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ABSTRACT
In this paper, we propose a novel image interpolation algorithm suit-
able for general scale enlargement. Different from previous AR-
based interpolation algorithms which employ predetermined refer-
ence configuration to predict pixel values, we consider the context
information when building AR models. Optimal references are se-
lected by incorporating nonlocal-based correlation coefficient and
the indicator for local edge direction. Furthermore, the multiplanar
constraint among similar patches is applied to enhance the correla-
tion within the estimation window and serves as a kind of supple-
ment to data fidelity term in AR model. The experimental results
show that our method is effective in several enlargement scales and
successfully alleviate the artifacts nearby edges and preserve their
sharpness. The comparison experiments demonstrate that the pro-
posed method can obtain desirable performance in terms of both ob-
jective and subjective results.

Index Terms— Autoregressive (AR), context modeling, inter-
polation, general scale, multiplanar

1. INTRODUCTION

Image interpolation refers to generating high resolution (HR) im-
age utilizing the information of the low resolution (LR) image. The
technique has been widely studied and become a hot research topic
in image processing area. Its applications range from video commu-
nication, digital photograph enhancement to medical analysis.

The most essential task for image interpolation is to choose a
proper model that can easily characterize the image texture and edge
information. Accordingly, interpolation algorithm can be roughly
classified into three categories: polynomial-based, edge-directed and
learning-based methods. Polynomial-based methods, such as Bilin-
ear, Bicubic [1] and Cubic Spline [2] estimate the missing pixels
by convolving neighbouring pixels within a predetermined kernel.
This kind of method is easy to implement and costs low computa-
tional resources, but pixels are treated identically ignoring the var-
ious local structures. Therefore, these methods lead to unpleasant
results. Since the human visual system is sensitive to edges, many
edge-directed interpolation algorithms are published. In studies [3]
and [4], explicit edge information such as isophotes is calculated,
and used as guidance for interpolation. To avoid the difficulty of
detecting edge direction, AR model is developed using statistics to
characterize edge structure. Li and Orchard [5] proposed a new
edge directed interpolation method (NEDI). It exploited the geomet-
ric duality between LR covariance and HR covariance to estimate
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HR pixels. Based on NEDI, Zhang and Wu [6] introduced a soft-
decision adaptive interpolation algorithm (SAI). An extra AR model
was added and HR pixels in a local window were estimated by solv-
ing a least-square problem. In [7], similarity modulated AR model
was proposed to solve the inconformity in the local window.

Although AR-based interpolation algorithms can obtain good re-
sults, there still exists limitation that these algorithms can only be ap-
plied in 2× or 2m× enlargement problem. With the rapid develop-
ment of mobile phone and smart devices, resolution of video and im-
age differs greatly between devices and the arbitrary scaling method
is needed. To address this problem, Wu et al. [8] proposed an adap-
tive resolution up-conversion method providing support for general
scale enlargement. Our previous work [9] proposed a adaptive gen-
eral scale interpolation (AGSI) for the same reason. By reconstruct-
ing the AR model and adding a weighting map to the model, AGSI
was proved to be a method of state-of-the-art performance. How-
ever, the aforementioned AR-based methods employ fixed model
references such as pixels in diagonal-direction or cross-direction ig-
noring complicated and anisotropic dependencies in natural images.
Some learning-based methods [10][11] can provide arbitrary scale
enlargement, but their training processes are very time-consuming.
Also, the results of learning-based methods significantly depend on
sufficient similarity patterns in external database or the image itself.

In this paper, to overcome the drawbacks of existing AR-based
interpolation algorithms, we proposed a novel general scale image
interpolation algorithm. Firstly, we modify the fixed spatial refer-
ence configuration of traditional AR model by context-awareness.
Using the context-patch distance, similar patches are collected to
calculate the correlation between center position and candidate ref-
erences. Collaborated with directional indicators which are designed
to measure the direction of the edge, the AR model is reconstructed
by optimal references. Then, multiplanar constraint among patches
are introduced as supplement to data fidelity. Finally, as HR pix-
els and model parameters are unknown, structured total least-square
is used to solve the problem in an iterative manner. Experimental
results demonstrate that our method is successful in modelling the
piecewise stationary assumption of natural images and achieves de-
sirable performance from both objective and subjective perspectives.

The rest of the paper is organized as follows: Section 2 gives
a brief review of AR model and shortly introduces the concept of
context. Section 3 describes the novel general scale interpolation
algorithm in detail. Experimental results and analysis are presented
in Section 4. Finally, Section 5 concludes and remarks this paper.

2. CONTEXT AUTOREGRESSIVE (AR) MODEL

2.1. Autoregressive (AR) Model

In statistics and signal processing, an autoregressive (AR) model is
a representation of a type of random process. Owing to its ability to
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well formulate stochastic structure of sequential data, AR model is
often utilized to model and predict various types of structural signals.
Typically, a 2-D image signal X(m,n) can be modeled as an AR
process as follows,

X(m,n) =
∑

(i,j)∈Ω

ϕ(i, j)X(m+ i, n+ j) + σ, (1)

where Ω and ϕ(i, j) represent adjacent neighbours of pixelX(m,n)
and their corresponding weights (parameters of the AR model), re-
spectively; σ is the estimation error. The formula attempts to char-
acterize local structures around the unknown pixel and use the infor-
mation to predict its value.

2× enlargement interpolation methods in [6][7] used two sets of
AR model to predict missing HR pixels utilizing the geometric dual-
ity between HR and LR pixels. Later, [9] generalized the method to
arbitrary scales by using HR pixels themselves as reference because
variations of enlargement scale make it hard to maintain the geomet-
ric duality between HR and LR pixels. The model is formulated as
follows

min
y,a,b

{
α‖yc − Ay‖2 + β‖yc − By‖2 + λ‖x− Dyc‖

2
2

}
, (2)

where vector y consists of pixels in a local windows Wof the input

HR image and y =

[
yc
yb

]
, vector yb refers to pixels on the boundaries

of W while vector yc refers to others; vector x consists of LR pixels
in corresponding LR windows; matrix A and B are constructed by
paramters a and b of corresponding AR model respectively; and ma-
trix D represents the Bicubic down-sampling process. Since y and
model parameters are both unknown, a structural total least-square
based iterative process is used to solve the problem.

2.2. Context Modeling Prediction

Traditional piecewise AR models including the method mentioned
above usually fix their model order and spatial reference empirically
and the configuration remains the same throughout the estimation
process. There are two drawbacks of the kind of AR model. First, the
spatial reference selecting approach may not pick the optimal con-
figuration. A predetermined reference configuration is very likely to
be suboptimal because it may take adjacent but irrelevant pixels into
consideration and miss further but relevant ones in model estimation,
thus leads to estimation bias. Second, a unified reference configura-
tion does not fit for all pixels which belong to different regions with
different patterns and structures. To overcome these drawbacks, at-
tempts are made to model the context awareness for AR model. In
[12], Wu et al. proposed a method utilising correlation to choose
both predictor reference and training set of AR model for every un-
known pixel. The new technique is applied in lossless image coding
and achieves superb performance. In this paper, we develop a more
complex context modelling predictor for traditional AR model based
on [12]. The detail will be presented in Section 3.1

3. THE GENERAL SCALE INTERPOLATION
ALGORITHM

In this section, we present an algorithm for general scale image in-
terpolation. First, a novel AR model based on context-aware mod-
ification is described, context-patch distance and a deliberately de-
signed directional indicator are used to help determine the optimal
model reference. Then, a multiplanar constraint exploiting nonlocal
similarity is incorporated into AR model to enhance the correlation

between pixels. Finally, our generalized interpolation algorithm is
performed in detail.

3.1. Context-Aware Adaptive Prediction

In order to better model local image structures, we extend the fixed
spatial reference configuration of AR model to a changeable ones.
By considering context of the missing pixels, we choose the proper
reference configuration for them individually. In this way, we can
make the AR prediction more accurate and stable.

3.1.1. Context Based Patch Distance

Different with traditional AR model, we replace the fixed neighbour-
ing references with a candidate reference set denoted as Φ(yi) =
{φ1(yi), φ2(yi), · · · , φM (yi)}, where yi is the pixel to be esti-
mated. Wr represents the window containing all possible candidate
references. The critical problem is how to determine the correlation
levels between candidate positions and the central position where yi
lies. To solve this problem, we firstly collect a set of patches that are
similar to Wr(yi):

T = {y | ‖d (Wr(y),Wr(yi))‖ ≤ τT } , (3)

where d(·, ·) measure the distance between two patches and τT is the
threshold. Since most of the HR pixels are unknown, their values are
approximated by the Bicubic method for initialization.

In order for more accurate patch matching, context-patch dis-
tance proposed in [13] is used. This method benefits both advan-
tages of the small patch and the large patch by concatenate the reg-
ular content of a small patch with the compact representation of its
large surroundings. First, similarity weights between central patch
xi and its surrounding patches xj ∈ N(i) are measured:

wij = exp

{
−‖xi − xj‖22

2σ2

}
, ∀j ∈ N(i). (4)

A largerwij indicates two patches are similar while a smaller one in-
dicates the two are basically different. Then, these similarity weights
are rearranged into a histogramH of b-bins (e.g. b = 8). In our prac-
tice, the size of small patch and its surrounding windows are set to
5 × 5 and 11 × 11, respectively. After that, we define the distance
function by combining the distance of small patch and correspond-
ing histogramH together

d(xi, xj) = ‖xi − xj‖22 + ‖H(xi)−H(xj)‖22. (5)

With Eq. (3) and Eq. (5), we obtain the similar patch set T . Af-
terwards, using these similar patches which are supposed to have
homogeneous patterns, correlation coefficients between central po-
sition and candidate references positions are calculated as follow

ρφm =

∑
y∈T

φm(y)y − 1
|T |

∑
y∈T

y
∑
y∈T

φm(y)√∑
y∈T

y2 − 1
|T | (

∑
y∈T

y)2
√∑
y∈T

φm(y)2 − 1
|T | (

∑
y∈T

φm(y))2
.

(6)

3.1.2. Direction Guided Model Reference

Besides correlation coefficients, we also introduce a directional
statistics indicator to help decide the model reference. For each
pixel position in Wr , we consider the directions given by the lines
joining the central position and themselves. Indexes of these direc-
tions are shown in Fig. 1(a).
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Fig. 1. (a) 8 directions. Black dot is the central pixel. Pixels in blue
squre are nearest neighbour for central pixel. (b) Values of rk

Direction k is represented by a vector V = (hk, vk) where hk
and vk are the horizontal and vertical distance between central po-
sition and its nearest neighbour in corresponding direction, respec-
tively. Let pixel values in HR image be denoted as H(i, j), differen-
tial values of neighbouring pixels at each direction are collected,

∆I(hk, vk) =

{
H(i, j)−H(i+ hk, j + vk)√

h2
k + v2

k

}
. (7)

Let µk and σ2
k represent the mean and variance of ∆I(hk, vk), re-

spectively. The directional indicator for direction k is obtained as

rk =
1

log2(σ2
k + µ2

k)
. (8)

For normalization, r is scaled or shifted to make its value within
(0, 1]. The indicator is significant, only when both variance and
mean of ∆I(hk, vk) are small, which means that edge is along the
direction and pixels in this direction are of large continuity. We can
put more importance on pixels in directions with a large r value. Our
ranking mechanism combines correlation coefficient and directional
indicator together and is shown below

Rφm =
ρφm · rk
|φm|

, (9)

where k indicates the the direction φm belongs to and |φm| refers to
the distance between φm and central position. With Eq. (9), we can
reorder the candidate reference set as follows

Φ(yi) = {φ1(yi), φ2(yi), ..., φM (yi), Rφ1 ≥ Rφ2 ≥ ...RφM }.
(10)

Since we have two sets of AR model, we divide Wr into two parts
as shown in Fig.2. Correspondingly, candidate references are di-
vided into two subsets Φd and Φc. Those candidates with high rank-
ings are selected as reference in corresponding AR model. Thus,
a = {aφd

1
, ..., aφd

P
}, b = {bφc

1
, ..., bφc

Q
}. P and Q are the num-

bers of selected references in corresponding AR model and obtained
by satisfy two conditions: Rφd

P
(Rφc

Q
) ≥ τR and if P (Q) < 4,

P (Q) = 4.

(a) diagonal-direction (b) cross-direction

Fig. 2. Two sets of AR model. Black dot represents the central pixel
while blue dots represents candidate references of AR model.

3.2. Multiplanar Constraint

When interpolation operation is performed in W , pixel values are
constrained by their neighbouring reference pixels. Generally, there
is a magnitude difference between W and Wr . Thus, the constraint
imposed by AR parameters merely presents a small part of relations
between pixels. Due to the abundant similarities in natural images,
there exists plenty nonlocal correlations that can be use to get a more
promising interpolation results. Also, the least-square problem for
AR model makes it easy to integrate other constraints.

Here, we introduce the multiplanar constraint to utilize larger
scale correlations within W . Similar patches, scales of which are
approximately the same as Wr , are collected. The distance function
here is defined as follows:

dis(yj , yi) = ‖yj − yi‖
2
2 + η‖ 5 yj −5yi‖

2
2 (11)

where5 denotes the gradient operator and η is a parameter used to
balance the contribution of two terms. Based on Eq. (11), a similar
patch set compared with central patch is collected in W

S =

{
x | exp

{
−dis(x, xi)

α

}
≥ τS , x ∈W

}
, (12)

where xi represents the central patch in W and τS is a threshold and
α is the parameter to control the shape of the exponential function.
When all the similar patches are stacked together, HR pixels in same
position should be alike with each other. Thus, we construct the
multiplanar constraint term as follow∑

m∈S

∑
i∈Pm

(
yPm
i − ȳi

)2

, (13)

where Pm and yPmi denote the mth patch in S and the ith pixels
in the corresponding patch, respectively; ȳi represents the average
pixel values at the ith position of the patch.

3.3. The Generalized Interpolation Algorithm

By adding the weighting map W to Eq. (2), combining with Eq. (13)
we can get the complete version of objective function

min
y,a,b
{α‖W(yc − Ay)‖2 + β‖W(yc − B)y‖2

+λ1‖x− Dyc‖
2
2 + λ2‖Ey‖22},

(14)

where A and B are constructed by parameter a and b which are de-
fined in Section 3.1. Our previous works [7] and [9] analyze the
reason and effect of using weighting map in AR model. And the
weighting method in [9] is used here directly.

The objective function can be represented by a least-square
problem as

min
y,a,b
‖R(y, a, b)‖2 , (15)

R(y, a, b) =


√
αW(yc − Ay)√
βW(yc − By)
√
λ1(x− Dyc)√
λ2Ey

 . (16)

To solve the problem, the structure total least-square solution are

used. Let ∆y =

[
∆yc
∆yb

]
, ∆a a and ∆b be the small changes in y, a

and b, respectively. The pixels on the boundaries are kept invariant
for the purpose of better constraining the pixels in W . Thus, ∆yb
equals to zero.
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After the matrix transformation and operation, we reduce the
problem into a convenient representation

min
∆y,∆a,∆b

‖R(y, a, b)− C ·∆R‖2 , (17)

given

C =


√
αW(−I + Ac) F1 0√
βW(−I + Bc) 0 F2√

λ1D 0 0
−
√
λ2E 0 0

 ,
∆R = [∆yc,∆a,∆b]T .

Hence, given the initial values of y, a and b, we can calculate
∆R and use it to update y, a and b for next iteration. The initial
values of a and b are set to ( 1

P
, 1
P
, · · · , 1

P
) and ( 1

Q
, 1
Q
, · · · , 1

Q
) in

our implementation. Besides, coefficients α, β, λ1 and λ2 are set
to 0.2, 0.3, 0.5, 0.1 empirically. The iterative process is of high
computational expense. We only apply the proposed method on
high-frequency regions. Moreover, context selecting process is per-
formed only when top three directional indicators introduced in Sec-
tion 3.1.2 are adjacent to each other as shown in Fig.1(b), which
means there is a significant edge in the local window and our al-
gorithm works well for regions of this kind. Also, we output the
central 3× 3 patch for each estimation. Although performance may
drop slightly, it accelerates the processing speed 9 times and makes
the proposed algorithm more effective.

4. EXPERIMENTAL RESULTS

The proposed interpolation is implemented on MATLAB 8.6 plat-
form. To evaluate the general performance of our method, we choose
1.5 and 1.7 as the enlargement scales and the proposed algorithm is
compared with Bicubic, Wu’s Work [8] and our previous work AGSI
[9]. In addition, the proposed algorithm is compared with state-of-
the-art dedicated 2× interpolation algorithms, such as SAI [6] and
SAGA [4] and AGSI is also used as comparison. Our interpolation
method was tested in a large amount of images. The testing images
are selected from Kodak and USC-SIPI image databases.

For an enlargement scale s, we generate the LR image by down-
sampling the original HR image with the scale of 1/s first. And
then different methods are applied to generate the HR images from
the LR images. Peak Signal-to-Noise Ratio (PSNR) is used as the
objective criterion to evaluate the experiment results.

Table 1. PSNR(dB) results of different methods at arbitrary scales

Images Scale Bicubic Wu’s AGSI Proposed
Cameraman

1.7

27.64 26.39 28.68 28.79
House 24.68 22.73 24.99 25.18

LightHouse 29.22 27.64 29.80 29.84
Monarch 34.27 31.72 35.20 35.46

Lena

1.5

37.67 35.61 38.29 38.28
Baboon 26.19 24.72 26.50 26.69

Bike 29.94 27.57 31.26 31.47
House 26.23 23.60 27.00 27.13

Average 29.48 27.51 30.22 30.36

Results of 1.5×, 1.7× and 2× enlargement are shown in Table
1 and Table 2. From Table 1, we can conclude that the proposed in-
terpolation algorithm achieves better performance in general scales
interpolation compared with previous works and is suitable for gen-
eral enlargement. Furthermore, 2× enlargement results shown in

Table 2. PSNR(dB) results of different methods, 2× enlargement

Images Bicubic SAI SAGA AGSI Proposed
Child 35.49 35.63 35.22 35.49 35.62
Lena 34.01 34.76 34.42 34.49 34.58

Cameraman 25.51 25.99 25.98 25.55 25.83
Airplane 29.40 29.62 29.02 29.87 29.94

Status 31.36 31.78 31.76 31.35 31.49
Sailboat 30.12 30.69 30.56 30.39 30.80

Bike 25.41 26.28 25.90 25.85 26.07
LightHouse 26.97 26.70 27.23 27.13 27.23

Average 29.67 29.84 29.80 29.69 29.86

Table 2 implies that our method is competitive with state-of-the-art
interpolation method which are well designed for 2× enlargement.

(a) 1.7× enlargement on Cameraman

(b) 2× enlargement on Sailboat

Fig. 3. Subjective image quality comparison. From left to right:
original image, Bicubic, AGSI, proposed method.

Specifically, the proposed method presents more desirable per-
formance than other methods on long, sharp edges and large scale
textures. Subjective image quality is demonstrated in Fig.3. In gen-
eral scale (Fig.3(a)) and 2× enlargement (Fig.3(b)), Bicubic method
produces evident zigzag artifacts, while AGSI maintains sharp edge
in most places but fails on other parts with jags and ringing. Our
method not only preserves the sharpness but also the continuity of
edges, thus acquires better visual quality.

5. CONCLUSION

In this paper, we present a novel general scale interpolation algo-
rithm employing context-aware modification to AR model. By se-
lecting the proper reference according to context information from
a relatively large region, a more reliable AR model is built. It ex-
cludes some reference pixels that are irrelevant with prediction so
as to reduce the noise. Meanwhile, it includes some closely related
reference pixels that are ignored in traditional models due to their
long distance from central pixels, increasing the model precision and
stability. Also, we design the multiplanar constraint among similar
patches as a kind of supplement to data fidelity, which helps to pre-
serve more structural information. The experimental results show
that the proposed algorithm works well for edges and achieves best
performance in several enlargement scales.
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