
LOCAL TERNARY PATTERN BASED ON PATH INTEGRAL FOR STEGANALYSIS

Qiuyan Lin, Jiaying Liu and Zongming Guo�

Institute of Computer Science and Technology, Peking University, Beijing 100871, China

ABSTRACT

The least significant bit (LSB) matching is a steganographic method
which embeds the stego signal into cover images in the spatial do-
main. However, the stego signal disturbs the correlation of neighbor-
ing pixels in cover image and this can be utilized for steganalysis.
Local binary pattern (LBP) is an effective image texture descriptor,
and it can summarize the correlation of neighboring pixels. In this
paper, a LBP-based steganalyzer is proposed to identify the devi-
ations of the correlation violated by the stego noise. Specifically,
our paper proposes the local ternary pattern based on path integral
(pi-LTP) to enhance the feature discrimination in large-scale pixels.
Moreover, a greedy incremental algorithm is utilized in our method
to select the optimal subspace of pi-LTP features. Experimental re-
sults show our method has a better performance than the state-of-
the-art steganalysis methods.

Index Terms— Steganalysis, LSB matching, local ternary pat-
tern (LTP), path integral based LTP (pi-LTP)

1. INTRODUCTION

Nowadays, the classical and practical steganographic algorithms em-
bed the message into the natural images in spatial domain. As the
message and the cover images are mutually independent, the impact
of steganography is equivalent to embedding the stego noise into im-
ages. Least significant bit (LSB) matching is a well-known stegano-
graphic method, in which each LSB of the payload pixels is ran-
domly increased or decreased by 1 if it does not match the message
bit. This symmetrical embedding procedure makes LSB matching
have the advantages of good statistical imperceptibility, high pay-
load and ease of implementation [1, 2].

Steganalysis is an issue of detecting steganography by modelling
the stego signal as the addition of noise. One of the first heuristic
steganalyzer is based on the histogram characteristic function center
of the mass (HCF-COM) [3]. This method is extended to the adja-
cency HCF-COM by [1] with the calibration technique. Later on, a
rather different heuristic method is taken in [4], where the statisti-
cal property of the amplitude of local extreme (ALE) is extracted
in the gray-level histogram. Some improvements to ALE are by
analyzing the amplitudes of local extrema extending to the 2D his-
togram [5], incorporating the calibration technique into ALE [6], etc.
Recently, another heuristic method based on residual images is pop-
ular in some literatures. For instance, the subtractive pixel adjacency
matrix (SPAM) features based on Markev chains is proposed by [7];
the rich model of the noise components is assembled by forming a
union of many image residuals in [8].

Local binary pattern (LBP) [9] is first proposed by Ojala et al.
as a statistical model of texture analysis. It has been proved to be a
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powerful tool in other applications of computer vision, such as face
analysis [10–12], motion analysis [13] and facial expression recog-
nition [14,15]. As a local texture descriptor, LBP encodes each pixel
of images by comparing it with its neighboring pixels located in a cir-
cle, i.e., LBP can summarize the correlation of neighboring pixels.
After embedding the stego noise, this correlation will be disturbed
because the distribution of stego noise is independent from the cover
image. Therefore, it is reasonable to expect the potentials of LBP-
based steganalyzers in identifying the deviations of the correlation
violated by the stego noise. As for the steganalysis based on LBP,
Gui et al. [16] propose LBP in rectangularly symmetric neighbor-
hood for steganalysis of LSB matching, and a high detection accu-
racy shows the advantage of LBP in capturing the pixels correlation.
However, at low embedding rate, the detection ability of this method
is limited due to lacking the correlation of multi-scale pixels.

In this paper, we propose a new LBP-based steganalytic method
which improves the feature discrimination mainly from the follow-
ing two aspects. First, in the LSB matching, the pixels of cover
image are randomly increased or decreased by 1, i.e., the changes
of pixels are bidirectional because of the randomly ±1 noise. Thus,
instead of the binary pattern, the local ternary pattern (LTP) [17]
is considered to describe the symmetry of stego noise. Second, in-
spired by the idea of our previously published LBP variant based on
path integral (pi-LBP) [18], the correlation of large-scale pixels is
captured to enhance the capability of modelling the multi-scale cor-
relation. Unlike LBP which quantizes the difference of one pair of
pixels, the multiple pixels along a specific path are filtered and then
encoded in pi-LBP. In this way, with flexible choices of paths and
filters, the various correlations among the multiple pixels can be di-
rectly encoded by pi-LBP. In the synthesis of the above aspects, we
propose a LTP variant based on path integral (pi-LTP), which is a
combination of LTP and pi-LBP. To further select the optimal sub-
space of pi-LTP features, a greedy incremental algorithm is utilized
for seeking a good trade-off between the feature dimension and dis-
crimination. Finally, the obtained features are trained and classified
by ensemble classifiers [19]. Extensive experiments are conducted
to show the superiority of our method compared with the state-of-
the-art steganalysis methods.

The rest of this paper is organized as follows. The conventional
LBP and its variants are described in Section 2. The proposed ste-
ganalytic schema based on pi-LTP is introduced in detail in Section
3. The experimental results are shown in Section 4. Finally, we
conclude our work in the last section.

2. LBP RELATED WORKS

2.1. LBP

The conventional LBP encodes each image pixel into a binary num-
ber according to the signs of the differences between the center pixel
c and its adjacent pixels xp [9]. The operator is laterly generalized to
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Fig. 1. Example of LBP8,1.

use neighbors with different distances to capture larger-scale struc-
tures [20]. Specifically, the neighbors of each pixel are defined as a
set of P sampling points located on a R radius circle, which is cen-
tered at the pixel c. Then, the sampling points that not fall within
the pixels are interpolated using bilinear interpolation. Formally, the
generalized LBP can be expressed in a decimal form as

LBPP,R =

P∑
p=0

s(xp − c)2p (1)

where the function s(x) is equal to 1 when x ≥ 0, and 0 otherwise.
Taking Fig. 1 as an example, the to-be-labeled pixel value is 39 and
its corresponding LBP8,1 is 62.

From the aforementioned definition, there are 2P different
LBPP,R codes, corresponding to the 2P binary numbers formed
by the P sampling points. However, LBPP,R codes lack of the ro-
bustness against the rotation changes. To remove the rotation effect,
the 2P LBPP,R codes are then grouped considering the rotational
symmetry of natural images. Specifically, a rotation invariant LBP
is proposed in [20] as

LBPri
P,R = min{ROR(LBPP,R, i)|i = 0, ..., P − 1} (2)

where ROR(x, i) represents the circular right shift of bit sequence x
by i times (e.g., the result of ROR(00111100, 3) is 10000111), and
the superscript “ri” denotes rotation invariant patterns for LBPP,R.
After this operator, LBPri

P,R has totally 36 different values if P = 8.

Overall, the LBP feature extraction contains the following three
steps. First, each pixel of the image is encoded to the LBPP,R code
as (1). Second, a rule-based strategy like the “ri” strategy is ex-
ploited to reduce the feature dimension. Finally, a histogram count-
ing LBPri

P,R codes is generated as features.

2.2. LTP and LBP based on path integral

To make the feature more discriminative and less sensitive to the
noise in uniform regions, the LBP is extended to 3-valued codes
called LTP by Tan et al. [17]. For LTP operator, an intermediate
zone of width ±t is generated around c. The neighboring pixels in
this zone are quantized to 0; the ones above this are quantized to +1
and the ones below it to -1. The function s(x) in (1) is replaced by

s′(x, t) =

⎧⎪⎨
⎪⎩
1, x > +t

0, −t ≤ x ≤ +t

−1, x < −t
(3)

In this way, the 2P valued LBP is extended to the 3P valued LTP.
However, the rotation invariant pattern is not easily applied in the
ternary case. For similarity, the coding scheme is split into its pos-
itive and negative halves. For example, the ternary code 0011(-1)(-
1)00 will be split as the positive code 00110000 and the negative one
00001100. Thus, LTPri

P,R has totally 72 different values if P = 8.

Fig. 2. Illustration of the pi-LBP definition.

The idea of pi-LBP is firstly proposed in [18] to tackle the tex-
ture classification issue. In pi-LBP operator, the cross-scale corre-
lation is modelled by quantizing the different scales pixels along a
specific path. Specifically, the definition of pi-LBP will be described
as following. Supposing that G0 = (g0,1, ..., g0,k) is a specific path,
the elements g0,1, ..., g0,k of G0 are the pixels starting with g0,1 = c.
Then, referring to Fig. 2, the rest paths of Gp = (gp,1, ..., gp,k)
can be generated by rotating G0 in an anti-clockwise direction with
(2pπ)/P degree. Specifically, each element gp,i of Gp is the one by
rotating g0,i centered at c with (2pπ)/P degree. Finally, the formal
definition of pi-LBP can be expressed by

pi-LBPP,G0,f
=

P−1∑
p=0

s

(
k∑

i=1

f(i)gp,i

)
2p (4)

where f = (f(1), ..., f(k)) is a filter that satisfies
∑k

i=1 f(i) = 0
to make it invariant against the monotonic gray-scale changes. One
can see from this expression, the pi-LBP depends on three parame-
ters: the number P , the path G0 and the filter f . With the flexible
choices of (P , G0, f ), various types of relationship among neigh-
boring pixels can be considered by pi-LBP.

3. PROPOSED SCHEME

3.1. Rationality of LBP-based steganalyzers

The rationality of LBP-based steganalyzers is illustrated from the
following three points. The first point indicates that the stegana-
lyzers are based on the fact that, the stego noise disturbs the high
spatial correlation existing in neighboring pixels. In LBP operator,
the common texture structures of natural images are represented as
their corresponding uniform binary patterns, e.g., the smooth region
as 00000000 and the object edge as 11110000. The statistical his-
tograms counting those uniform patterns reflect the spatial correla-
tion of images. However, after embedding the stego noise, the his-
tograms may be changed for the disturbances to the uniform patterns.
More specifically, taking the classical Lena image as an example,
Fig. 3 shows the distribution differences of the LBP codes between
the cover image and the stego image embedded by LSB matching.
Here, the bars of histogram with high absolute values are marked by
the corresponding binary numbers of LBP. One can see from that,
after steganography, the smooth region of cover image may be in-
terpolated into the white spot (e.g. 11111111) and the object edge
may be into the irregular form (e.g. 00011101 or 00101111). Based
on the deviation of the distribution, we argue that it is reasonable to
detect LSB matching using LBP.

The second point indicates that a good model of steganalyzer is
usually determined not only by the characteristics of cover images
but also by the effects of stego noise. In LSB matching, the embed-
ding noise randomly increases or decreases the pixel values of cover
images. Here, the interpolation of pixels is symmetrical for the ±1
noise. However, the conventional LBP is not strictly symmetrical for
the rough definition of s(x) at x = 0 in (1). Thus, instead of the bi-
nary pattern, the ternary pattern of LTP [17] is considered in our ste-
ganalyzer to capture the symmetrical changes of LSB matching. For
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Fig. 3. Histogram difference of the 36 dimensional LBPri
P,R be-

tween the cover image and the stego image embedded by LSB
matching at embedding rate 0.1.

Fig. 4. The smooth region of the cover image and the stego image.

example, one smooth region of Fig. 4 may be modified by steganog-
raphy, where the original and modified center pixels are represented
as the same LBP code (00000000) but the different positive codes
of LTP (00000000 and 00010000). In addition, considering the rota-
tional symmetry of natural images, the “ri” strategy is adopted for
the feature dimension reduction.

The third point indicates that the rich features of steganalyzer
need to capture the various types of relationship among neighboring
pixels. In pi-LBP, the correlation of large-scale pixels is captured
to enhance the capacity of modelling the multi-scale noise. Unlike
LBP which only quantizes the difference of two adjacent pixels, the
multi-pixels along a specific path are filtered and then encoded in
pi-LBP. In this way, with flexible choices of paths and filters, the
various correlation can be directly encoded by pi-LBP to improve
the discrimination of features.

Based on the above analysis, we argue that it is reasonable to
detect LSB matching considering the combined features of LTP and
pi-LBP (called pi-LTP).

3.2. pi-LTP in the square rotation

In pi-LBP defined by [18], the sampling points of paths that do
not fall within the pixels are interpolated using bilinear interpola-
tion. However, the modification of each pixel is at most 1 after LSB
matching, so the bilinear interpolation may lead to the interpolation
less obvious. Hence, instead of pi-LBP in the circumferential rota-
tion, we propose a new pi-LBP in the square rotation.

We first give the definition of pi-LBP in the square rotation. Sim-
ilarly as the left figure of Fig. 2, G0 = (g0,1, ..., g0,k) is a path of
the image, where the first element g0,1 may not be the pixel c. For
each element g0,i of G0, taking c as the center, one and the only one
square Si can be determined and the length of its sides is labelled
as li. Then, referring to Fig. 5, along the sides of rectangle Ri, we
move g0,i with the step of 4lip/P pixels in length to get the position
of gp,i of Gp. That is to say, the Gp is obtained by rotating each
element in a square track. So the proposed method is called pi-LBP

Fig. 5. Illustration of the pi-LBP in the rectangular rotation.

in the square rotation. It should be noted that, if the elements of G0

are right in the center of pixels, all elements of the other paths Gp

will also exactly locate in the center.
As illustrated above, we also adopt the ternary pattern to the pi-

LBP, and the formal definition of pi-LTP can be expressed by

pi-LTPP,G0,f,t
=

P−1∑
p=0

s′
(

k∑
i=1

f(i)gp,i, t

)
2p (5)

where the function s′(x, t) is defined in (3). Same as the con-
ventional LBP, we also adopt the “ri” strategy in our method
(pi-LTPri

P,G0,f,t
) for feature dimension reduction.

3.3. The greedy incremental algorithm

The proposed pi-LTP depends on four parameters: the number P , the
path G0, the filter f and the value t. In this paper, we take P = 8
like most LBP variants and t ∈ {0, 1} that will be discussed in the
experimental section. The remaining parameters of G0 and f are
firstly enumerated respectively. Then the pair of them (G0, f) is se-
lected by a greedy strategy. To be specific, the filter f selects some
widely used high-pass filters listed in Table 1 for the sake of simplic-
ity. And the path G0 enumerates the combinations of the successive
pixels starting from the center pixel or its right neighboring pixel. As
for selecting the pair of (G0, f), we propose a greedy incremental
algorithm to get a good trade-off between the feature dimensionality
and discrimination. In this algorithm, the local optimal parameter
(G∗

0, f
∗) whose prediction error localE is minimum, will be prior-

itized by our final features fea. Then, if the localE is smaller than
the global prediction error globalE, the features of pi-LTPri

P,G∗
0 ,f

∗,t
with P = 8 and t = 0, 1 will be appended to the features fea. The
following pseudocode summarizes the algorithm:

Algorithm 1 The greedy incremental algorithm

1: Initialize fea← {}, globalE ← 1.
2: while True do
3: # Get the local optimal parameter (G∗

0, f
∗).

4: localE ← 1
5: for Each filter f and path G0 do
6: Train and test to obtain the error E for the feature
{fea, pi-LTPri

8,G0,f,0
, pi-LTPri

8,G0,f,1
}.

7: if E < localE then
8: localE ← E, (G∗

0, f
∗)← (G0, f).

9: end if
10: end for
11: # Update the optimal parameter fea.
12: if localE < globalE then
13: globalE ← localE.
14: fea← {fea, pi-LTPri

8,G∗
0 ,f

∗,0, pi-LTP
ri
8,G∗

0 ,f
∗,1}.

15: else
16: Break the loop.
17: end if
18: end while
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Fig. 6. Comparison of ROC curves between the proposed method and the methods of Gao et al. [6], Zheng et al. [21], Cogranne et al. [22],
Lerch-Hostalot et al. [23], Tomas et al. [7], Gui et al. [16], Fridrich et al. [8], for the 10,000 gray-scale images of Bossbase 1.01.

Table 1. Filters.

k = 2 (−1, 1)
k = 3 (−3, 2, 1), (−2, 1, 1), (1,−2, 1), (1, 1,−2)
k = 4

(−4, 2, 1, 1), (−3, 1, 1, 1)
(1,−1,−1, 1), (1,−1, 1,−1), (1, 1,−1,−1)

Table 2. Comparison of AUC for LTP for different t at embedding
rates of 0.30, 0.10 and 0.05 bpp.

t FD q = 0.30 q = 0.10 q = 0.05
0 72 0.916 0.802 0.714
1 72 0.763 0.633 0.573
2 72 0.653 0.555 0.527

0,1 144 0.942 0.886 0.830
0,1,2 216 0.954 0.905 0.853

4. EXPERIMENTAL RESULTS

Our experiments are set and conducted on the BOSSbase 1.01
database [24], which contains 10,000 gray-scale images of size 512
× 512. To evaluate the performances of the proposed feature sets, we
embed the images by the LSB matching with the embedding rates of
0.30, 0.10 and 0.05 bpp. As for the parameters of pi-LTPri

P,G∗
0 ,f

∗,t,

two parameters are taken into consideration. The value of t is cho-
sen from {0, 1, 2} and the pair of (G0, f) is obtained by training
cover images and stego images at the embedding rate 0.10 with the
Algorithm 1. Finally, we compare our pi-LBP and pi-LTP stegan-
alyzers to the prior state-of-the-art methods. Here, the measures
under the receiver operating characteristic (ROC) curve and the area
under curve (AUC) are used to evaluate the performances of the ste-
ganalyzers. For consistency, the features of all compared methods
are trained and classified using ensemble classifiers [19], in 10-fold
cross validation mode.

Above all, the comparison of AUC of LTP with different t is
shown in Table 2, where “FD” means the feature dimension. One can
see from that, the AUC for LTP when t = 2 is mostly close to 0.5 that
corresponds to random guessing. That is because the modification of
each pixel value after embedding is at most 1. So, we choose t = 0
and t = 1 in our steganalyzer for the trade-off between detection
accuracy and feature dimension. Besides, based on our experiment,
the Algorithm 1 totally obtains 27 pairs of (G0, f). Therefore, the
feature dimension of pi-LBP is 27 * 2 * 36 = 1944 in pi-LBP and the
one of pi-LTP is 27 * 2 * 72 = 3888.

Further experimental results of ROC for different steganalyzers
are shown in Fig. 6. Our method is evaluated by comparing with
seven targeted steganalyzers of Gao et al. [6], Zheng et al. [21],
Cogranne et al. [22], Lerch-Hostalot et al. [23], Tomas et al. [7],
Gui et al. [16] and Fridrich et al. [8]. It should be mentioned that the
last steganalyzer [8], called rich model, is the state-of-the-art method
with feature dimension 34671 and has the highest detection accuracy
we have known so far.

One can see from Fig. 6 that: 1) Except for the rich model, our
method pi-LBP (black solid curve) is significantly superior to the
other methods at all embedding rates, proving the effectiveness of
detecting LSB matching by pi-LBP. 2) Our improved method pi-LTP
(red solid curve) further improves the case of pi-LBP and its advan-
tage over other methods [6, 7, 16, 21–23] is more obvious. 3) The
rich model in [8], is an effective steganalyzer with the highest detec-
tion accuracy we have known so far. This method is slightly better
than pi-LTP. However, the dimensionality of rich model is 34671
while pi-LTP only has 3888 dimension features. 4) At the embed-
ding rate of 0.30, 0.10 and 0.05 bpp, the AUCs of the pi-LTP are
0.992, 0.970 and 0.941 respectively, while the ones of rich model are
0.996, 0.979 and 0.956 respectively. This means our method has a
competitive ability of detection at small embedding rates with lower
feature dimension. In conclusion, the experimental results show that
our method has a good trade-off between the detection accuracy and
the feature dimension. Besides, it can effectively detect LSB match-
ing and is better than some state-of-the-art targeted steganalyzers.

5. CONCLUSION AND RELATION TO PRIOR ART

Towards the specific disturbances caused by steganography, in this
paper, the combined feature of LTP and pi-LBP is proposed to ex-
tract the critical dissimilarities between the cover and stego images.
With diverse and flexible parameters, the proposed pi-LTP describes
the dissimilarities from multiple angles. To further select the opti-
mal subspace of pi-LTP features, a greedy incremental algorithm is
utilized to achieve a good trade-off between the feature dimensional-
ity and discrimination. Experimental results on the BOSSbase 1.01
database verify the superiority of our method.

To our best knowledge, the steganalysis of LSB matching based
on LBP has not been studied so far. But the finite research results
have shown the great potential of LBP-based features for steganal-
ysis. In the further, we would like to investigate a larger subspace
of pi-LTP feature, where the major challenge would be dealing with
high feature dimensionality.
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[14] G. Zhao and M. Pietikäinen, “Dynamic texture recognition
using local binary patterns with an application to facial expres-
sions,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no. 6,
pp. 915–928, Jun. 2007.

[15] C. Shan, S. Gong, and P. W. McOwan, “Facial expression
recognition based on local binary patterns: A comprehensive
study,” Image and Vision Computing, vol. 27, no. 6, pp. 803–
816, May 2009.

[16] X. Gui, X. Li, and B. Yang, “Steganalysis of lsb matching
based on local binary patterns,” in Proc. IEEE IIH-MSP, 2014.

[17] X. Tan and B. Triggs, “Enhanced local texture feature sets
for face recognition under difficult lighting conditions,” IEEE
Trans. Image Process., vol. 19, no. 6, pp. 1635–1650, Jun.
2010.

[18] Q. Lin and W. Q, “Multi-scale local binary patterns based on
path integral for texture classification,” in Proc. IEEE ICIP,
2015.
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