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ABSTRACT 

In this paper, we propose a novel adaptive autoregressive 
(AR) model constructed with an explicit geometry based 
extended window for image interpolation. Geometric fea-
tures are chosen as criterions to include more useful pixels. 
These features are estimated explicitly and guide the inter-
polation window to extend adaptively. To characterize the 
piecewise stationary of images, the patch-geodesic distance 
based similarity is proposed and modulated into the adaptive 
AR model. For increasing the precision of the parameter 
estimation, a weighted ridge regression based estimation is 
employed. With the estimation, the multicollinearity be-
tween parameters, which occurs in piecewise stationarity 
conditions, is eliminated. Experimental results demonstrate 
that the proposed method is better than or competitive with 
state-of-the-art interpolation methods in both objective and 
subjective quality evaluations. 
Index Terms— Image interpolation, autoregressive model, 
window extension, weighted ridge regression. 

1. INTRODUCTION 

Image interpolation is a technique that rescales a low-
resolution (LR) image to a high-resolution (HR) version. In 
the past decades, there have been a great number of works 
on the image interpolation. In general, image interpolation 
techniques can be classified into three categories: conven-
tional methods, explicit interpolation methods and implicit 
interpolation methods. Conventional methods, such as Bi-
linear and Bicubic interpolations, apply a convolution to 
every pixel of the LR image. However, as these methods do 
not capture the fast varying property around edges and tex-
ture structures, aliasing, blurring and ringing artifacts occur 
in high frequency regions. 

To better model the essential property of edge regions, the 
explicit adaptive interpolation methods spring up. These 
methods utilize the structural information in an explicit way. 
They estimate the directions of edges and isophotes, and 
interpolate in these directions. Wang and Ward [1] proposed 
an isophote-based interpolation method. A parallelogram 
adapted to the local isophote is constructed and a directional 
bilinear interpolation is employed to generate HR pixels 
along the parallelogram lattice rather than the image lattice.  
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In [2], a segment adaptive gradient angle interpolation 
(SAGA) utilizes the information of isophotes and represents  
a three-step interpolation method, generating HR pixels in 
the local isophote rather than the image lattice. Yang et al. 
[3] proposed an improved fine-grained isophote model with 
consistency constraints. These explicit adaptive methods 
achieve superior performance to traditional ones. However, 
when it comes to the images containing lots of complex 
structures, the isophotes estimated with these methods tend 
to be unpredictable, which increases the variation of the 
interpolation. 

Instead of the explicit utilization of local structures, the 
last kind of methods, the implicit adaptive methods, embed 
these structures into the objective function and interpolate 
by optimizing it. A typical achievement is the autoregressive 
(AR) model. Li and Orchard [4] proposed a new edge-
directed interpolation (NEDI). They estimate the model pa-
rameters according to the geometric duality and reconstruct 
the HR pixels with corresponding LR scale parameters. In 
[5], the soft-decision adaptive interpolation (SAI) adds a 
cross-direction constraint in the AR model and estimates HR 
pixels jointly rather than separately, which contributes to the 
better performance upon NEDI. However, these algorithms 
are generally based on the stationarity assumption in images, 
which does not hold on account of the diversification of 
natural images. Aiming to model the non-stationarity of 
image signals, our previous work IPAR [6] and an adaptive 
general scale interpolation [7] proposed similarity probabil-
ity models. Due to getting rid of the global stationarity as-
sumption, weighted AR methods raise the precision of in-
terpolation and better characterize the piecewise stationarity 
of images. 

In this paper, we follow the AR-based framework and 
propose a novel interpolation method combining explicit 
and implicit methods. In our method, geometric features, 
such as isophotes and curvatures, are estimated explicitly 
and used as the criterions that guide the interpolation win-
dow to extend adaptively. The patch-geodesic distance 
based similarity is deployed to characterize the piecewise 
stationary of images. And the weighted ridge regression 
based block estimation raises the precisions of the AR pa-
rameters estimation and function minimization. Comprehen-
sive experiments demonstrate that our method achieves de-
sirable performance, no matter in objective or subjective 
quality evaluations 

The rest of the paper is organized as follows: Section 2 
reviews the AR model. Section 3 describes the proposed 



adaptive interpolation algorithm built on geometry based 
widow extension AR model. Experimental results are pre-

sented in Section 4. Finally, concluding remarks are given in 
Section 5. 

 
Fig.1. The flow chart of the  proposed  interpolation algorithm 

2. AUTOREGRESSIVE (AR) MODEL 
The autoregressive model is an effective tool for the image 
modeling. It models and predicts missing pixels based on 
the locality and stationarity. For instance, in the form of AR 
model, pixels in images are estimated by their adjacent 
neighbors with certain weights as follow: 
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where φ(x,y) is the model parameter. Ω is the adjacent 
neighbor of the pixel I(m,n). ε is the fitting error. 

To estimate precisely, two kinds of model parameters, 
those in cross directions and diagonal directions, are set up 
and estimated respectively in a rectangle local window. 
More details about the parameter estimation will be elabo-
rated in Sec. 3.4. 

However, two issues limit the performance of the interpo-
lation. First, AR models in a rectangle window are not adap-
tive to the local structures. Second, the stationarity assump-
tion may be violated even in a very small region where the 
image signal fluctuates dramatically. 

3. THE PROPOSED INTERPOLATION ALGORITHM 
In this section, we present a new implicit statistical image 
interpolation method. First, a novel AR model based on ge-
ometry-aware adaptive window-extension is performed. 
And we introduce the patch-geodesic distance to define the 
similarity of two pixels. Then, we put forward our implicit 
image interpolation algorithm. Finally, the parameter esti-
mation is described based on weighted ridge regression. 
3.1. Geometry-Aware Adaptive Window-Extension 
Geometry information in the local region provides hints for 
the interpolation. A useful clue is the self-similarity along 
the isophote: patches located along the same isophote are 
similar with each other, and the information contained in 
adjacent similar patches may benefit the interpolation of 
target pixel. So the model estimates the isophote and then 
extends the interpolation window in the isophote direction. 
However, the exceptions of high curvature should be paid 
attention to. As shown in Fig.1, the center pixel of the win-
dow is located at the confluence of two edges. Due to the 

high curvature, any extension introduces the pixels whose 
AR parameters are not consistent with the central one. Thus, 
before the extension, we calculate the curvature of the center 
pixel and eliminate the extension in the high curvature situa-
tion. The curvature is calculated as: 
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where K is the curvature of the center pixel. Fx and Fy are 
the partial derivatives of pixel I(x,y), while Fxx, Fxy and Fyy 
stand for two-order-partial derivatives of pixel I(x,y). If K 
<T, we choose a direction and extend the window. In our 
algorithm, the threshold T is adaptive to the angle θ between 
isophote and horizontal line as follow: 

1 tan , 45
1 cot , 45

T
θ θ

θ θ

≥ °⎧
= ⎨

< °⎩
.                       (3) 

As for the extension details, there are 8 directions to be cho-
sen as the extension direction. For convenience, we define 
the set of direction angels M as {0°, 27°, 45°, 63°, 90°, 117°, 
135°, 153°}. And we use the θ mentioned above to estimate 
extension direction and, like the method in [2], make use of 
the definition of isophote to calculate θ. If the intensity 
function is treated as locally planar, intensities at arbitrary 
locations can be estimated based on the collected data and 
their first-order derivatives:  
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Specially,  
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Here the isophote is approximated locally with a line of con-
stant intensity such that: 
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Given the original equalities, Eqs. (5) and (6) reduce to: 
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Finally, we use θ to find the most approximate angle in M as 
the extension direction. 



     For the window after extension, we define two kinds of 
windows: the root window and the leaf window, repre-
senting the original window and the extension window re-
spectively. As shown in Fig.2, extension starts from the root 
window. And leaf windows are added to be part of the win-
dow along a certain extension direction. In the end, an irreg-
ular window that contains pixels in both the root window 
and leaf windows is built. 

   
(a)                                     (b) 

Fig. 2. Illustrations for the window extension results. Black solid 
lines represent the root windows, while red dotted lines represent 
the leaf windows. (a) The window extended in 45°. (b) The win-
dow extended in 27°. 

3.2 .Patch-Geodesic Distance Based Similarity 
Since the global stationarity is not valid in some regions, the 
piecewise stationarity in natural images is regarded as the 
basis of the AR parameter estimation. To better characterize 
the piecewise stationarity in the local region, a novel simi-
larity metric is proposed, combining the spatial distance 
with the pixel intensity distance and modulating them into 
the AR model. 
   The similar idea in [8] guides the design of the new metric. 
Rather than accumulate the distance of successive pixels, we 
sum up the distance of successive patches. Incorporating the 
pattern similarity, the new metric effectively reflects wheth-
er two pixels are in the same region and share similar AR 
model parameters.  

Let c denote the center pixel and x denote one pixel in the 
interpolation window. The patch-geodesic distance D(x,c) is 
defined as the minimum value of the patch differences along 
all paths: 
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where ρx,c stands for the set of all paths connecting x and c. 
N ={1,2,…,8} contains all the neighboring indices of 8-
neighbors. pi,j  is the j-th neighbor of the i-th pixel in P and 
the I(pi,j) stands for the intensity of pi,j. After obtaining 
patch-geodesic distance, we convert it to the similarity met-
ric: 

( , ) exp( ( , ) / )p x c D x c β= −  ,                       (10) 
where β is a user-defined parameter controlling the im-
portance of distance weight.  

The similarity probability between each pixel and the cen-
ter pixel yc is calculated throughout the local window. Let xi 
and yi be LR and HR pixels in local window. The similarity 
probability between xi and yc is written as pi

L, and similarly, 
pi

H represents the similarity probability between yi and yc. 

3.3. Similarity Modulated Block Estimation 

With the adaptive window extension and the similarity 
model mentioned above, we propose a novel AR interpola-
tion method. In our algorithm, we use weighted block esti-
mation to estimate the missing HR pixels. Two sets of pa-
rameters a = {at} and b = {bt} (t=1, 2, 3, 4) describe the 
model parameter in two directions. The AR equations for a 
pixel in the diagonal direction and the cross direction can be 
represented as: 
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where zi refers to either LR pixels xi or HR pixels yi in the 
local window W. zi ⊗ t and zi ⊕ t are the diagonal and cross-
direction neighbors around zi  pixel. εi ⊗ and εi ⊕ refer to ran-
dom perturbations independent of spatial locations and im-
age signal levels.. 
   As mentioned in Sec. 3.2, the similarity probability pi in-
dicates the consistency of AR model parameters. Thus, the 
model fitting error at each pixel zi is weighted by pi. Taking 
this into consideration, we minimize the fitting error of the 
pixels in the window W by solving the linear least squares 
problem in Eq. (12) 
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where λ is the Lagrange multiplier. The method to estimate 
a and b will be elaborated in Sec. 3.4. Only the center pixel 
yc is output in one block estimation process. 

Let x and y be the vectors consisting of the LR and HR 
pixels in W respectively. Let C and D be the vectors con-
sisting of the covariance (at or bt ) between pixels. Let S be 
the diagonal matrix composed of the similarity probability 
(pi

L or pi
H). We can deduce the objective function in Eq. (12) 

to a vector form: 
 2
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Then a close-formed resolution can be obtained: 
2 1 2( )T T−=y C S C C S Dx   .                     (14) 

3.4. Weighted Ridge Regression with Parameter Estimation 

As Eq. (11), the model parameters at and bt have the same 
form, and can be estimated with the same method. For con-
venience, we take at to elaborate our estimation method. 

Like Eq. (12), we can estimate at by solving the linear 
least squares problem: 
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And we can also deduce the objective function in Eq. (15) to 
a vector form: 

  2
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where Wl is the diagonal matrix composed of the similarity 
probability (pi

L). A is a 36×4 matrix whose k-th row is 
composed of diagonal neighbors of xk (xk ⊗ t). 

However, in the presence of typical piecewise stationarity, 
the patterns of the model parameters are simple. Multicol-
linearity may exist between the model parameters. It results 
in the expansion of variance, which means the undesirable 
precision of the estimation. A method in [9] introduces 
weighted ridge regression (WRR) to reduce the influence of 
multicollinearity. The weighted ridge regression modulates 
weights into the regression to value the reliability of each 
sample, leading to more reliable estimations. The weights 
used for WRR are the same as those in Sec.3.3. Combined 
with WRR, Eq. (16) can be modeled as:  
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And Eq. (17) can be converted to a vector form: 
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Similarly, 
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where B is a 36x4 matrix whose k-th row is composed of 
cross-direction neighbors of xk (xk ⊕ t). 

4. EXPERIMENTAL RESULTS 
The proposed interpolation algorithm is implemented on 
MATLAB 7.6 platform and compared with conventional 
Bicubic interpolation method and three state-of-the-art in-
terpolation methods: NEDI [4], SAI [5] and IPAR [6]. We 
test the proposed algorithm on a large image set, including 
the Kodak database, many standard test images and some 
piecewise smooth images. 
Table 1 PSNR(dB) results of  five interpolation methods  
Images Bicubic NEDI SAI IPAR Proposed 
Lena 34.01 33.72 34.76 34.79 34.80 
Cameraman 25.51 25.44 25.99 26.06 26.13 
Monarch 31.93 31.80 33.08 33.34 33.31 
Airplane 29.40 28.00 29.62 30.05 30.06 
House 22.20 21.74 22.28 22.33 22.39 
Bike 25.41 25.25 26.28 26.31 26.31 
Lighthouse 26.97 26.37 26.70 26.76 26.88 
Barbara 24.46 22.36 23.55 23.10 24.34 
Average 27.49 26.84 27.78 27.84 28.03 

To compare the objective quality of different interpola-
tion methods, the original HR images are first directly 
downsampled by a factor of two to generate the input LR 
images. Then, different interpolation methods are applied to 
enlarge the input LR images to those in their original resolu-
tions. Table 1 tabulates the PSNR results of the five interpo-
lation methods on several images in our experiments. It is 
interesting to notice that, our method produces competitive 
or often better PSNR results than other methods. As for the 
average PSNR result, the proposed method gains 0.19dB 
over the second-best IPAR algorithm. And for Lighthouse 

and Barbara, the proposed method appears much better than 
NEDI, SAI and IPAR algorithm. 

Table 2 PSNR(dB) results of  five interpolation methods 
Images Bicubic NEDI SAI IPAR Proposed 
Ruler 11.98 11.49 11.37 11.81 12.43 
Slope 26.74 26.54 26.63 26.78 27.14 
Rotate 29.75 29.25 30.79 33.15 33.24 

Besides, on account of considering the multicollinearity, 
the proposed method achieves the desirable performance in 
interpolating piecewise smooth images. Table 2 shows the 
PSNR results of the five interpolation methods on three 
piecewise smooth images. The highest PSNRs demonstrate 
that our method generates much better results than other 
methods. Especially for Ruler and Slope, our method gains 
0.45dB and 0.36 dB over the second-best algorithm IPAR. 

           

           

           
Fig.3 Visual comparisons: Portions from various interpolated im-
ages using different methods. From top to bottom: Barbara, Ruler 
and Slope. From left to right: ground truth, Bicubic, NEDI, SAI, 
IPAR, proposed method. 

We also compare the visual quality of different interpola-
tion methods. For Slope, it is obviously observed that Bicu-
bic blurs the edge, and NEDI, SAI and IPAR produce an-
noying artifacts nearby the sharp edge. Due to considering 
the repetition of pixels along the isophote and the multicol-
linearity between model parameters, the results of our 
method reduce lots of artifacts and tend to be more similar 
to the original HR image. Moreover, for the images contain-
ing lots of edge structures and textures, our method produc-
es fewer errors than others, like ruler and Barbara in Fig.3. 
It means that our method outperforms other methods in 
dealing with the high frequency part of images, such as 
edges and textures. More experimental results are released 
on our website1. 

5. CONCLUSION 

In this paper, we propose a novel interpolation method 
based on the adaptive window-extension AR model com-
bined with explicit interpolation methods. The model con-
siders the local structural variation, estimates the isophotes 
with explicit interpolation method, and extends the window 
in the direction of the isophote. The piecewise stationarity of 
images signals is characterized by the patch-geodesic dis-
tance based similarity. And the precision of parameter esti-
mation is raised by      weighted ridge regression. Experi-
mental results show that the proposed method achieves bet-
ter performance. 

 

1http://www.icst.pku.edu.cn/course/icb/Projects/AWI.html 
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