � 1 rep-
resents the candidate adjacent patches of the same size
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search window Wx. The block matching
method is used to construct the patch group based on the similarity measurement between the adjacent patch and the target
patch. The relationships between the central pixel, the target patch, the adjacent patch and the local search window can be
appreciated in Fig. 2. The similarity metric between the candidate patch and the target patch can be calculated using the
Euclidean distance in this formula:
el ¼
1
P

XP

p¼1

ylðpÞ � yxðpÞð Þ2 ð2Þ
Fig. 2. The relationships between the central pixel, the target patch, the adjacent patch and the local search window.
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Then, through the addition of the scalar error 0 between the target patch and itself, we build the error vector e = [0, e1, . . ., eL�1]T.
After the error vector e is sorted in the ascending order, the top most similar patches are chosen to construct the patch group.
Assume that we select Ls similar patch vectors to reconstruct the patch group Zt

x for the target patch Yx, where Ls is a preset num-
ber. For each target patch Yx, its corresponding patch group Zt

x consisting of the training patches can be expressed in this form:
Zt
x ¼ Yx;Y1; . . . ;YLs�1½ �T ð3Þ
To separate the image signal and the noise effectively, the number Ls of most similar patches should be large enough. The
patch clustering matrix Zt

x or its transposition Zt
x

� �T will be used to avoid the problem of rank deficiency in computing
the SVD of the covariance matrix of Zt

x . For each noisy measurement Zt
x , the next procedure is to estimate its underlying

noiseless counterpart dataset Zx ¼ Sx; S1; . . . ; SLs�1½ �T .

2.3. Signal dimension estimation

The PCA operator transfers a set of correlated variables into a new set of uncorrelated variables, whose eigenfunctions
form the basis for a signal decomposition. We find that most of the energy of a function defined on the graph is mainly con-
centrated on the top several principal components. Moreover, the principal components of the original image signal can be
captured by analyzing the eigenfunctions generated from noisy data, whereas the eigenvectors of the small singular values
are almost all noises. It can also be implemented by eigenvalue decomposition of a data covariance (or correlation) matrix or
singular value decomposition (SVD) of a data matrix. Note that the data matrix is usually pre-treated for each attribute by
the mean centering method.

The denoising problem of the noisy patch group Zt
x is indeed how to select the optimal number of the principal compo-

nents in the SVD transform domain. In this paper, we employ dimensionality reduction technique to analyze the eigenvalues
of the covariance matrix of the patch group Zt

x . By subtracting the sample mean value from each column, we have computed
the zero-centered matrix from the patch group Zt

x in this formula:
�Zt
x l;pð Þ ¼ Zt

xðl;pÞ �Mxðl;pÞ ð4Þ
where Mxðl; pÞ ¼ ½1; . . . ;1�T � 1
Ls

PLs
l¼1Zt

xðl; pÞ; ½1; . . . ;1�T is the column vector of size Ls � 1; l = 1, . . ., Ls; and p = 1, . . ., P.
To reduce calculation time in an efficient way on the condition of Ls P P (or Ls < P), the covariance matrix Zt

x

� �T
Zt

x (or
Zt

x Zt
x

� �T
) instead of the zero-centered patch group Zt

x is used to be factorized in this form:
Zt
x

� �T
Zt

x ¼ VR2VT ð5Þ
where the symbol T denotes the transpose operator, and V is the unitary matrix of eigenvectors derived from Zt
x

� �T
Zt

x . R is a
P � P diagonal matrix with its singular values k1 P k2 P � � �P kr P 0 and r ¼ rank Zt

x

� �
.

In fact, the eigenvalues of the covariance matrix of the noise t are not the same. Therefore, we cannot take a preset fixed
threshold to select the signal components. It has been shown in [56] that if the eigenvalues are small enough, the discard of
less significant components does not lose much information. From the diagonal singular values, only the first K primary
eigenvectors are retained by dimensionality reduction based on parallel analysis. However, the parameter K should be
not only large enough to allow fitting the characteristics of the data, but also small enough to filter out the non-relevant
noise and redundancy.

There are various dimensionality reduction methods proposed in the literatures for determining the number of compo-
nents to retain in data analysis. The parallel analysis (PA) method firstly introduced by Horn [24] compares the observed
eigenvalues to be analyzed with those of an artificial data set obtained from uncorrelated normal variables. Subsequently,
the improvements to the original parallel analysis method have been proposed using Monte-Carlo simulations instead of
the normal distribution assumption[26]. It is proved that PA is one of the most successful methods for determining the num-
ber of true principal components. In this paper, we adopt the proposed parallel analysis with Monte Carlo simulation to
choose the top K largest values.

Let kp for p = 1, . . ., P denote the singular values of the zero-centered patch group Zt
x sorted in the descending order. Sim-

ilarly, let ap denote the sorted singular values of the artificial data. Therefore, the proposed parallel analysis estimates signal
subspace dimensionality of noisy data as follows:
K ¼max p ¼ 1; . . . ; Pjkp P ap
� �

ð6Þ
The intuition is that ap is a threshold value for the singular value kp below which the p0th component is judged to have oc-
curred because of chance. Currently, it is recommended to use the singular value that corresponds to a given percentile, such
as the 95th of the distribution of singular values derived from the random data set.

In our algorithm, without any assumption of a given random distribution, we generate the artificial data by randomly
permuting each element of all the patch vectors located in a search window. Let yl(p) denote the p0th element of the training
patch vector Yl (or Yx) in the patch group Zt

x . For each P elements of the patch vector Yl (or Yx), multiple random permutations
of the coordinates p = 1, . . ., P of the noisy data matrix Zt

x are generated by the uniform distribution. Thus, the mean value,
maximum, minimum and random distribution of the artificial data is satisfied for each image patch-based vector. Then sin-
gular values of the random artificial data are computed by the SVD transform which keeps the marginal distributions intact
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while breaking any interdependency between them. For the Ls by P synthetic matrix Cs, after multiple times (e.g. 10) of
Monte Carlo simulations, summary statistics (e.g. 95th percentile) can be used to extract the P singular values and order
them from the largest to the smallest. Then parallel analysis is applied and the two lines denote singular values of the sim-
ulated data Cs and the zero-centered patch group Zt

x , respectively. The intersection of the two lines is the cutoff for determin-
ing the number of the signal subspace dimension presented in the noisy image.

While the traditional PCA [44] adopts the thresholding technique to estimate data dimensionality, the proposed adaptive
PCA can automatically determine signal subspace dimensions in noisy data by the parallel analysis technique. Our developed
refined parallel analysis using Monte Carlo simulation were compared with the traditional PCA [44] for dimensionality
reduction in our experiments. Suppose that a 25 � 25 fragment of lena image corrupted by additive zero-mean Gaussian
noise with standard deviation 20. In this case, the signal dimensionality of the given noisy patch group Zt

x with patch size
5 � 5 pixels was separately estimated by the proposed adaptive PCA and the traditional PCA [44]. Fig. 3 shows the numbers
of its signal subspace dimension estimated by the proposed adaptive PCA technique and the traditional PCA [44] are sepa-
rately 5 and 19. We can see that the proposed adaptive PCA approach is better than the traditional PCA method for separat-
ing the signal and the noise from the noisy image.
2.4. SVD-based low-rank approximation

For each target pixel y(x), the similar candidate patches are selected by the block matching method to form the corre-
sponding patch group Zt

x ¼ Yx;Y1; . . . ;YLs�1½ �T . The patch-based correlated patch groups Zt
x (x 2 X) [see Eq. (3)] can be used

for component analysis of the noisy image Y. The zero-centered patch group Zt
x is factorized by the SVD transform in this

formula:
Fig. 3. The eigenimages, the singular values, and the reconstructed images generated from a 25 � 25 image block with patch size 5 � 5 pixels of the test lena
image corrupted by additive zero-mean Gaussian noise with standard deviation 20. (a) the original image block; (b) the noisy image block; (c) the
eigenimages; (d) the numbers of its signal subspace dimensionality estimated by the proposed adaptive PCA approach, and the traditional PCA [44] are 5,
and 19,respectively; (e) the reconstructed image block (K = 19); (f) the reconstructed image block (K = 5).
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Zt
x ¼ URVT ð7Þ
where R is the diagonal matrix with the singular values k1 P � � �P kr. V = [V1, V2, . . ., VP] and U ¼ ½U1;U2; . . . ;ULs � are the uni-
tary matrices of eigenvectors, which represent the orthogonal dictionaries of non-local bases and local bases, respectively.
The zero-centered noisy patch group Zt

x is decomposed into a sum of components from the largest to the smallest singular
values.

In fact, most of the energy of the true image is concentrated on few high-magnitude transform coefficients, whereas the
corresponding eigenimages of the small singular values are almost all noises. After automatically determining signal dimen-
sion of the noisy zero-centered patch groups Zt

x , the low rank approximation [47,33] is used to estimate the original noiseless
image S by reducing noise in the observed image Y. Through our adaptive signal dimension estimation [see Eq. (6)], the
noiseless image can be reconstructed by the SVD-based low rank approach. The straightforward way to restore a noiseless
image is to directly apply the inverse SVD transform to the noisy similar patch groups Zt

x in a reduced dimensionality rep-
resentation. That is, the inverse SVD transform is implemented to approximate the true noise-free image with the matrices
RK = diag{k1, k2, . . ., kK}, UK = [U1, U2, . . ., UK], and VK = [V1, V2, . . ., VK]. For each target pixel, the denoised patch group bZx and
its weight matrix Wx are separately estimated as follows:
bZx ¼ UKRK VT
K þMx ð8Þ

Wxðl;pÞ ¼
1� K=P; K < P

1=P; K ¼ P

�
ð9Þ
where Mx is the mean value [see Eq. (4)] of the patch group Zt
x .

After applying such procedures to each pixel y(x), the relevant denoised patch group is estimated with the low rank ap-
proach by adaptive PCA technique, and its weight is empirically determined. Since these denoised patches are overlapping,
multiple estimates of each pixel in the image are combined to reconstruct the whole image. The weighted averaging proce-
dure is carried out to suppress the noise further. The whole filtered image bSt is obtained by aggregating all the estimates of
each pixel in this formula:
bSt ¼ 1
Wt

XM�N

x¼1

bZxWx ð10Þ
where the total weight Wt ¼
PM�N

x¼1 Wx.
In addition, the proposed efficient algorithm is implemented by reducing the number of the image patch groups. A step of

Js 2 X pixels is used for the noisy image in both horizontal and vertical directions. Thus, the number of similar patch groups is
approximately MN=J2

s rather than MN. Hence most of the noise will be removed by using the adaptive PCA approach and the
weighted averaging scheme in Sections 2.2, 2.3, 2.4. However, there is still some unpleasant residual noise in the denoised
image, especially for terribly noisy images. As the observed image contains the strong noise, the image patches are seriously
corrupted by noise, which leads to image patch clustering errors and the biased estimation of the SVD transform. Conse-
quently, it is necessary to further suppress the noise residual of the denoised output bSt .

2.5. Empirical Wiener filtering

After the first phase of noise removal by the low rank approximation, we can employ the empirical Wiener filtering [9] for
the second phase to further improve the denoising performance of the output bSt . Because there is less noise in the output bSt ,
the close approximation of the true patch distance is calculated with the denoised output bSt instead of the noisy image Y [see
Eq. (2)]. Thus, the coordinates of the similar patches for each pixel are grouped into the index set:
Xx ¼ x 2 X : bSt
l � bSt

x

��� ���2

2
=Px < s

� 	
ð11Þ
where bSt
x is the

ffiffiffiffiffi
Px
p
�

ffiffiffiffiffi
Px
p

target patch with its central pixel ŝt(x) in the denoised output bSt ; bSt
l is the

ffiffiffiffiffi
Px
p
�

ffiffiffiffiffi
Px
p

candidate
patch in the local search window; k � k2

2 is the squared ‘2-norm; and s is a threshold value.
Then the index set Xx is used to construct two patch groups bSt

Xx
and YXx from the denoised output bSt and the observed

noisy image Y, respectively. From the power spectrum coefficients of 3D transform of the denoised patch group bSt
Xx

, the
empirical Wiener shrinkage coefficients for the case of additive white noise are found as:
GXx ¼
Twie

3D
bSt

Xx


 ���� ���2
Twie

3D
bSt

Xx


 ���� ���2 þ r2
ð12Þ
where r2 is the noise variance.
Subsequently, the empirical Wiener filtering of the noisy patch group YXx is executed though multiplying the 3D

transform coefficients Twie
3D YXxð Þ by the Wiener shrinkage coefficients GXx . Whereafter, the estimated noiseless patch group

is acquired by the inverse 3D transform as follows:
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bSwie
Xx
¼ Twie�1

3D GXx Twie
3D YXxð Þ


 �
ð13Þ
Note that such an empirical Wiener filter is adaptive because its weight coefficients depend on the spectrum of the output
image bSt . However, the patch-wise estimation for each pixel is generally biased, correlated, and have different variances.
Moreover, the total sample variance in the corresponding estimates of the patch groups is r2 GXxk k2

2 on the assumption that
the additive noise is signal-independent. To suppress these distortions, the aggregation weights are empirically assigned for
the estimates of the patch groups bSwie

Xx
as follows:
WXx ¼ r�2 GXxk k�2
2 ð14Þ
Therefore, after a weighted average of the patch-wise estimates, the final noiseless image bSf is obtained as:
bSf ¼
PM�N

x¼1 WXx
bSwie

XxPM�N
x¼1 WXx

; 8x 2 X ð15Þ
2.6. Algorithm summary

The following pseudo codes give further clarification of the specific implementation of the proposed algorithm for an
input noisy image:
Algorithm 1. Pseudocode of the Proposed Algorithm

Input: YM�N,P,L and Ls.

Output: bSf

for each x = 1 to M � N do
/⁄Convert the pixel-based image to the patch-based image ⁄/
H x;1 : Pð Þ  Y mþ 1 :

ffiffiffi
P
p

;nþ 1 :
ffiffiffi
P
p
 �

;

end for
/⁄The SVD-based low-rank approximation using parallel analysis ⁄/bSt ¼ zerosðM � N; PÞ; Wt = zeros (M � N, P);
for each x = 1 to M � N do

Wx L; Yx = H(x, :); YWx ¼ HðWx; :Þ;
Ws

x ¼ BlockMatchingðYx;YWx ; LsÞ;
Zt

x ¼ HðWs
x; :Þ; Mx ¼mean Zt

x

� �
;

�Zt
x ¼ Zt

x �Mx; �Zt
x

� �T �Zt
x ¼ VR2VT ; CT C ¼ VK2VT ;

k = diag (R); a = diag (K);
K = max{p = 1, . . ., P—kp P ap};/⁄Parallel analysis ⁄/bZx ¼ UKRK VT

K þMx;bSt Ws
x; :

� �
¼ bSt Ws

x; :
� �

þWx
bZx;

Wt Ws
x; :

� �
¼Wt Ws

x; :
� �

þWx;
end for

I ¼ zeros M þ
ffiffiffi
P
p
� 1;N þ

ffiffiffi
P
p
� 1


 �
; Q ¼ I;

/⁄The weighted averaging of the aggregate estimates of each pixel ⁄/
for each a,b = 1 to

ffiffiffi
P
p

do
id ¼ ðb� 1Þ �

ffiffiffi
P
p
þ a;

Pa = a: M + a � 1; Pb = b: N + b � 1;

I Pa;Pbð Þ ¼ I Pa;Pbð Þ þ reshape bStð:; idÞ; ½M;N�

 �

;

Q(Pa, Pb) = Q(Pa, Pb) + reshape (Wt(:, id), [M, N]);
end forbSt ¼ I=Q;bSf ¼WienerFiltering bSt


 �
; =�The empirical Wiener filtering ⁄/
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The proposed algorithm can be summarized as follows. Let Y denote an observed noisy image with its coordinate domain
X 2 RM�N. First, for each pixel y(x) and its target patch Yx, the corresponding patch group Zt

x is formed by finding similar
patches in a local search window. Next, after performing singular value decomposition (SVD) of the patch group �Zt

x , the signal
dimension K is determined by parallel analysis applied to the singular values k for separating the signal and the noise in the
SVD domain. Then, after the inverse SVD transform, the denoised patch group Ẑx is obtained by the low-rank approximation,
where most of the noise is eliminated. After that, the whole denoised image Ŝt is acquired by the weighted averaging of all
the estimates of each pixel for further noise removal. Finally, after the shrinkage coefficients GXx are reconstructed from the
power spectrum of 3D transform of the denoised image Ŝt , the final noiseless image Ŝf is obtained by the collaborative Wie-
ner filtering for further noise reduction.
3. Results and analysis

In this work, numerical simulation and experimental studies were carried out to verify the performance of the proposed
algorithm subjectively and objectively. In the objective evaluation, the full-reference image quality assessment (FR-IQA) was
adopted for synthetic images in numerical simulation, whereas the no-reference image quality assessment (NR-IQA) was
used for real MR images in the experiments.

3.1. Simulation results on synthetic images

To test the performance of the proposed algorithm comprehensively, we have implemented the qualitative and quanti-
tative evaluation on multiple test images from standard image databases [46]. The corrupted images synthetically damaged
by white Gaussian noise using the noise model (1). For variant noise levels, the benchmark for image denoising evaluation
includes the noise-free test images shown in Fig. 4.

A quantitative comparison was performed between the performances of the proposed denoising algorithm and the
state-of-the-art methods published recently [9,10,54]. The well-known full-reference quality metrics were considered for
measuring the similarity between the filtered image and the original noise-free image in terms of noise suppression and
edge preservation, respectively. Both Peak Signal-to-Noise Ratio (PSNR) [25] and Structural SIMilarity (SSIM) [45] were
adopted to evaluate noise suppression performance of different denoising methods, respectively. The edge preservation per-
formance of different denoising methods was also quantified by the edge preservation index called Figure of Merit (FOM)
[48,50], respectively. The FOM [48,50] is defined as
Fig. 4.
present
FOM ¼ 1
max nd;nrð Þ

Xnd

i¼1

1

1þ cd2
i

ð16Þ
where nd is the number of detected edge pixels in the test noisy image, nr is the number of reference edge pixels in the noise-
free image, di is the Euclidean distance between the ith detected edge pixel and the nearest reference edge pixel, and cis a
constant typically set to 1/9. The Laplacian of Gaussian method was used to detect the edges.

In this simulation, the test images were degraded by Gaussian noise with zero means and different deviation 10,20,30 and
50, respectively. To verify the performances of noise suppression and edge preservation, our developed algorithm was com-
pared with the current state-of-the-art methods, such as BM3D [9], PLPCA [10] and LPG-PCA [54]. The SSIM results for these
test images are presented in Table 1. And the FOM results for these test images are also given in Table 2. To further inspect
The test images in our experiments, from left to right, top to bottom: Lena, Baboon, Barbara, Boat, Bridge, Monarch, House, and Brain. These images
a wide range of edges, textures, details, and frequencies.



Table 1
The SSIM results of BM3D [9], PLPCA [10], LPG-PCA [54], and the proposed algorithm separately applied on subset of test images, e.g., Lena, Baboon, Barbara,
Boat, Bridge, Monarch, House, and Brain. These noise-free images are corrupted by Gaussian noise with variant noise levels rn = 10, 20, 30, and 50, respectively.
Top left: BM3D [9], Top right: PLPCA [10], Bottom left: LPG-PCA [54], Bottom right: Proposed. The best result among them is highlighted in each cell.

rn 10 20 30 50

Lena .9169 .9078 .8767 .8538 .8440 .7956 .7987 .6286
512 � 512 .9145 .9162 .8728 .8664 .8380 .8424 .7774 .7884

Baboon .8900 .8950 .7801 .7714 .6830 .6676 .5320 .5199
512 � 512 .8844 .8770 .7642 .7909 .6562 .7049 .5116 .5762

Barbara .9418 .9337 .9046 .8802 .8665 .8233 .7928 .6792
512 � 512 .9407 .9421 .8991 .8990 .8543 .8717 .7667 .8014

Boat .8874 .8875 .8265 .8065 .7789 .7375 .6996 .5878
512 � 512 .8822 .8920 .8111 .8261 .7540 .7774 .6698 .6962

Bridge .9068 .9059 .7904 .7789 .6963 .6818 .5695 .5447
512 � 512 .9004 .8926 .7742 .7930 .6701 .7065 .5390 .5905

Monarch .9560 .9423 .9210 .8915 .8865 .8360 .8239 .6910
256 � 256 .9551 .9533 .9154 .9120 .8782 .8802 .7994 .8118

House .9199 .9032 .8726 .8469 .8489 .7940 .8154 .6283
256 � 256 .9122 .9201 .8684 .8640 .8388 .8391 .7867 .7996

Brain .9010 .8921 .8325 .7987 .7796 .7214 .6846 .5501
256 � 256 .8963 .8992 .8189 .8329 .7557 .7797 .6569 .6954

Average .9150 .9084 .8506 .8285 .7980 .7571 .7146 .6037
.9107 .9116 .8405 .8480 .7807 .8002 .6884 .7199

Table 2
The FOM results of BM3D [9], PLPCA [10], LPG-PCA [54], and the proposed algorithm separately applied on subset of test images, e.g., Lena, Baboon, Barbara,
Boat, Bridge, Monarch, House, and Brain. These noise-free images are corrupted by Gaussian noise with variant noise levels rn = 10, 20, 30, and 50, respectively.
Top left: BM3D [9], Top right: PLPCA [10], Bottom left: LPG-PCA [54], Bottom right: Proposed. The best result among them is highlighted in each cell.

rn 10 20 30 50

Lena .9168 .9210 .8463 .8207 .7965 .7713 .6776 .6984
512 � 512 .8913 .9195 .7932 .8619 .7353 .8133 .6283 .7128

Baboon .9470 .9416 .8712 .8464 .7861 .7524 .6231 .6890
512 � 512 .9312 .9368 .8458 .8767 .7725 .8071 .6644 .6949

Barbara .9480 .9394 .8686 .8304 .8162 .7649 .6878 .6907
512 � 512 .9241 .9406 .8042 .8758 .7329 .8291 .6336 .7407

Boat .9318 .9254 .8354 .7970 .7672 .7168 .6245 .6521
512 � 512 .8919 .9313 .7573 .8499 .6650 .7854 .5514 .6718

Bridge .9426 .9397 .8504 .8186 .7427 .7067 .5724 .6121
256 � 256 .9210 .9300 .8007 .8510 .6865 .7607 .5400 .5724

Monarch .9728 .9739 .9135 .8936 .8945 .8709 .8093 .7978
256 � 256 .9658 .9711 .8795 .9220 .8410 .8937 .7587 .8245

House .9394 .9522 .8994 .9001 .9078 .8912 .8180 .8321
256 � 256 .9263 .9403 .8679 .9093 .8209 .9347 .7284 .8434

Brain .9297 .9159 .8046 .7529 .7588 .6875 .5698 .5676
256 � 256 .8858 .9286 .7219 .8206 .6486 .7661 .5045 .5960

Average .9410 .9386 .8612 .8325 .8087 .7702 .6728 .6925
.9172 .9373 .8088 .8709 .7378 .8238 .6262 .7071
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the effectiveness of our proposed algorithm, the detailed denoised results of the proposed algorithm, BM3D [9], PLPCA [10],
and LPG-PCA [54] for the fragments of the Lena, Baboon and Barbara images are shown in Fig. 5–7, respectively.

As is shown in Table 1, the SSIM results of our proposed algorithm outperform those of PLPCA [10], and LPG-PCA [54] in
most cases, and can be competitive with those of BM3D [9]. However, the FOM results in Table 2 shows that our proposed
algorithm are generally superior to all of them in the edge preservation. The visual comparisons in Fig. 5–7 demonstrate that
the proposed algorithm have better recovery of textures and edges than the baseline methods. Therefore, our proposed algo-
rithm outperforms the best existing state-of-the-art methods, e.g., BM3D [9] not only in visual comparisons but also in the
edge preservation in most cases. As can be seen from the simulation results, it works well for a wide variety of noisy images
and can effectively produce sharp edges and rich textures.



Fig. 5. Visual comparisons of the denoising results of the proposed algorithm and other state-of-the-art methods for the Lena image corrupted with
Gaussian noise with standard deviation 30. From left to right: (a) original subimage; (b) the proposed algorithm (PSNR = 31.33 dB, SSIM = .8424); (c) BM3D
[9] (PSNR = 31.20 dB, SSIM = .8440); (d) PLPCA [10] (PSNR = 30.26 dB, SSIM = .7956); and (e) LPG-PCA [54] (PSNR = 30.66 dB, SSIM = .8380).

Fig. 6. Visual comparisons of the denoising results of the proposed algorithm and other state-of-the-art methods for the Baboon image corrupted with
Gaussian noise with standard deviation 50. From left to right: (a) original subimage; (b) the proposed algorithm (PSNR = 23.46 dB, SSIM = .5762); (c) BM3D
[9] (PSNR = 23.13 dB, SSIM = .5320); (d) PLPCA [10] (PSNR = 23.01 dB, SSIM = .5199); and (e) LPG-PCA [54] (PSNR = 22.83 dB, SSIM = .5116).

Fig. 7. Visual comparisons of the denoising results of the proposed algorithm and other state-of-the-art methods for the Barbara image corrupted with
Gaussian noise with standard deviation 50. From left to right: (a) original subimage; (b) the proposed algorithm (PSNR = 27.54 dB, SSIM = .8014); (c) BM3D
[9] (PSNR = 27.21 dB, SSIM = .7928); (d) PLPCA [10] (PSNR = 25.98 dB, SSIM = .6792); and (e) LPG-PCA [54] (PSNR = 26.20 dB, SSIM = .7667).
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3.2. Experimental results on real MR images

Besides the simulations on noisy synthetic images, we also validated our denoising algorithm on real MR images because
the characteristics of the fine structures (especially the edges and the textures) in MR images is very important for medical
diagnosis. In this experiment, the real MR images were acquired from the MR scanner at 3T (MAGNETOM Tim Trio, Siemens,
Germany). As objective no-reference image quality metric, the signal-to-noise ratio (SNR) [11,19,49] was used for measuring
the noise in an input noisy MR image and the denoised results of the proposed algorithm and the current popular methods
[9,10,54], respectively. The measurement of SNR in MR images is commonly based on the signal statistics in two separate
regions of interest (ROIs) from a single image: one in the tissue of interest, and one in background air. The SNR [11,19,49]
was defined as
Table 3
The fou
(�), Ech

Imag

T1_S
TOF
TSE_
TSE_
SNRstdv ¼
Smean

rstdv
ð17Þ
r pulse sequences used in the human experiments with these imaging parameters, i.e., Repetition Time (TR) (ms), Echo Time (TE) (ms), Flip Angle (FA)
o Train Length (ETL), Slice Thickness (ST) (mm), and Pixel Bandwidth (PB) (Hz).

es Sequence TR TE FA ETL ST PB

E SE 2000 131 120 37 0.36 449
SE 327 14 90 1 3 130

T1 GR 19 3.09 25 1 0.70 250
T2 SE 1120 26 174 7 2 130



Table 4
The SNR results of the comparison between the proposed algorithm and BM3D [9], PLPCA [10], and LPG-PCA [54] for the four noisy MR images, i.e., T1_SE, TOF,
TSE_T1, and TSE_T2.

Images Noisy Proposed BM3D[9] PLPCA[10] LPG-PCA[54]

T1_SE 24.77 190.85 183.40 124.37 458.53
TOF 27.40 77.90 71.98 39.59 116.30
TSE_T1 12.21 116.47 102.72 102.21 168.96
TSE_T2 15.51 293.25 221.83 83.86 502.28

Fig. 8. Visual comparisons of the denoising results of the proposed algorithm and other state-of-the-art methods for the T1_SE MR images. From left to
right: (a) noisy MR images; (b) the proposed algorithm; (c) BM3D [9]; (d) PLPCA [10]; and (e) LPG-PCA [54].

Fig. 9. Visual comparisons of the denoising results of the proposed algorithm and other state-of-the-art methods for the TOF MR images. From left to right:
(a) noisy MR images; (b) the proposed algorithm; (c) BM3D [9]; (d) PLPCA [10]; and (e) LPG-PCA [54].
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Fig. 10. Visual comparisons of the denoising results of the proposed algorithm and other state-of-the-art methods for the TSE_T1 MR images. From left to
right: (a) noisy MR images; (b) the proposed algorithm; (c) BM3D [9]; (d) PLPCA [10]; and (e) LPG-PCA [54].

Fig. 11. Visual comparisons of the denoising results of the proposed algorithm and other state-of-the-art methods for the TSE_T2 MR images. From left to
right: (a) noisy MR images; (b) the proposed algorithm; (c) BM3D [9]; (d) PLPCA [10]; and (e) LPG-PCA [54].
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where Smean is the mean value of pixel intensities in a region of interest (ROI) within the object, and rstdv is the standard
deviation of noise in a chosen background ROI outside the object, free from signals or ghosting artifacts.

The four volunteers with informed consent in accordance with our institution’s human subject policies participated in the
study. They were scanned with the four pulse sequences, i.e., spin echo (SE), turbo spin echo (TSE), and gradient echo (GR),
whose imaging parameter values are given in Table 3. These four images, i.e., T1_SE, TOF, TSE_T1, and TSE_T2, provide a
testing set which presents a good diversity: different anatomical structures, and different noise intensities. To show the
robustness of the proposed algorithm with real MR images, we used the same parameters in all examples. Table 4 shows
the SNR results of the comparison between the proposed algorithm and other state-of-the-art methods for the noisy MR
images. Fig. 8–11 present the visual comparison results of the proposed algorithm, BM3D [9], PLPCA [10], and LPG-PCA
[54] for the different noisy MR images, respectively.

As can be seen from Table 4, the SNR results of the proposed algorithm outperforms those of BM3D [9], and PLPCA [10],
and are lower than those of LPG-PCA[54]. However, the visual comparisons of these denoising methods in Fig. 8–11 show
that LPG-PCA[54] smooths out the edges and anatomical structures of MR images. It is observed that the results of our pro-
posed algorithm have sharper edges and clearer anatomical structures than those of the state-of-the-art methods. Strictly
speaking, in fact the AWGN model (1) is not very accurate to describe the noise in MR images. The Gaussian assumption
in the simulation on synthetic images maybe causes that the proposed algorithm does not outperform the existing best
state-of-the-art methods in some cases, e.g., BM3D [9]. These experiments verify that the proposed algorithm can be effec-
tively applied to noisy MR images with different noise levels for noise removal, and achieves a better edge and structure
preservation than other state-of-the-art methods.

4. Conclusions and future work

In this paper, we addressed the problem of automatically determining the signal dimensionality for the similar patch
groups from the given noisy image. For a pixel in the search window, the parallel analysis with Monte Carlo simulation is
employed to estimate the signal component dimensionality from its related high-dimensional noisy patch groups. After
the inverse SVD transform, the approximation of the true noiseless patch groups is obtained by the low-rank approach. Thus,
our proposed adaptive PCA can discard a considerable part of noises almost without loss of signal information. The weighted
averaging aggregation operator is used to reduce noise further. Then, the reconstructed noise-free image with better deno-
ising performance is achieved by the empirical Wiener filtering applied to the first-stage denoised image. The experimental
results of real MR images demonstrate that the proposed denoising algorithm can outperform the best state-of-the-art meth-
ods both visually and quantitatively, especially for image regions containing the abundant edges, and the fine structures.
Moreover, our proposed adaptive PCA approach can be extended to many applications, particularly multivariate analysis
and machine learning. Finally, combined with sparse representation, the proposed algorithm will be further studied on
the optimal parameters of the search window, the patch size and its shape in the future.
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