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Abstract—In this paper, we propose a novel image interpolation
algorithm by context-aware autoregressive (AR) model and mul-
tiplanar constraint. Different from existing AR based methods
which employ predetermined reference configuration to predict
pixel values, the proposed method considers the anisotropic
pixel dependencies in natural images and adaptively chooses the
optimal prediction context by utilizing the nonlocal redundancy
to interpolate pixels. Furthermore, the multiplanar constraint is
applied to enhance the correlations within the estimation window
by exploiting the self-similarity property of natural images.
Similar patches are collected by the combination of patch-wise
pixel values and the gradient information. And the inter-patch
dependencies are adopted to improve the interpolation. The
experimental results show that our method is effective in image
interpolation and successfully decreases the artifacts nearby the
sharp edges. The comparison experiments demonstrate that the
proposed method can obtain better performance than other
related ones in terms of both objective and subjective results.

Index Terms—Autoregressive(AR), context modeling, image
interpolation, multiplanar, patch similarity

I. INTRODUCTION

Image interpolation aims to generate a high-resolution (HR) image
by utilizing the information of a low-resolution (LR) counterpart.
Recently it has become a hot research topic in the area of image
processing for the wide applications such as video communication,
digital photography enhancement, medical analysis and consumer
electronics.

Basically, there are two key steps in image interpolation: one is the
proper modeling that can easily characterize the image texture and
edge information, while the other is the accurate estimation method
free from overfitting and visual degradation, e.g., jagging and ringing.
According to different modelings and estimation methods, image
interpolation methods can be classified into different categories.
Polynomial-based methods, such as Bilinear, Bicubic [1], and Cubic
Spline [2], generate results by convolving neighboring pixels with a
predetermined kernel for each pixels individually. Although this kind
of method is easy to implement and of low computational complexity,
it treats every pixel identically and ignores various local structure of
natural images, and thus leads to undesirable results. The studies in
[3], [4] use the structural information by explicitly detecting edge
direction, gradient and isophotes of image as guidance for image
interpolation. Meanwhile, AR-based methods are developed for im-
age interpolation. The new edge-directed interpolation (NEDI) [5] is
an early work of AR-based methods, which exploits the geometric
duality between LR covariance and HR covariance to obtain HR
pixels. Based on NEDI, Soft-decision adaptive interpolation (SAI)
[6] introduces an additional AR model from cross direction and
performs so-called block estimation in which all HR pixels in a local
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window are estimated simultaneously. In [7], [8] and [9], similarity
modulated model is proposed and different similarity metrics, such
as patch-geodesic distance are used to improve the performance of
the block estimation for AR model. Furthermore, [8] extends the
AR model to general scale interpolation by solving the problem
iteratively. For these existing AR-based image interpolation methods,
they employ the fixed model reference such as diagonal and cross
direction pixels and ignore the complicated and anisotropic depen-
dencies within natural images. In [10] and [11], sparse representation
dictionary learning methods have been proposed in order to better
utilize the nonlocal dependency in natural images. Although these
methods achieve desirable interpolation performance, the space and
computational complexity of dictionary-based interpolation methods
are much higher compared to traditional ones. Also, dictionary-based
methods results are significantly affected by sufficient nonlocal simi-
lar patches within external database or the image itself. Performances
will degrade greatly when this condition is not satisfied.

In this paper, to overcome the drawbacks of existing AR-based
and dictionary-based image interpolation methods, we propose a
novel AR-based framework for image interpolation by considering
the spatial configuration of the model reference. The proposed im-
age interpolation method adaptively selects optimal reference pixels
according to the context of the given position. The reference pixel
selecting process incorporates global image correlation to better
characterize local structure of the image. A multiplanar constraint
is introduced to fully exploit the correlations of all scales within the
local estimation window. Finally, the similarity modulated block es-
timation is deployed based on the patch-geodesic distance, certifying
the accuracy and stability of prediction. Comprehensive experimental
results demonstrate that the proposed method via context modeling
and multiplanar constraint is able to well model the piecewise
stationary characteristic of natural images and achieve desirable
performance from both objective and subjective perspectives.

The rest of the paper is organized as follows: Section II gives a
brief review of the AR model and shortly introduces the concept of
context modeling. Section III describes the details of the proposed
interpolation algorithm. Experimental results and analysis are pre-
sented in Section IV. Finally, Section V concludes and remarks the
whole paper.

II. CONTEXT AUTOREGRESSIVE (AR) MODEL

A. Autoregressive (AR) Model

Due to its ability to describe stochastic structure of sequential data,
the autoregressive(AR) model is widely applied in statistic signal
processing to model and predict various types of natural signals.
Typically, a 2-D image signal I(x, y) can be modeled as an AR
process as follows,

I(x, y) =
∑

(i,j)∈Ω

ψ(i, j)I(x+ i, y + j) + ε(x, y), (1)

where Ω and ψ(i, j) represent the adjacent neighbors of pixel I(x, y)
and their corresponding model parameters (or weights), respectively;
ε(x, y) denotes white noise. The formula shows that pixels in images
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Fig. 1. Flow diagram of the proposed interpolation algorithm.

can be estimated by their adjacent neighbors with the corresponding
weights.

B. Context Modeling Prediction
The piecewise based AR predictor introduced above ignores the

importance of selecting the proper spatial reference configuration
Ω for the model. In fact, most traditional AR models fix their
model order and spatial reference pixels empirically, such as four
neighbors from cross directions or four neighbors from diagonal
directions. The spatial reference configuration Ω is usually a regular
rectangular or circular region centered at the pixel to be predicted and
takes exactly the literal meaning of adjacent neighbors. This kind of
human intuitive configuration indeed follows the piecewise statistical
stationary assumption of natural images: the closer a reference pixel
is to the center pixel spatially, the more significant relation is between
them. Although being valid for many locally consistent images,
this configuration and assumption fail to be tenable in regions with
various scales textures and anisotropic edges, which commonly and
widely exist in natural images. Under this kind of circumstance, a
manually predetermined reference configuration of the AR predictor
is obviously suboptimal for that it may take adjacent but irrelevant
pixels into consideration and miss further but relevant ones in the
model estimation. Thus, it would lead to estimation biases.

To overcome the drawback, some existing studies try to model
context awareness for AR model. In [12], Wu et al. proposed a
method to utilize correlation instead of spatial distance between pixels
to choose both predictor reference and training set of AR model and
apply it in lossless image coding. In this paper, we adopt the concept
of context to extend piecewise AR model and modify the predictor
reference choosing mechanism and then propose a context modeling
image interpolation algorithm.

III. THE PROPOSED INTERPOLATION ALGORITHM

In this section, we present the proposed image interpolation
algorithm in detail. Firstly, a novel AR model based on context-
aware modification is described. Secondly, we introduce the patch-
geodesic distance to define the similarity between two pixels. Thirdly,
a multiplanar constraint is proposed by exploiting the local structural
information and incorporated into the AR model to improve the data
fidelity term. Finally, with the above model and similarity, the missing
HR pixels are jointly estimated by similarity modulated estimation.
Fig. 1 shows the framework of the proposed algorithm. Specifically,
a two-pass interpolation is performed as stated in [6].

A. Context-Aware Adaptive Prediction
Interpolation algorithms in [6]-[9] use two sets of AR model

parameters a = {at} and b = {bt}(t = 1, 2, 3, 4) to predict the
missing HR pixels. Parameter a indicates the weights of pixels from
diagonal direction while b indicates the ones from cross direction.
These two sets of parameters are with fixed order and have fixed
spatial reference configuration. The AR equations can be represented
as:

zi =

4∑
t=1

atzi⊗t + ε⊗i , zi =

4∑
t=1

btzi⊕t + ε⊕i , (2)

where zi refers to either LR pixel xi or HR pixel yi in local window
W; zi⊗t and zi⊕t are reference pixels of zi from diagonal and cross
directions; ε⊗i and ε⊕i are the corresponding fitting error. The spatial
reference configuration and corresponding mapping relation between
LR and HR pixels are illustrated in Fig. 2

(a) Parameter a. (b) Parameter b.

Fig. 2. The spatial reference configuration. Black and red arrows indicate
HR-HR/LR and the corresponding LR-LR correlations, respectively.

To better model local image statistics, we extend the fixed spatial
reference configurations of AR model to the changeable ones. By
choosing the proper model order and spatial reference configuration,
we can make the AR prediction more accurate and more stable.
The problem is how to determine the model order and the spatial
distribution of the reference pixels. To illustrate the problem, we use
Φ(zi) = {φ1(zi), φ2(zi), ..., φM (zi)} and Wr to denote the set of
possible reference pixels for pixel zi and the corresponding patch
window containing all candidate pixels. Instead of determining the
reference merely on pixel-by-pixel geometric distance as previous
methods, we firstly obtain zi’s nearest neighbor set T in terms of
patch Wr globally:

T = {x |‖Wr(x)−Wr(zi)‖ ≤ τT }, (3)

where τT is a threshold. The distance type can be either Manhattan
distance or Euclidean distance. The missing HR pixels in Wr are
generated by bicubic method as initialization. Here we benefit from
rich amount of local and nonlocal redundancy of natural images
and the size of T should be no less than certain scale. Otherwise,
the formula below is not so faithfully confident. Then, using these
similar patches which are supposed to have homogeneous texture,
we calculate the correlation coefficients between zi and candidate
reference pixels

ρφm =

∑
x∈T

φm(x)x− 1
T

∑
x∈T

x
∑
x∈T

φm(x)√∑
x∈T

x2 − 1
T

(
∑
x∈T

x)2
√∑
x∈T

φm(x)2 − 1
T

(
∑
x∈T

φm(x))2
.

(4)
With the calculated correlation coefficients ρφm , 1 ≤ m ≤ M , we
reorder the candidate reference set

Φ(zi) = {φ1(zi), φ2(zi), ..., φM (zi), ρφ1 ≥ ρφ2 ≥ ...ρφM }. (5)

With this ranking, we are able to easily pick the reference from
candidate set sequentially with the increase of model order. Please
note that there is a tradeoff between the estimation bias and the
prevention of overfitting. A larger candidate set may bring in more
highly correlative reference pixels. However, relative larger patch
window naturally decreases the number of similar patch and reduces
the confidence of the model. The larger patch window will also arise
the problem of ignoring fine-grained textures and edges at the same



time. Thus, we just extend the candidate set from four neighbor pixels
to eight pixels, and choose first four of them in accordance with
the originally order of the AR model. Also, considering the scale
transformation between HR-HR/LR and LR-LR correlations, we only
apply the context modeling to parameter b. The different reference
scale between HR-HR/LR and LR-LR correlations of parameter a
may enlarge the fitting error. The context modeling AR equations are
revised as follows:

zi =

4∑
t=1

atzi⊗t + ε⊗i , zi =

4∑
t=1

btzi�t + ε�i , (6)

where � denotes context modeling spatial reference configuration.
The process are clearly illustrated in Fig. 3

Nearest Neighbor SetWr

Fig. 3. Context-Based Parameter b.

B. Geodesic Distance Based Similarity
In order to characterize the similarity between two pixels, we

use the patch based metric in [9] named patch-geodesic distance
to determine whether two pixels are in the same stable region. The
basic idea of geodesic distance comes from the connected component
consisting of pixels with similar intensities. This modified patch-
based geodesic distance takes both the center and its neighboring
pixels into consideration, and performs well in deciding whether two
pixels share the same AR parameters.

The patch-geodesic distance D(x, c) is defined as minimum value
of the accumulated patch difference along all connecting paths:

D(x, c) = min
P={p1,...,pn}∈Px,c

d(P ),

d(P ) =

n∑
i=2

‖M(pi)−M(pi−1)‖1,
(7)

where Px,c is the set of paths connecting x and c, M(·) is the operator
to extract the patch values centered at a pixel and the distance type
adopt Manhattan distance.

Then, the distance is converted to a pixel-level similarity:

w(x, c) = exp

{−D(x, c)

β

}
, (8)

where β is the parameter controling the shape of the exponential
function. Based on whether x is HR or LR pixels, w is expressed as
wH or wL. They are latterly incorporated into similarity modulated
estimation in Section III-D.

C. Multiplanar Constraint
When the interpolation operation is performed in a local window

and HR pixels are simultaneously estimated by the AR model, pixel
values are constrained by their neighboring pixels. As stated in Sec-
tion III-A, the neighbor size is not large and thus there is a magnitude
difference between estimation window and neighbor window. The AR
parameters merely present a small part of the correlations between
pixels. Context modeling AR still lacks enough correlations within
estimation window to get a promising interpolation HR image.

Here, we introduce the multiplanar constraint to utilize larger scale
correlations within estimation window during image interpolation.
Similar patches, whose scales are approximately the same as AR

neighbor window, are collected. The distance function between two
patches is defined as follows:

dis(xs,xt) = ‖xs − xt‖22 + η‖ 5 xs −5xt‖22, (9)

where x denotes pixel values of a patch in vector form centered at
pixel x, 5 denotes the gradient operator and η is a parameter used to
balance the contribution of two terms. Using Eq. (9), we can obtain
the similar patch set compared with the center patch of the estimation
window:

S =

{
x| exp

{−dis(x,xc)

α

}
≥ τS

}
, (10)

where τS is a threshold and α is the parameter to control the
exponential function. Based on whether center pixel x is HR or LR
pixel, S can be divided into two subsets, SH and SL.

Fig. 4. Multiplanar Constraint.

As shown in Fig. 4, by overlapping and interleaving SH and SL
we can discover that two patches, one from SH and the other from
SL, are staggered in means of HR and LR pixels. That is to say,
the same position in patches from two different set SH and SL lies
different type of pixels. Intuitively, HR pixels should be similar with
LR pixels (in average value) at the same position in patch. Then, we
construct the multiplanar constraint term by utilizing the feature as
follows:

Em =
∑
m∈SL

∑
i∈PL

m

[
y
PL
m

i − 1

N

N∑
n=1

x
PH
n
i

]2

+

∑
n∈SH

∑
i∈PH

n

[
y
PH
n

i − 1

M

M∑
m=1

x
PL
m
i

]2

,

(11)

where M and N represent the sizes of SL and SH , respectively; PLm
and PHn denote the patches from SL and SH ; yi and xi denote the
HR and LR pixels at position i in corresponding patches.

D. Similarity Modulated Estimation

In order to better characterize the piecewise stationarity in a local
window, we incorporate the similarity introduced in Section III-B
into AR model as weighting terms.

1) Parameter Estimation: The model parameters a and b have
the similar form, and can be estimated by weighted linear least
squares:

â = arg min
a

∑
xi∈W

[
wLi (xi −

4∑
t=1

atxi⊗t)

]2

. (12)

By introducing l2 norm into the objective function, Eq. (12) can be
written in vector form:

â = arg min
a
‖Wl(Aa− x)‖22 + λ‖a‖22, (13)

And the analytical solution for Eq.(13) is:

a = (ATW2
lA + λI)−1ATW2

l x, (14)

where Wl is the diagonal matrix of similarity wLi , A is a matrix
whose k-th row is the value of corresponding reference.

Similarly, b can be computed by:

b = (BTW2
lB + λI)−1BTW2

l x. (15)



2) Block Estimation: We perform the interpolation in a local
window W with the assumption that pixels in window share the same
parameters. The objective function contains two terms: AR matching
error term and multiplanar constraint term

E =
∑
i∈W

[
wHi (yi −

t∑
t=1

atyi⊗t)

]2

+
∑
i∈W

[
wLi (xi −

t∑
t=1

atxi⊗t)

]2

+λ1

∑
i∈W

[
wHi (yi −

t∑
t=1

btyi�t)

]2

+ λ2Em,

(16)
where y and x refer to HR pixel and LR pixel, λ1 is the Lagrange
multiplier for parameter b, and λ2 is a user-defined parameter to
balance the weight of multiplanar constraint term.

To minimize the objective function, we can reduce Eq.(16) to the
vector form:

y = arg min
y
‖W(Cy −Dx)‖22. (17)

And the analytical solution can be obtained:

y = (CTW2C)−1CTW2Dx. (18)

Estimations are performed in high frequency areas and block estima-
tion process only outputs the center pixel. For pixels in low frequency
areas, we use the bicubic interpolation method whose results are
already good enough.

IV. EXPERIMENTAL RESULTS

The proposed interpolation is implemented on MATLAB 8.6 plat-
form. The proposed algorithm is compared with bicubic interpolation
method and four state-of-the-art interpolation algorithms, including
NEDI, SAI, IPAR and NARM. We test our method on a large number
of images from the Kodak and USC-SIPI image databases.

TABLE I
PSNR(dB) RESULT OF FIVE INTERPOLATION METHODS

Images Bicubic NEDI SAI IPAR NARM Proposed
Child 35.49 34.56 35.63 35.70 35.52 35.72
Lena 34.01 33.72 34.76 34.79 35.09 34.80
Tulip 33.82 33.76 35.71 35.85 36.04 35.91

Cameraman 25.51 25.44 25.99 26.06 26.05 26.11
Monarch 31.93 31.80 33.08 33.34 34.10 33.40
Airplane 29.40 28.00 29.62 30.05 30.05 30.09

Caps 31.25 31.19 31.64 31.67 31.77 31.69
Status 31.36 31.01 31.78 31.94 31.72 31.97

Sailboat 30.12 30.18 30.69 30.85 30.64 30.90
Bike 25.41 25.25 26.28 26.31 26.23 26.33
Ruler 11.98 11.49 11.37 11.81 11.88 13.22
Slope 26.74 26.54 26.63 26.78 26.89 27.10

Average 28.92 28.58 29.43 29.60 29.67 29.77

The input LR images are obtained by downsampling the original
HR images directly with the factor of two. Then, different interpola-
tion methods are applied to generate the HR images from the input
LR images. Peak Signal-to-Noise Ratio (PSNR) is used to evaluate
the experimental results. Table I shows the results of six different
interpolation algorithms. We can see that, compared with other AR
based method, the proposed method perform better than the second
best IPAR method with 0.17dB in terms of PSNR. Even compared
with dictionary-based method NARM, the proposed method perform
competitively or even better.

Specifically, the proposed method achieves desirable performance
in interpolating images with sharp, long edges and large scale
texture. Ruler and Slope achieve the highest gain compared with the
secondbest AR based method with 1.41dB and 0.32dB, respectively.

We also provide some visual comparison samples from different
image interpolation algorithm in Fig. 5. Compared with other AR
based methods, the experimental results of the proposed method are

(a) (b) (c) (d) (e) (f)

Fig. 5. Subjective image quality. Interpolation results using different method
on several images. From top to bottom: Caps, Slope. From left to right: ground
truth, Bicubic, NEDI, IPAR, NARM, proposed.

free from annoying artifacts around the sharp edge and look more
similar to the ground truth.

V. CONCLUSION

In this paper, we propose a new AR model for image interpolation
by incorporating context-awareness. The proposed context-aware
image interpolation methods can obtain better AR parameters by
adaptively selecting the reference pixels from a larger candidate set
ranked by the correlation coefficient. It excludes some reference
pixels that are irrelevant with prediction so as to reduce the noisy
information. Meanwhile, it includes some closely related reference
pixels that are ignored in traditional models due to their long distance
from the center pixel, increasing the model precision and stability.
Also, we design the multiplanar constraint to enhance the correlations
within the estimation window, not only preserving more structural
information from LR image, but also greatly reducing the ill-posed
condition of normal equation when solving the least square problem
of the objective function. The experimental result show that the
proposed algorithm achieves better performance than other existing
ones.
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