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ABSTRACT

In this paper, we propose a novel reduced-reference qual-
ity assessment metric for image super-resolution (RRIQA-
SR) based on the low-resolution (LR) image information.
First, we use the Markov Random Field (MRF) to model the
pixel correspondence between LR and high-resolution (HR)
images. Based on the pixel correspondence, we predict the
perceptual similarity between image patches of LR and HR
images by two components: the energy change and texture
variation. The overall quality of HR images is estimated
by the perceptual similarity between local image patches of
LR and HR images. Experimental results demonstrate that
the proposed method can obtain better performance of qual-
ity prediction for HR images than other existing ones, even
including some full-reference (FR) metrics.

Index Terms— Image quality assessment (IQA), image
super-resolution, reduced-reference (RR) quality assessment,
energy change, texture variation

1. INTRODUCTION

The image super-resolution technique aims to construct a
high-resolution (HR) image with one or several given low-
resolution (LR) images. It has been widely used in various
applications, including medical image processing, infrared
imaging, face/iris recognition, image editing, etc.. During
the past decades, there are numerous image super-resolution
algorithms proposed [1]- [10]. According to the number of
available LR images, the super-resolution algorithms can be
classified into two categories: multi-frame super-resolution
and single-frame super-resolution approaches [6].

For single-image super-resolution methods, there have
been many different approaches proposed previously. Tra-
ditional interpolation based methods try to reconstruct the
HR image by a base function, including bilinear, bicubic and
nearest neighbor algorithms [3]. Generally, these approaches
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are simple and efficient, but there are serious aliasing arti-
facts and blurring distortions along edges and high-frequency
regions due to the pixel interpolation operation.

To overcome the drawback from interpolation based
methods, many advanced image super-resolution algorithms
have been proposed. The reconstruction-based methods gen-
erate HR images by a regularized cost function with certain
prior knowledge. The prior information used in these meth-
ods includes the edge information [4], sparsity priors [7], etc.
The example learning-based methods reconstruct HR images
by learning the mapping function between image patches
from LR images to HR images. The exemplar image patches
can be extracted from the input image, the external databases,
or combined sources [5]. There have been various learning
techniques used for mapping functions, including support
vector regression [8], sparse dictionary representation [6, 9],
deep learning [10], etc.

For these existing studies introduced above, the perfor-
mance of super-resolution algorithms is validated by small-
scale subjective tests. Currently, much less has been done
to assess the visual quality of HR images quantitatively. As
we know, the subjective test is expensive, time-consuming,
and cannot be embedded into super-resolution algorithms for
optimization purpose. Thus, objective quality assessment is
much desired for quality evaluation of HR images.

There has been much progress in the area of image qual-
ity assessment (IQA) [11,25]. However, traditional IQA met-
rics such as peak signal-to-noise-ratio (PSNR), the structural
similarity (SSIM) [12] and the internal generative mechanism
(IGM) [13], cannot be used in super-resolution applications,
since they need the sizes of the reference and distorted im-
ages to be the same. Currently, there are only a few IQA
studies investigating the visual quality assessment of HR im-
ages [5, 14, 15]. The authors in [14] proposed an objective
IQA metric based on natural scene statistics (NSS). However,
that NSS based method is mainly designed for interpolated
natural images [14, 16]. Recently, Yang et al. conducted a
subjective study for quality evaluation of single-frame super-
resolution by using some state-of-the-art single-frame super-
resolution methods [5]. The full-reference IQA metrics such
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(a) SR image (b) HR image

Fig. 1. SR and HR image samples: the HR image is obtained
from the study [19]. The energy change and texture variation
are computed based on the differences between corresponding
image patches in LR and HR images.

as PSNR, SSIM, etc. are used to evaluate the visual quality
of HR images. However, in most practical applications, the
only available information is the LR image and there is not
ground truth HR image. Thus, it is highly desirable to design
IQA metrics for HR images with only available LR images or
without any reference information.

In this study, we propose a novel reduced-reference (RR)
quality metric for image super-resolution (RRIQA-SR); due
to the use of only LR image information, it is an RR type of
IQA because the LR image to start with can be regarded as
partial reference to the generated SR image. In fact, RR IQA
is the most meaningful and practical IQA for super-resolution
construction. We focus on the visual quality prediction of
single-frame super-resolution. For image super-resolution,
the global structural information in the generated HR image
should be based upon that in the LR image. To measure the
visual quality in HR images, the proposed method first uses a
Markov Random Field (MRF) to model the pixel correspon-
dence. Then the energy and texture features are extracted
from image patches to compute the perceptual similarity be-
tween LR and HR images, which is further adopted to predict
the overall quality of HR images. Experimental results show
that the proposed RRIQA-SR can obtain better performance
in quality prediction of HR images than other existing ones.

2. PROPOSED METHOD

2.1. Overview

In image super-resolution construction, the visual informa-
tion of the generated HR image should be highly similar with
that of the original LR image. For the reconstructed HR im-

ages, the visual distortion brought into during image super-
resolution operation is mainly caused from the two aspects:
one is the overall energy change from a LR image to its gener-
ated HR image, while the other is the information degradation
in high-frequency regions such as edges, corners, etc.

In Fig. 1, we provide one example to demonstrate the
visual distortion from these two aspects. From this figure,
we can see that the HR image is smoother compared with
the LR image, which can be reflected by the energy change
during image super-resolution operation. Furthermore, from
the small patch in Fig. 1 (b), we can observe that there is
much visual distortion in high-frequency regions along the
eye, nose, etc. Compared with the LR image, we can use
the texture variation to represent the information change in
the high-frequency regions. Thus, we propose to measure the
visual distortion of HR images from these two aspects: the
visual information degradation from energy change, and the
visual distortion from texture variation.

2.2. Pixel Correspondence

Since the size of the HR image becomes larger due to gen-
erated image pixels from the LR image, the pixel correspon-
dence between LR and HR images is missing, since in gen-
eral, we do not know the algorithm for super-resolution con-
struction. To calculate the local distortion in HR images, we
model the pixel correspondence between LR and HR images
with the Markov Random Field (MRF) [27] in energy mini-
mization framework as follows [28]:

E =
∑
p

min d(g(p), g(p′)) +

ω
∑

(p,q′)∈Φ

min(|µ(p)− µ(q)|+ |ν(p)− ν(q)|) (1)

where d(g(p), g(p′)) represents the distance between the fea-
tures at pixel pair p and p′; (µ(p), ν(p)) is the flow vector at
pixel p; Φ is the set containing the spatial neighbors centering
at pixel p; ω is a parameter to determine the relative impor-
tance. In Eq. (1), the first term is used to obtain the pixel
pair with minimum feature change, while the second term
is adopted to guarantee the smoothness of the pixel corre-
spondence. The scale-invariant feature transform (SIFT) de-
scriptors [29] has been proved to be robust for pixel matching
across different scenes. Here, we use the SIFT descriptor as
the features g(p) and g(p′) for pixel pair p and p′.

2.3. Energy Change and Texture Variation

After pixel correspondence, we calculate the energy change
and texture variation between image patches in LR and HR
images. Given a LR image ILR and its corresponding HR im-
age IHR, their sizes are denoted as MLR×NLR and MHR×
NHR. Thus, the resizing factor α can be calculated as: α =
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MHR/MLR. The computation of energy change and texture
variation between LR and HR images are given as follows.

Sk(ILR, IHR) =
∑
(b,b′)

fk(b, b
′) (2)

where k ∈ {1, 2} represents the energy or texture feature;
fk denotes the function to compute energy change or texture
variation. b and b′ are the corresponding image patches cen-
tering at the pixel pair p and p′ in LR and HR images, re-
spectively. Please note that the size of image patch b′ is α
times of that of b, as shown in the small patches denoted by
white squares in Fig. 1. Here, for each image pixel p in the
LR image, we extract one image patch pair based on pixel
correspondence for the energy change and texture variation
calculation in Eq. (2). The overall perceptual similarity be-
tween the LR and HR images is represented by the sum of
similarities of all patch pairs in LR and HR images.

During the past decades, Discrete Cosine Transform
(DCT) has been widely used for feature representation in
various image processing applications [17, 18]. It is well
known that the DC coefficient includes most of the image
energy and represents the energy of the image, while AC co-
efficients represent the frequency components in images [18].
Here, we use the DC coefficient to represent the energy fea-
ture of each image patch, while the texture feature is extracted
from AC coefficients.

Given any image patch pair b and b′ from the LR and HR
images, we first calculate their DC coefficients by DCT as D
and D′ for image patches b and b′, respectively. The average
energy change between this image patch pair can be computed
as:

fe(b, b
′) =

2mDmD′ + C1

m2
D +m2

D′ + C1
(3)

where C1 is a constant; mD and mD′ represent the average
energy values in image patches b and b′, respectively.

From Eq. (3), we can calculate the average energy change
between image patch pair in LR and HR images. For the tex-
ture variation between image patch pairs in LR and HR im-
ages, we use AC coefficients to represent the texture feature.
For any image patch b with size Nb ×Nb in the LR image, it
has N2

b − 1 AC coefficients: A = {A1, A2, A3, ..., AN2
b−1}.

For any image patch Nb′ in the HR image, there are N2
b′ − 1

AC coefficients: A′ = {A′
1, A

′
2, A

′
3, ..., A

′
N2

b′−1
}. The tex-

ture variation between image patches in LR and HR images
can be calculated by the differences of the mean and standard
deviation values of AC coefficients. The texture variation by
the patch differences between image patches b and b′ can be
computed as follows.

ft(b, b
′) =

(2mAmA′ + C2)(2dAdA′ + C3)

(m2
A +m2

A′ + C2)(d2A + d2A′ + C3)
(4)

where mA and mA′ are the mean values of the vectors A and

Table 1. Performance evaluation of the proposed method on
two components.

Components Energy Change Texture Variation Proposed
KRCC 0.4092 0.4996 0.5885
SRCC 0.6001 0.6958 0.8035

A′, respectively; dA and dA′ denote the standard deviation of
the vectors A and A′, respectively; C2 and C3

Thus, we can estimate the energy change and texture vari-
ation of the HR image from the LR image according to Eqs.
(3) and (4), respectively. In the next subsection, we will in-
troduce how to predict the visual quality of HR images based
on these two components.

2.4. Overall Quality Prediction

As indicated previously, the energy change in HR images
would cause the overall visual information degradation to the
image, while the texture variation would bring into visual dis-
tortion to high-frequency regions. Thus, we predict the visual
quality of HR images by combining these two components as
follows.

Q = F β
e F

γ
t (5)

where Fe and Ft represent the pooling values of estimated en-
ergy change and texture variation from all patch pairs between
LR and HR images; β and γ are parameters used to adjust the
relative importance of these two components. Here, we re-
gard the factors of energy change and texture variation as the
same important and set β and γ as one.

3. EXPERIMENTAL RESULTS

We use the database with subjective scores in [5] to do the
comparison experiment. Although the ground truth HR im-
ages are available in [5] , we have only used the generated
LR images from them, not these ground truth images, for
the proposed RRIQA-SR; these ground truth HR images are
also used for performance evaluation for the existing full-
references IQA metrics under comparison. These ground
truth HR images covering a wide range of high-frequency
levels are selected from Berkeley segmentation dataset [20],
where the images are with diverse content obtained in a pro-
fessional photographic style. The SR images are generated
from LR images by six existing single frame super-resolution
algorithms. In total, there are 540 SR images in this database.
Thirty participants were involved in the subjective test, eval-
uating the 540 SR images without knowing the ground truth
images or image super-resolution methods. During the sub-
jective test, SR images were displayed randomly to avoid the
bias to favor specific methods and participants were asked to
give a perceptual score between 0 to 10 for each SR image.
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Table 2. Performance evaluation of the proposed method.
PSNR SSIM MSSSIM NQM VIF MAD NSS-SR Proposed

KRCC 0.3296 0.4502 0.5325 0.5703 0.2786 0.5523 0.0917 0.5885
SRCC 0.4760 0.6203 0.7096 0.7632 0.5226 0.7363 0.1343 0.8035

(a) Ground Truth (b) HR image 1 (c) HR image 2 (d) HR image 3

Fig. 2. The ground truth image (a) and HR images. (b) MOS: 1.8462, RRIQA-SR:0.4397, MSSSIM: 0.8414, NQM: 17.6,
PSNR: 19.3077; (c) MOS: 2.0769, RRIQA-SR: 0.4831, MSSSIM: 0.8737, NQM: 22.3425, PSNR: 19.9234; (d) MOS: 2.1538,
RRIQA-SR:0.4853, MSSSIM: 0.8631, NQM: 18.7231, PSNR: 19.7341.

The subjective perceptual quality of HR images is represented
by the mean opinion score (MOS).Kendall rank-order correla-
tion coefficient (KRCC) and Spearman rank-order correlation
coefficient (SRCC) are used to evaluate the performance of
different quality metrics. Generally, a better IQA metric can
obtain higher KRCC and SRCC values.

We first analyze the performance of the proposed method
on these two components in Eq. (5): the energy change Fe,
and the texture variation Ft. Experimental results are listed in
Table 1. From this table, we can see that the evaluation results
from Ft can obtain higher correlation with subjective data
than those from Fe, which demonstrates that the texture vari-
ation would influence the overall visual quality of HR images
more than the energy change. This is reasonable, since the hu-
man visual system is always much sensitive to high-frequency
regions. And thus, the visual distortion in high-frequency re-
gions such as edges is more obvious than the overall infor-
mation degradation in HR images. As shown in Table 1, the
proposed method by combining these two components can
obtain much better performance than each component.

To further demonstrate the performance of the proposed
method, we use the NSS-SR metric [14, 16] designed specif-
ically for image super-resolution/interpolation to conduct the
comparison experiment. The following full reference qual-
ity metrics are also used in performance evaluation due to
the available ground truth information: PSNR, SSIM [12],
multi-scale SSIM (MSSSIM) [21], noise quality measure
(NQM) [23], visual information fidelity (VIF) [24], and the
most apparent distortion (MAD) [26]. Experimental results
are shown in Table 2.

From Table 2, we can see that MSSSIM can obtain bet-
ter performance than SSIM and PSNR, similar with visual
quality for general images [21]. The reason is that the MSS-
SIM uses more high-frequency information for quality pred-
ication. NQM and MAD can obtain better performance in

quality prediction than VIF and MSSIM. In both NQM and
MAD, the contrast sensitivity and contrast masking are used
to model the human visual perception in different frequencies.
Thus, visual distortion in high-frequency regions of HR im-
ages can be well measured by NQM and MAD. From Table
2, NSS-SR obtains the lowest performance among the com-
pared quality metric. Although NSS-SR is designed for image
super-resolution, the NSS models used in that metric are built
specifically for image interpolation [14,16]. The used HR im-
ages are created by using various image super-resolution algo-
rithms rather than image interpolation [5]. Thus, the NSS-SR
can not work well in this database.

In Fig. 2, we provide some HR image samples with dif-
ferent scores calculated from some different metrics. From
this figure, we can see that all used quality metrics can pre-
dict the consistent quality of HR images 1 and 2 with subjec-
tive data. However, for HR image 3 with better quality than
HR image 2, all used metrics (including MSSSIM, NQM and
PSNR) cannot predict its quality well. In contrast, the pro-
posed RRIQA-SR can predict the visual quality of all these
images consistently with the subjective data.

4. CONCLUSION

In this paper, a novel RRIQA-SR has been built for image
super-resolution, since reduced-reference IQA is the most
meaningful and practical IQA for this application. The visual
quality of HR images is predicted by energy change and tex-
ture variation in HR images, which are computed based on
the similarity between image patches of LR and HR image
patches. The experimental results show that the proposed
RRIQA-SR method can obtain better performance than other
quality metrics, even some full-reference quality metrics.
In the future, we will investigate how to use the proposed
RRIQA-SR to optimize image super-resolution algorithms.
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