
Error Concealment with Multiscale Patch Clustering
and Low-Rank Minimization

Mading Li, Wenhan Yang, Sijie Song, and Zongming Guo∗
Institute of Computer Science and Technology, Peking University, Beijing, P. R. China, 100871

Abstract—In this paper, we propose a novel error concealment
method based on multiscale patch clustering and low-rank
minimization. In order to collect more reliable patches to form a
genuine low-rank matrix, an image pyramid is formed utilizing
an effective down-sampling process. The classic singular value
thresholding (SVT) is modified into a global iteration to solve the
low-rank minimization problem. Extensive experimental results
on the random pixel loss and the block loss situation validate
the effectiveness of the proposed method. The proposed method
acquires higher PSNR and better visual quality than the state-
of-the-art low-rank based error concealment methods.

I. INTRODUCTION

There are now tons of images and videos being transmitted
through all kinds of network everyday. When going through
the network, the encoded image/video bit stream is vulnerable
to the channel impairment caused by network congestion,
signal fading, etc. Since the signals are often highly com-
pressed during the transmission, the loss of few bits may
cause massive loss of the signal, which severely affects the
visual quality of the image/video on the decoder side. The
error concealment (EC) technique utilizes the information
yielded by the successfully received areas of the image/video
to generate a plausible recovery result for the watcher to
alleviate the negative effect of the information loss.

In recent years, the EC method has been widely studied. All
EC methods exploit the self-similarity or the spatial/temporal
correlation within the image/video [1]. In this paper, we focus
on the spatial correlation to present the EC method for images.
One of the classic methods for EC is utilizing the Bayesian
framework [2][3]. These methods attempt to maximize the
conditional probability of each individual missing pixel given
the available pixels and other recovered pixels. Besag [2]
employs the Bayes’ rule on the posterior probability to yield an
optimization with the prior probability and likelihood, while
actually the prior probability model is often not accurate e-
nough or even not available. Under the assumption that images
can be locally modeled as a stationary Gaussian process, Li
and Orchard [3] estimated the covariance of a local window to
characterize the local interpolation coefficients and presented
an orientation adaptive interpolation scheme. Nevertheless, the
assumption does not always hold for images.

Recently, the low-rank matrix/tensor minimization methods
have been drawing attention because of its efficiency in recov-
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ering data from few entries. Many matrix/tensor completion
methods have been proposed [4][5] to reconstruct images with
missing pixels. Under high missing rate, these methods can
produce excellent results on images with highly repetitive
structures. However, their performances on other images are
not so good. In other words, these methods only work well if
the whole image is exactly low-rank. To tackle this problem,
Chen et al. [6] introduced a concept to complete the missing
entries and simultaneously capture the underlying model struc-
ture, and yet the complexity of such methods is rather high.
Liu and Shang [7] introduced a matrix factorization idea into
the tensor nuclear norm model in order to achieve a much
smaller scale matrix nuclear norm minimization problem.
Different from “global low-rankness”, Ono et al. [8] presented
a recovery method by promoting “blockwise low-rankness”.
They stated that a small block extracted from an image
was expected to be low-rank. Nguyen et al. [9] proposed
the combination of nonlocal grouping of image patches and
low-rank tensor approximation. Dong et al. [10] presented
a low-rank approach toward modeling nonlocal similarity in
natural images and discussed its connection with simultaneous
sparse coding. Nevertheless, the similar patches these methods
collected may not be similar enough to each other, leading to
an unsuccessful recovery result.

This paper presents a novel EC method based on multiscale
patch clustering and low-rank minimization. The proposed
method first builds and initializes an image pyramid by an
efficient down-sampling process. After that, similar patches
are clustered from the pyramid to form a low-rank matrix. The
matrix is then processed by a modified singular value thresh-
olding algorithm to refine the initialized values of the missing
pixels. Experimental results demonstrate the effectiveness of
the proposed method. The rest of the paper is organized as
follows: Section II first formulates the patch clustering under
the multiscale modeling. Next, the framework of the algorithm
and two applications for the proposed method are presented
in the following subsection in details. Experimental results are
presented in Section III, followed by the conclusion in Section
IV.

II. THE PROPOSED ERROR CONCEALMENT METHOD

A. Multiscale Patch Clustering

One of the most significant issues of low-rank minimization
methods is that, the rank of the matrix to be processed should
be low enough, otherwise the result would not be satisfactory.
Existing methods always focus on manipulating the matrix
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with various means. In this section, instead of leveraging
sophisticated approaches, we are more concerned with the
matrix that we are dealing with.

Generally, the rank of a matrix is rather low if most of
the entries can be represented by few base entries. In other
words, if the entries are similar to each other, the matrix is
low-rank and can be well processed by low-rank minimization
methods. In image/video denoising area, similar image patches
can be used as matrix entries if represented as vectors. Existing
methods search for similar patches in a local area (or in the
whole image, which might acquire more similar patches but
could be really time consuming), using the sum of square
differences (SSD) as the distance criterion. Nevertheless, there
are not always sufficient similar patches in the local area.
As a result, the rank of the matrix formed by these methods
are not low enough to be well processed. Giving an adaptive
threshold to control the maximum distance is an effective
way to limit the similarity between patches, yet it does not
guarantee the adequate number of similar patches. A small
number of similar patches cannot provide enough information,
while too many similar patches affect the processing speed of
low-rank minimization methods. Based on these observations,
our goal is to collect enough similar patches that are similar
enough.

Fig. 1. All levels are down-sampled from the input image and initialized
by the method presented in Section II-C. Then, each level is recovered by
the proposed method while clustering patches within itself. In the end, the
bottom level is recovered utilizing the patches from the whole pyramid. The
pink patch in the bottom (original) level represents a reference patch. Yellow
patches in different levels represent the collected similar patches.

To this end, we propose to create an image pyramid by
down-sampling the input image in different scales and then
collect similar patches from the image pyramid (Fig. 1).
For a reference patch p, assuming that L similar patches
(s1, s2, ..., sL) have been found in the original input image.
Instead of finding similar patches of p in the pyramid, we
look for K similar patches for every single sk, k = 1, 2, ..., L.
Finally, the low-rank matrix is formed by all of these (1 +
L + L · K) similar patches. Such patch clustering method
enhances the result of all the similar patches sk in addition
to the reference patch p. Note that we also apply the SSD in
experiments to compute the difference between patches.

B. The Framework of the Algorithm

In this section, the proposed error concealment method is
interpreted. The image block containing at least one missing
pixel is hereinafter referred to the reference block. The missing
pixels in the input image are initialized at first, details will be
discussed in Section II-C. After that, for each reference block,
patches that similar to it are collected. If we represent each
similar patch as a vector by concatenating all its columns, the
whole set of similar patches can be grouped into a matrix M .
Since all the entries of M are similar to each other, the rank
of M should be low. Therefore, the missing pixels can be
recovered by solving the low-rank minimization problem:

min
X

rank(X),

s.t. Xij = Mij , (i, j) ∈ Ω,
(1)

where X is the recovered matrix and Ω is the set of locations
corresponding to available pixels.

Unfortunately, the low-rank minimization problem in (1)
is an NP-hard problem and cannot be solved efficiently so
far. In recent years, the nuclear norm has been shown to be
the tightest convex approximation for the rank of matrices.
Thus, the nuclear norm has been applied to solve the low-rank
minimization problem in this paper and (1) can be represented
as:

min
X

∑
i

σi(X),

s.t. Xij = Mij , (i, j) ∈ Ω,

(2)

where σi(X) is the ith largest singular value of X . Plenty of
low-rank minimization algorithms have been proposed to solve
the problem in (2). In this paper, the singular value threshold-
ing (SVT) [11] is modified and applied for its simplicity and
ease of implementation.

The input matrix M is decomposed via SVD. The singular
values smaller than the threshold τ are omitted. Let M =
UΣV T be the SVD for M , then the soft shrinkage operation
can be defined as:

Sτ (M) = UΣτV
T , (3)

where Στ = diag(max(σ(M) − τ, 0)). σ(M) represents the
singular values of M .

Under the assumption of Laplacian prior, the thumb rule
for choosing the suitable threshold τ is given in [12], which
is τ = 2

√
2σ2

m/(σM + ε). In our experiment, σm is set to
be the missing rate of the input image, ε is a tiny number
that prevents the division by zero and σM denotes the local
estimated variance given as follows:

σM =
√
max(σ2(M)/n− σ2

m, 0), (4)

where n is the number of similar patches that form M .
After the soft shrinkage operation, the columns of processed

matrix Sτ (M) are reformed and added up back into their
original positions. “Patch-voting” is performed to accumulate
the pixel values of each overlapping neighbor patch. Until all
the reference patches have been processed, all the “votes” of
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the missing pixels are averaged to generate a new image, for
the next iteration of the global SVT.

C. Different Applications

In this section, we apply the proposed method on two
different situations: the random pixel loss situation (the first
row of Fig. 3) and the block loss situation (the first column
of Fig. 5).

The random pixel loss situation: In this situation, missing
pixels are uniformly distributed in the whole image. There-
fore the missing pixel can be preliminarily estimated by its
available neighbors, which gives an initialization to the patch
clustering step. In the upcoming iterations, all of the images
in the pyramid will be updated. To make the full use of the
available pixels in higher image levels, an effective down-
sampling method is applied (Fig. 1):

1) To down-sample the original input image to a lower
level, first of all, we use the Nearest Neighbor down-
sampling to generate a low-resolution image.

2) Then, missing pixels in the down-sampled image are
estimated by averaging available pixels that enclose the
corresponding positions in the higher level.

3) At last, if there are still some missing pixels, which
means that there are no available pixels around its
corresponding position in the higher level, these pixels
are interpolated by Bilinear interpolation.

As shown in Fig. 2, such down-sampling method generates
low-resolution image of high quality, providing clean patches
for the patch clustering step.

(a) Bilinear (b) Our down-sampling method

Fig. 2. Comparison of 0.6× down-sampled images using Bilinear and our
method. The missing rate of the input image is 85%.

The block loss situation: The experimental configuration for
this situation is mostly same with the former one. However,
the down-sampling method proposed above cannot be utilized
since the missing area is continuous and much larger than
the former situation. In our experiment, we use Bilinear
interpolation to initialize the missing blocks and use more
iterations to generate a plausible recovery. Other differences
are listed as follows:

1) The patch size in this situation is larger than that in the
random pixel loss situation. Larger patches contain more
structural information so that the low-rank minimization
method can produce more precise results.

2) Inspired by [10], we also utilize the deterministic an-
nealing to further improve the performance. The SVT
starts with a rather large threshold and then gradually
decreases the threshold.

Note that the image pyramid discussed before is not much
useful for the block loss situation. The reason is that most of
the similar patches found in the original level do not contain
missing pixels, which means there are so few missing elements
in the matrix M that it does not need extra entries collected
from the image pyramid.

III. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the proposed
method for EC tasks on both random pixel loss and block loss
situations. All the experiments are performed with MATLAB
platform. The state-of-the-art low-rank based methods LRTC
[4], STDC [6] and SAIST [10] are used as comparisons.
Peak Signal-to-Noise Ratio (PSNR) is selected as the objective
evaluation criterion. All PSNR results are computed only on
the missing locations.

In our experiments, the side length of the reference block is
6 pixels in the random pixel loss situation and 16 pixels in the
block loss situation, extracted every 4 pixels from the input
image. The missing rates of the random pixel loss situation are
set to be 60%, 70%, 80%, 85%, 90% and 95%. The size of
the missing block in the latter situation is 16× 16. The image
pyramid is formed by down-sampled images with different
scales. The scales varies from 0.95 to 0.55, added up to 10
levels, including the original input image. The number of the
similar patches found in the original level L = 45 and there
are K = 5 patches collected from the pyramid for each similar
patch. In SAIST and the proposed algorithm, the stopping
criterion is the maximal number of iterations 30 being reached.
Test images are selected from USC-SIPI image database.

Fig. 3. Comparison of recovery results of LRTC, STDC, SAIST, and the
proposed method under different missing rates in the random pixel loss
situation.

As illustrated in Fig. 3, LRTC produces burrs on the whole
image and it cannot successfully recover the input image under
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(a) Loss (b) LRTC (c) STDC (d) SAIST (e) Proposed (f) Original

Fig. 4. Magnification of local area of the input image (70% loss), recovery results of LRTC, STDC, SAIST, the proposed method and the original image.

TABLE I
AVERAGE PSNR (DB) RESULTS OF DIFFERENT METHODS UNDER

DIFFERENT MISSING RATES.

Missing rates LRTC STDC SAIST Proposed
60% 23.43 25.22 28.11 29.41
70% 22.22 24.83 26.87 28.05
80% 10.11 23.92 25.45 26.45
85% 5.45 22.95 24.50 25.31
90% 5.45 18.02 23.44 23.96
95% 5.45 8.83 22.01 22.22

high missing rates. STDC presents better recovery results since
it tends to capture the underlying model structure, yet there are
blurring and ringing artifacts that can be clearly observed. The
recovery results of STDC under high missing rates still contain
lots of noises. SAIST has rather good performance overall,
however, it produces coarse edges (Fig. 4). The proposed
method presents the best visual quality. The objective criterion
shown in Table I indicates the same result. The recovery
results of the block loss situation are shown in Fig. 5. As
can be observed, the proposed method also outperforms other
competing methods.

IV. CONCLUSION

This paper presents a novel error concealment method based
on multiscale patch clustering and low-rank minimization.
An image pyramid is formed by an efficient down-sampling
process to provide more reliable patches. The classic SVT
is modified to apply on the low-rank matrix constructed by
similar patches. Extensive experimental results demonstrate
the effectiveness of the proposed method on different situa-
tions. The proposed method acquires higher PSNR and better
visual quality than the state-of-the-art low-rank based error
concealment methods.
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