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ABSTRACT

Pairwise prediction-error expansion (pairwise PEE) is an improve-
ment of the conventional PEE and it can provide excellent perfor-
mance for reversible data hiding (RDH). Unlike PEE in which the
prediction-errors are modified individually, the correlation among
prediction-errors is exploited in pairwise PEE by jointly modifying
each prediction-error pair. In this paper, the idea of pairwise PEE is
developed and a new RDH scheme is proposed. A three-dimensional
prediction-error histogram (3D-PEH) is generated by counting ev-
ery non-overlapped prediction-error triple. Then, data embedding is
conducted by modifying the 3D-PEH with a specifically designed
reversible mapping. By using 3D-PEH and the proposed reversible
mapping, the inter-correlation of prediction-errors is better exploit-
ed, and the performance of PEE is significantly enhanced. Moreover,
the superiority of our method over pairwise PEE and some other
state-of-the-art RDH methods is also experimentally verified. The
proposed method is an effective extension of PEE towards the direc-
tion of high-dimensional histogram modification.

Index Terms— Reversible data hiding, high-dimensional his-
togram, prediction-error expansion, histogram modification.

1. INTRODUCTION

Reversible data hiding (RDH) is a specific data hiding technique in
which the decoder can extract the exact embedded data and recover
the cover medium without any information loss [1, 2]. This tech-
nique is currently a hotspot of information hiding and it has been ap-
plied to some sensitive applications such as law forensics and med-
ical image processing. Generally, for a desired embedding capaci-
ty (EC), the encoder expects to minimize the embedding distortion
(measured by PSNR in dB) to obtain a good marked image quality.

In the last decade, many kinds of RDH algorithms have been
proposed including the lossless compression based methods [3–5],
the difference-expansion (DE) and prediction-error expansion (PEE)
based methods [6–21], the histogram-shifting (HS) based methods
[22–25] and the integer transformation based methods [26–30], etc.
Among those techniques, PEE has attracted considerable attention
since it can well exploit the spatial redundancy in natural images.
With PEE, a sufficient payload can be embedded into the cover im-
age by modifying the prediction-error histogram (PEH), meanwhile,
the embedding distortion can be well controlled by simultaneously
utilizing expansion embedding and histogram shifting.

For PEE-based RDH, better exploiting image redundancy usu-
ally leads to a superior performance. Based on this idea, most prior
PEE methods focus on exploiting inter-pixel correlations to derive
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accurate prediction in which the prediction-errors are modified in-
dividually. However, the correlations among prediction-errors are
not considered and utilized in these methods. As mentioned in a
recent work [31], the one-dimensional PEH (1D-PEH) employed in
PEE, as a low-dimensional projection of image data, is not capable
of reflecting the complex dependencies existing among prediction-
errors. From this point of view, instead of utilizing prediction-errors
individually, a new paradigm of PEE exploiting prediction-error pair
is proposed [31, 32]. In these works [31, 32], every two adjacen-
t prediction-errors are counted to generate a two-dimensional PEH
(2D-PEH), and a reversible embedding strategy utilizing pairwise
PEE or difference-pair mapping (DPM) is adopted for data embed-
ding. The embedding performance of 1D-PEH based RDH is signif-
icantly improved by utilizing the new paradigm with 2D-PEH.

In this paper, the idea of pairwise PEE is developed and a new
RDH method based on three-dimensional PEH (3D-PEH) is pre-
sented. Specifically, a 3D-PEH is first generated by counting every
non-overlapped prediction-error triple. Then, data embedding is im-
plemented by modifying the resulting 3D-PEH with a specifically
designed reversible mapping. By using 3D-PEH and the proposed
reversible mapping, the inter-correlation of prediction-errors is bet-
ter exploited, and the embedding performance of PEE is significantly
enhanced in terms of capacity-distortion evaluation. Moreover, the
superiority of our method over pairwise PEE and some other state-
of-the-art RDH methods is also experimentally verified. The pro-
posed method is an effective extension of PEE towards the direction
of high-dimensional histogram modification.

In the rest of this paper, PEE and pairwise PEE are first briefly
reviewed in Section 2. Then, the proposed method and its perfor-
mance evaluation are introduced in Section 3 and 4, respectively.
Finally, we conclude our work in the last section.

2. RELATED WORKS: PEE AND PAIRWISE PEE

The PEE embedding [8–11, 13] contains the following steps. First,
according to a certain scanning order, the cover image pixels are
collected into a one-dimensional sequence as (x1, ..., xN ). Then, a
predictor is used to determine the prediction of xi denoted as x̂i.
Next, the prediction-error is computed by ei = xi − x̂i (suppose
here for simplicity that x̂i is an integer), and the prediction-error
sequence (e1, ..., eN ) is derived. After that, data embedding is con-
ducted by modifying the prediction-errors, i.e., for a given ei, it is
either expanded or shifted as

ẽi =


ei +m, if ei = 0
ei −m, if ei = −1
ei + 1, if ei > 0
ei − 1, if ei < −1

(1)

where m ∈ {0, 1} is a to-be-embedded data bit. Finally, each xi is
modified to x̃i = x̂i + ẽi to generate the marked image.
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Fig. 1. PEE (left, in the sense of 2D-PEH modification) and pairwise
PEE (right).

Consider the 1D-PEH defined as h1(a) = |{i : ei = a}|. Here,
|S| means the cardinal number of a set S. The above PEE embedding
is actually implemented by modifying the histogram h1 in which the
bins −1 and 0 are expanded to embed data, while the other bins
are shifted to create vacancies to ensure the reversibility. Here, an
implicit assumption is that −1 and 0 are the two highest bins of h1.

Recently, instead of modifying prediction-errors individually as
(1), a new paradigm of PEE is proposed in [31] by considering the
2D-PEH defined by h2(a, b) = |{i : (e2i−1, e2i) = (a, b)}|. In
[31], the authors point out that PEE embedding (1) can be imple-
mented equivalently by modifying the 2D-PEH h2. For example,
for a prediction-error pair (e2i−1, e2i) = (0, 0), based on (1), e2i−1

will be expanded to 0 or 1 to embed 1 bit, and e2i will also be ex-
panded to 0 or 1 to embed 1 bit. Accordingly, in the case of 2D-PEH
modification, the pair (0, 0) will be expanded to one of the four pairs
(0, 0), (0, 1), (1, 0) and (1, 1) to embed 2 bits. For another pair
(e2i−1, e2i) = (2, 0), in 1D-PEH case, e2i−1 will be shifted to 3,
and e2i will be expanded to 0 or 1 to embed 1 bit. So, for 2D-PEH,
the pair (2, 0) will be expanded to (3, 0) or (3, 1) to embed 1 bit.
The equivalent embedding of (1) in the sense of 2D-PEH modifica-
tion is plotted in the left figure of Fig. 1, in which the modification
of prediction-error pairs is illustrated as a mapping of Z2 using red
arrows. That is to say, each pair will be modified as another pair
according to the red arrow for data embedding. Particularly, for a
given pair (e.g., (0, 0) or (0, 1)), the modified pair will be randomly
selected if there are more than one arrow starting from it, and in this
case, a certain amount of bits (e.g., 2 bits for (0, 0) or 1 bit for (0, 1))
will be embedded into it. Here, for the clarity of presentation, only
the first quarter of the mapping is plotted.

The paradigm of PEE based on 2D-PEH modification provides
a new way for RDH. Based on this approach, the so-called pairwise
PEE is proposed by utilizing a new mapping of Z2 [31]. The idea is
to expand or shift bins in a less distorted direction as much as pos-
sible. Specifically, for the pair (0, 0) in the left figure of Fig. 1, it
is embedded with 2 bits by mapping it to (0, 0), (0, 1), (1, 0) and
(1, 1), and the corresponding distortion is 0, 1, 1 and 2, respectively.
Clearly, the cost for modifying (0, 0) to (1, 1) is 2, while modifying
(0, 0) to (0, 0), (0, 1) or (1, 0) costs much less. So, to reduce the
distortion, the modification with high distortion, (0, 0) to (1, 1), is
discarded in the mapping. At the same time, the pair (1, 1) can be
additionally mapped to itself. In this way, a new mapping is gener-
ated as shown in the right figure of Fig. 1. With this new mapping,
the pair (0, 0) is embedded with log2 3 bits instead of 2 bits in PEE,
and the pair (1, 1) is embedded with 1 bit while it is just shifted in
PEE. Experimental results reported in [31] show that pairwise PEE
is better than PEE and the improvement is somewhat significant for
low EC cases.

3. PROPOSED METHOD

For pairwise PEE, the basic idea is that adjacent prediction-errors
are highly correlated and this type of correlation can be exploited for

Fig. 2. Excluding qi from fPEE(p) to derive a new mapping.

RDH. Clearly, for the prediction-error sequence (e1, ..., eN ), besides
adjacent prediction-errors ei and ei+1, ei and ei+k are also correlat-
ed for small k since cover pixels are always collected sequentially.
Then, enhanced performance can be expected if the inter-correlation
of prediction-errors is better utilized. Based on this thought, we pro-
pose to design a new RDH based on the modification of the 3D-PEH
defined as

h3(a, b, c) = |{i : (e3i−2, e3i−1, e3i) = (a, b, c)}|. (2)

RDH based on 3D-PEH can be conducted using a mapping f :
Z3 7→ P(Z3) where P(Z3) is the power set of Z3, i.e., the set com-
posed of all subsets of Z3. Once f(p) ̸= ∅, and f(p) ∩ f(q) = ∅
holds for every p, q ∈ Z3 with p ̸= q, the reversibility can be guar-
anteed and such a mapping is called a reversible mapping. Actually,
using a reversible mapping, for a cover pixel triple with prediction-
errors p, the marked prediction-errors can be taken as an element of
f(p), and then the marked pixel triple can be determined according-
ly. If f(p) contains more than one element, the marked prediction-
errors can be randomly selected as any element of f(p), and in this
case, log2 |f(p)| bits are embedded into the cover triple. On the oth-
er hand, if |f(p)| = 1, the cover triple is simply shifted and there is
no data embedded into it. In the restoration stage, for a marked triple,
we first compute its prediction-errors q, and then recover the original
prediction-errors as p which is the unique element of Z3 satisfying
q ∈ f(p). Simultaneously, the embedded data can be extracted if
|f(p)| > 1. By this approach, the EC is

∑
p∈Z3 h3(p) log2 |f(p)|,

and the embedding distortion (the mean-squared error) can be esti-
mated as ∑

p∈Z3

h3(p)

( ∑
q∈f(p)

∥q − p∥2l2
|f(p)|

)
(3)

where ∥ · ∥l2 is the l2-norm.
Notice that, like the case of pairwise PEE, the PEE embedding

(1) can be implemented equivalently by modifying the 3D-PEH h3

as well. Specifically, we can take a reversible mapping f : Z3 7→
P(Z3) as, for each (a1, a2, a3) ∈ Z3

f(a1, a2, a3) = {(b1, b2, b3) : bi ∈ g(ai), i ∈ {1, 2, 3}} (4)
where g : Z 7→ P(Z) is a function defined by g(0) = {0, 1},
g(−1) = {−1,−2}, g(x) = {x+1} if x > 0, and g(x) = {x−1}
if x < −1. For example, f(0, 1,−2) = {(0, 2,−3), (1, 2,−3)}.
Then, according to the aforementioned embedding procedure based
on the reversible mapping (4), one can verify that the resulting RDH
is just the PEE embedding (1). For the sake of clarity, the reversible
mapping f in (4) is denoted as fPEE in the following context.

We will iteratively adjust fPEE to derive a new reversible map-
ping denoted as fPRO. Then, the proposed method is implemented
based on 3D-PEH modification using fPRO. Specifically, for p ∈ Z3

with fPEE(p) = {q1, ..., qn} and n > 1, some qi with large embed-
ding cost ∥p − qi∥l2 will be excluded from the set fPEE(p). At the
same time, for each excluded qi, it will be added to the set fPEE(qi).
For example, if there is only one (p, qi) ∈ Z3 × Z3 such that qi is
excluded from fPEE(p), the adjusted mapping f is

f(q) =

 fPEE(q)− {qi}, if q = p
fPEE(q) ∪ {qi}, if q = qi
fPEE(q), otherwise

. (5)
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The adjustment process (5) based on one pair (p, qi) ∈ Z3 × Z3

exclusion-adding (OPEA) operation to derive a new reversible map-
ping is illustrated in Fig. 2.

Notice that, according to (4), for every (a1, a2, a3) ∈ Z3, we
have the following symmetric property

fPEE(π1(a1), π2(a2), π3(a3)) =

{(π1(b1), π2(b2), π3(b3)) : bi ∈ g(ai), i ∈ {1, 2, 3}}
(6)

where πi(x) = x or πi(x) = −1− x, for each i ∈ {1, 2, 3}. Then,
we define fPRO(p) only for p ∈ Z3

+ = {(a1, a2, a3) : ai ≥ 0, i ∈
{1, 2, 3}}. The other triples of Z3 can be defined by imposing the
same symmetric property (6) to fPRO.

We now introduce how to select the to-be-excluded triples for
OPEA. Once a set of to-be-excluded triples is selected, fPRO can be
defined by using OPEA iteratively. Notice that, according to (4), for
(a1, a2, a3) ∈ Z3

+, it will be embedded with data if and only if at
least one ai is 0. Then, motivated by pairwise PEE, the following
triples (b1, b2, b3) introducing large embedding cost are selected:
••• (b1, b2, b3) ∈ fPEE(0, 0, 0) with b1 + b2 + b3 > 1,
••• for each a ≥ 1, (b1, b2, b3) ∈ fPEE(a, 0, 0) with b2 + b3 > 1,
••• for each a ≥ 1, (b1, b2, b3) ∈ fPEE(0, a, 0) with b1 + b3 > 1,
••• for each a ≥ 1, (b1, b2, b3) ∈ fPEE(0, 0, a) with b1 + b2 > 1.
That is, the to-be-excluded triple set contains following elements:
••• (0, 1, 1), (1, 0, 1), (1, 1, 0), (1, 1, 1),
••• (a+ 1, 1, 1), (1, a+ 1, 1) and (1, 1, a+ 1), for a ≥ 1.

More specifically, four triples (0, 1, 1), (1, 0, 1), (1, 1, 0) and
(1, 1, 1) are excluded from fPEE(0, 0, 0), i.e., we have

fPRO(0, 0, 0) = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)}. (7)
By this definition, instead of embedding 3 bits into (0, 0, 0) in PEE,
only 2 bits is embedded into (0, 0, 0) in our method while the av-
erage embedding distortion for this triple is reduced from (0 + 1 ×
3 + 2× 3 + 3)/8 = 1.5 to (0 + 1× 3)/4 = 0.75. Accordingly, by
applying the “adding” operation to the excluded triples, we have

fPRO(0, 1, 1) = {(0, 1, 1), (0, 2, 2), (1, 2, 2)}
fPRO(1, 0, 1) = {(1, 0, 1), (2, 0, 2), (2, 1, 2)}
fPRO(1, 1, 0) = {(1, 1, 0), (2, 2, 0), (2, 2, 1)}
fPRO(1, 1, 1) = {(1, 1, 1), (2, 2, 2)}

. (8)

For these four triples, the embedding distortion is also reduced while
the amount of embedded data bits is increased.

On the other hand, for the triple (a, 0, 0) with a ≥ 1, we have
fPRO(a, 0, 0) = {(a+ 1, 0, 0), (a+ 1, 0, 1), (a+ 1, 1, 0)}. (9)

That is, instead of embedding 2 bits into (a, 0, 0) in PEE, log2 3 bits
is embedded into (a, 0, 0) in our method. And, the average embed-
ding distortion for this triple is reduced from (1+ 2× 2+3)/4 = 2
to (1 + 2× 2)/3 = 5/3. Accordingly, we have

fPRO(a+ 1, 1, 1) = {(a+ 1, 1, 1), (a+ 2, 2, 2)}. (10)
Then, 1 bit is embedded into (a + 1, 1, 1) in our method while it
is just shifted in PEE, and the embedding distortion for this triple is
reduced as well.

With fPRO, one can verify that the embedding distortion of the
resulting RDH is reduced compared with that of fPEE. Moreover,
the EC is enlarged if the following inequality holds,∑
p∈EA

h3(p)+(θ−1)
∑

p∈EB

h3(p) >
∑

p∈EC

h3(p)+(2−θ)
∑

p∈ED

h3(p)

(11)
where θ = log2 3, A, B, C, D are four sets defined by
••• A = {(1, 1, 1)} ∪ {(b, 1, 1), (1, b, 1), (1, 1, b) : b > 1}
••• B = {(0, 1, 1), (1, 0, 1), (1, 1, 0)}
••• C = {(0, 0, 0)}

Fig. 3. Cross/dot pixels partition (left), scan order for cross pixel-
s (center), and the context (blue pixels) for complex measurement
computation for a cross pixel triple (right).

••• D = {(a, 0, 0), (0, a, 0), (0, 0, a) : a ≥ 1}
and for each S ∈ {A,B,C,D}, ES is the expanded set of S con-
sidering the symmetric property implied in (6), i.e., ES is the set
{(b1, b2, b3) : (a1, a2, a3) ∈ S, bi ∈ {ai,−1− ai}, i ∈ {1, 2, 3}},
e.g., EC = {(b1, b2, b3) : bi ∈ {0,−1}}.

Based on (11), theoretical analysis can be conducted for the per-
formance comparison between the proposed method and PEE. Ac-
tually, the inequality (11) is generally true for the common test im-
ages. As a result, with less distortion and enlarged EC, the proposed
method based on 3D-PEH and fPRO generally provides a better em-
bedding result than PEE.

Our data embedding procedure is briefly described as follows.
The same as [10], rhombus prediction and double-layered embed-
ding are adopted in our implementation. For double-layered embed-
ding, the cover image is divided into two sets denoted as “cross” and
“dot” (see the left figure of Fig. 3), and then successively, the cross
and dot sets are embedded with half of the secret message, respec-
tively. Since the two layers’ embedding are processed similarly, we
only take the cross layer for illustration.

Referring to the center figure of Fig. 3, except for pixels located
in borders, the cross pixels are scanned from left to right and top to
bottom to derive the cover sequence (x1, ..., xN ). Here, to avoid the
overflow and underflow, the pixels valued 0 will be changed to 1, and
the pixels valued 255 will be changed to 254. Meanwhile, a location
map will be established to record these problematic locations. The
location map is a binary sequence sized N and it will be losslessly
compressed to reduce its size. The compressed location map will be
embedded into the cover image along with the secret message for
blind extraction. Then, each xi is predicted using its four dot neigh-
bors as the inter-valued average to determine x̂i and ei = xi − x̂i.
Lastly, data embedding is conducted by modifying prediction-errors
(e1, ..., eN ) based on the 3D-PEH h3 and the proposed reversible
mapping fPRO.

To further enhance the embedding performance, we apply the
pixel-selection (PS) strategy [31, 33] to our method. That is, for each
pixel triple (see the right figure of Fig. 3 for an illustration of cross
pixels), its complexity measurement is computed as the sum of every
two connected pixels (in both diagonal and anti-diagonal directions)
in its context containing 10 pixels. Then, for a given threshold T ,
only the triples with complexity less than T will be utilized for da-
ta embedding while others are ignored. In our implementation, the
threshold T is iteratively determined as the smallest positive integer
such that the payload can be embedded.

Finally, we remark that, our data extraction and cover image re-
covery procedure is just the inverse of data embedding. In a reverse
pixel scan order, we first extract the half capacity and realize restora-
tion for dot pixels. Then, we extract the rest half capacity and realize
restoration for cross pixels. The routine description for data extrac-
tion and image recovery is omitted here due to space limitation.

2734



1 2 3 4 5 6

x 10
4

50

51

52

53

54

55

56

57

58

59

60

EC (bits)

P
S

N
R

 (
d
B

)

Lena

 

 

Proposed method

Sachnev et al. [10]

Ou et al. (pairwise PEE) [31]

Li et al. (DPM) [32]

Li et al. (Algorithm II) [25]

1 1.2 1.4 1.6 1.8 2 2.2

x 10
4

49

50

51

52

53

54

55

EC (bits)

P
S

N
R

 (
d
B

)

Baboon

 

 

Proposed method

Sachnev et al. [10]

Ou et al. (pairwise PEE) [31]

Li et al. (DPM) [32]

Li et al. (Algorithm II) [25]

1 1.5 2 2.5 3 3.5 4

x 10
4

50

51

52

53

54

55

56

57

EC (bits)

P
S

N
R

 (
d
B

)

Peppers

 

 

Proposed method

Sachnev et al. [10]

Ou et al. (pairwise PEE) [31]

Li et al. (DPM) [32]

Li et al. (Algorithm II) [25]

1 1.5 2 2.5 3 3.5 4

x 10
4

49

50

51

52

53

54

55

56

57

58

EC (bits)

P
S

N
R

 (
d
B

)

Boat

 

 

Proposed method

Sachnev et al. [10]

Ou et al. (pairwise PEE) [31]

Li et al. (DPM) [32]

Li et al. (Algorithm II) [25]

1 1.5 2 2.5 3 3.5

x 10
4

49

50

51

52

53

54

55

56

57

58

59

EC (bits)

P
S

N
R

 (
d
B

)

Lake

 

 

Proposed method

Sachnev et al. [10]

Ou et al. (pairwise PEE) [31]

Li et al. (DPM) [32]

Li et al. (Algorithm II) [25]

1 1.5 2 2.5 3

x 10
4

49

50

51

52

53

54

55

56

57

58

59

EC (bits)

P
S

N
R

 (
d
B

)

Elaine

 

 

Proposed method

Sachnev et al. [10]

Ou et al. (pairwise PEE) [31]

Li et al. (DPM) [32]

Li et al. (Algorithm II) [25]

Fig. 4. Performance comparison between our method and the methods of Sachnev et al. [10], Ou et al. [31], Li et al. [32] and Li et al. [25].

Table 1. Comparison of PSNR (in dB) between the proposed method
and the methods of Sachnev et al. [10], Ou et al. [31], Li et al. [32]
and Li et al. (Algorithm II) [25], for a capacity of 10,000 bits.

Image [10] [31] [32] [25] Proposed
Lena 58.19 59.75 59.78 59.37 60.12
Baboon 54.16 55.21 53.96 54.41 55.55
Peppers 55.55 56.21 57.19 56.89 56.85
Boat 56.15 57.55 57.42 57.16 57.87
Lake 56.66 58.72 58.08 58.27 59.22
Elaine 56.14 58.06 57.39 57.34 58.64
Average 56.14 57.58 57.30 57.24 58.04

4. EXPERIMENTAL RESULTS

The proposed method is evaluated by comparing it with the con-
ventional PEE [10], pairwise PEE [31], DPM-based RDH [32] and
Algorithm II of [25]. The comparison is conducted on six 512×512
sized gray-scale images including Lena, Baboon, Peppers, Boat,
Lake and Elaine. All these images are downloaded from USC-SIPI
database (http://sipi.usc.edu/database/database.php?volume=misc).
The performance comparison is shown in Fig. 4 in which EC varies
from 10,000 bits to the maximum capacity of the proposed method
with a step of 2,000 bits.

For PEE embedding [10], the prediction and double-layered em-
bedding employed in this method are the same as ours. In addition,
a PS technique based on local variance sorting is used in this method
as well. It is a well-performed and representative RDH algorithm.
However, according to Fig. 4, our method significantly outperforms
[10] with a larger PSNR whatever test image or EC is. Referring to
Table 1, our method outperforms [10] with an average increase of
PSNR by 1.9 dB for an EC of 10,000 bits.

Pairwise PEE [31] and the method [32] are based on 2D-PEH
modification. For pairwise PEE, the 2D-PEH is generated by count-

ing adjacent prediction-errors. For [32], the 2D-PEH is generated by
considering each pixel pair and its context to derive a difference pair.
Then, data embedding is implemented by modifying the resulting
2D-PEH with a specific reversible mapping (for [32], the reversible
mapping is called DPM). These 2D-PEH based methods perform
better than the ones based on 1D-PEH, e.g., [10, 13]. However, the
experimental results show that our method is better than [31] and
[32] in most cases. According to Table 1, for an EC of 10,000 bits,
our method outperforms [31] and [32] with an average increase of
PSNR by 0.46 and 0.74 dB, respectively. We believe that our advan-
tage mainly lies in high-dimensional PEH utilization.

The Algorithm II proposed in [25] is also based on histogram
modification by utilizing a specific prediction strategy. It performs
well for low EC with a superior performance compared with some
state-of-the-art works [9, 13, 33, 34]. However, according to Table
1, our method outperforms this method with an average increase of
PSNR by 0.8 dB for an EC of 10,000 bits.

5. CONCLUSION

This work is an extension of PEE based on 3D-PEH modification.
The proposed data embedding is conducted by modifying 3D-PEH
with an advisable reversible mapping. Our superiority over PEE
[10], pairwise PEE [31] and some other state-of-the-art works [25,
32] is experimentally verified, demonstrating the effectiveness of the
high-dimensional histogram utilization in RDH.

In the future, instead of 3D-PEH, we will extend the proposed
method to larger prediction-error group consisting more prediction-
errors. Moreover, other than the proposed one, we will try to design
effective reversible mappings especially the content-adaptive ones
for high-dimensional histogram based RDH. Incorporating the pro-
posed embedding method with more advanced histogram generation
methods such as [35, 36] is also one of our future work.
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