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a b s t r a c t 

Deep neural networks (DNN) have shown unprecedented success in various computer vision applications 

such as image classification and object detection. However, it is still a common annoyance during the 

training phase, that one has to prepare at least thousands of labeled images to fine-tune a network to a 

specific domain. Recent study (Tommasi et al., 2015) shows that a DNN has strong dependency towards 

the training dataset, and the learned features cannot be easily transferred to a different but relevant 

task without fine-tuning. In this paper, we propose a simple yet powerful remedy, called Adaptive Batch 

Normalization (AdaBN) to increase the generalization ability of a DNN. By modulating the statistics from 

the source domain to the target domain in all Batch Normalization layers across the network, our ap- 

proach achieves deep adaptation effect for domain adaptation tasks. In contrary to other deep learning 

domain adaptation methods, our method does not require additional components, and is parameter-free. 

It archives state-of-the-art performance despite its surprising simplicity. Furthermore, we demonstrate 

that our method is complementary with other existing methods. Combining AdaBN with existing domain 

adaptation treatments may further improve model performance. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

Training a DNN for a new image recognition task is expensive.

t requires a large amount of labeled training images that are not

asy to obtain. One common practice is to use labeled data from

ther related source such as a different public dataset, or harvest-

ng images by keywords from a search engine. Because (1) the dis-

ributions of the source domains (third party datasets or Internet

mages) are often different from the target domain (testing im-

ges); and (2) DNN is particularly good at capturing dataset bias

n its internal representation [2] , which eventually leads to over-

tting, imperfectly paired training and testing sets usually leads to

nferior performance. 

Known as domain adaptation, the effort to bridge the gap be-

ween training and testing data distributions has been discussed

everal times under the context of deep learning [3–6] . To make

he connection between the domain of training and the domain

f testing, most of these methods require additional optimization

teps and extra parameters. Such additional computational burden
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ould greatly complicate the training of a DNN which is already

ntimidating enough for most people. 

In this paper, we propose a simple yet effective approach called

daBN for batch normalized DNN domain adaptation. We hypothe-

ize that the label related knowledge is stored in the weight matrix

f each layer, whereas domain related knowledge is represented by

he statistics of the Batch Normalization (BN) [7] layer. Therefore,

e can easily transfer the trained model to a new domain by mod-

lating the statistics in the BN layer. This approach is straightfor-

ard to implement, has zero parameter to tune, and requires min-

mal computational resources. Moreover, our AdaBN is ready to be

xtended to more sophisticated scenarios such as multi-source do-

ain adaptation and semi-supervised settings. To summarize, our

ontributions are as follows: 

• We propose a novel domain adaptation technique called Adap-

tive Batch Normalization (AdaBN). We show that AdaBN can

naturally dissociate bias and variance of a dataset, which is

ideal for domain adaptation tasks. 
• We validate the effectiveness of our approach on standard

benchmarks for both single source and multi-source domain

adaptation. Our method achieves state-of-the-art results. 
• We conduct experiments on the cloud detection for remote

sensing images to further demonstrate the effectiveness of our

approach in practical use. 

https://doi.org/10.1016/j.patcog.2018.03.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
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The rest of the paper is organized as follows. Related works are

briefly reviewed in Section 2 . In Section 3 , we introduce a pilot

experiment to analyze the domain shift in deep neural networks,

and then present the details of the proposed AdaBN algorithm.

Section 4 shows the experimental results of our proposed method

and we also evaluate a practical application with remote sensing

images. Finally, concluding remarks are given in Section 5 . 

2. Related works 

Domain transfer in visual recognition tasks has gained increas-

ing attention in recent literature [8–14] . Often referred to as co-

variate shift [15] or dataset bias [2] , this problem poses a great

challenge to the generalization ability of a learned model. One key

component of domain transfer is to model the difference between

source and target distributions. In [16] , the authors assign each

dataset with an explicit bias vector, and train one discriminative

model to handle multiple classification problems with different

bias terms. A more explicit way to compute dataset difference is

based on Maximum Mean Discrepancy (MMD) [17] . This approach

projects each data sample into a Reproducing Kernel Hilbert Space,

and then computes the difference of sample means. To reduce

dataset discrepancies, many methods are proposed, including sam-

ple selections [18–20] , explicit projection learning [21–23] , princi-

pal axes alignment [24–27] and non-negative embedding [28] . 

All of these methods face the same challenge of construct-

ing the domain transfer function – a high-dimensional non-linear

function. Due to computational constraints, most of the proposed

transfer functions are in the category of simple shallow projec-

tions, which are typically composed of kernel transformations and

linear mapping functions. In our method, we take advantage of the

deep structure of the neural networks to achieve highly non-linear

transformations with deep adaptation. 

In the field of deep learning, feature transferability across differ-

ent domains is a tantalizing yet generally unsolved topic [1,29] . To

transfer the learned representations to a new dataset, pre-training

plus fine-tuning [30] have become de facto procedures. However,

adaptation by fine-tuning is far from perfect. It requires a consid-

erable amount of labeled data from the target domain, and non-

negligible computational resources to re-train the whole network.

Instead, the proposed method is designed for the unsupervised do-

main adaptation which needs no label information from the target

domain. 

A series of progress has been made in DNN to facilitate do-

main transfer. Early works of domain adaptation either focus on

reordering fine-tuning samples [31] , or regularizing MMD [17] in

a shallow network [32] . It is only until recently that the problem

is directly attacked under the setting of classification of unlabeled

target domain using modern convolutional neural network (CNN)

architecture. DDC [3] used the classical MMD loss to regularize the

representation in the last layer of CNN. DAN [4] further extended

the method to multiple kernel MMD and multiple layer adapta-

tion. Besides adapting features using MMD, RTN [33] also added a

gated residual layer for classifier adaptation. RevGrad [6] devised

a gradient reversal layer to compensate the back-propagated gradi-

ents that are domain specific. Recently, by explicitly modeling both

private and shared components of the domain representations in

the network, Bousmalis et al. [34] proposed a Domain Separation

Network to extract better domain-invariant features. All the above

methods design specific layers or structure for the neural network

to generate better representations for data from target domain. Dif-

ferently, our method only modulates the statistic of BN layers with

very light-weight computation and no additional components or

parameters, which is desirable for practical domain adaptation. 

Another related work is CORAL [35] . This model focuses on

the last layer of CNN. CORAL whitens the data in source domain,
nd then re-correlates the source domain features to target do-

ain. This operation aligns the second order statistics of source

omain and target domain distributions. Surprisingly, such simple

pproach yields state-of-the-arts results in various text classifica-

ion and visual recognition tasks. Recently, Deep CORAL [36] also

xtends the method into DNN by incorporating a CORAL loss. Dif-

erent from CORAL methods which only transform features in the

ast layer of CNN, our method can achieve deep adaptation by ap-

lying in all BN layers inside neural networks. 

Conditional Batch Normalization (CBN) [37–40] shares similar

deas with our method to modify the batch normalization layer

or different tasks. It has been proven effective for image styliza-

ion [37] and visual question answering [38] . Besides the different

arget tasks, another main difference between CBN and our method

s that CBN modulates the trainable scaling parameters in BN lay-

rs as a function of specific input, while our method only updates

he mean and variance statistics in BN layers without additional

omponents or parameters. 

.1. Batch normalization 

In this section, we briefly review Batch Normalization

BN) [7] which is closely related to our AdaBN. The BN layer is

riginally designed to alleviate the issue of internal covariate shift-

ng – a common problem while training a very deep neural net-

ork. It first standardizes each feature in a mini-batch, and then

earns a common slope and bias for each mini-batch. Formally,

iven the input to a BN layer X ∈ R 

n ×p , where n denotes the batch

ize, and p is the feature dimension, BN layer transforms a feature

j ∈ { 1 . . . p} into: 

ˆ 
 j = 

x j − E [ X · j ] √ 

Var [ X · j ] 
, y j = γ j ̂  x j + β j , (1)

here x j and y j are the input/output scalars of one neuron re-

ponse in one data sample; X · j denotes the j th column of the input

ata; and γ j and β j are parameters to be learned. This transforma-

ion guarantees that the input distribution of each layer remains

nchanged across different mini-batches. For Stochastic Gradient

escent optimization, a stable input distribution could greatly fa-

ilitate model convergence, leading to much faster training speed

or CNN. Moreover, if training data are shuffled at each epoch,

he same training sample will be applied with different trans-

ormations, or in other words, more comprehensively augmented

hroughout the training. During the testing phase, the global statis-

ics of all training samples is used to normalize every mini-batch

f test data. 

Extensive experiments have shown that BN significantly reduces

he number of iteration to converge, and improves the final perfor-

ance at the same time. BN layer has become a standard com-

onent in recent top-performing CNN architectures, such as deep

esidual network [41] , and Inception V3 [42] . 

. Adaptive Batch Normalization for domain adaptation 

In Section 3.1 , we first analyze the domain shift in deep neu-

al network, and reveal two key observations. Then in Section 3.2 ,

e introduce our Adaptive Batch Normalization (AdaBN) method

ased on these observations. 

.1. A pilot experiment 

The Batch Normalization (BN) technique is originally proposed

o help SGD optimization by aligning the distribution of training

ata. From this perspective, it is interesting to examine the BN pa-

ameters (batch-wise mean and variance) over different dataset at

ifferent layers of the network. 
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Fig. 1. t-SNE [47] visualization of the mini-batch BN feature vector distributions in both shallow and deep layers, across different datasets. Each point represents the BN 

statistics in one mini-batch. Red dots come from Bing domain, while the blue ones are from Caltech-256 domain. The size of each mini-batch is 64. (For interpretation of 

the references to color in this figure legend, the reader is referred to the web version of this article.) 
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In this pilot experiment, we use MXNet implementation [43] of

he Inception-BN model [7] pre-trained on ImageNet classification

ask [44] as our baseline DNN model. Our image data are drawn

rom [45] , which contains the same classes of images from both

altech-256 dataset [46] and Bing image search results. For each

ini-batch sampled from one dataset, we concatenate the mean

nd variance of all neurons from one layer to form a feature vec-

or. Using linear SVM, we can almost perfectly classify whether

he mini-batch feature vector is from Caltech-256 or Bing dataset.

ig. 1 visualizes the distributions of mini-batch feature vectors

rom two datasets in 2D. It is clear that BN statistics from different

omains are separated into clusters. 

This pilot experiment suggests: 

1. Both shallow layers and deep layers of the DNN are influenced

by domain shift. Domain adaptation by manipulating the out-

put layer alone is not enough. 

2. The statistics of BN layer contain the traits of the data domain. 

Both observations motivate us to adapt the representation

cross different domains by BN layer. 

.2. Adaptive Batch Normalization 

The core of AdaBN is to adopt domain specific normalization

or different domains. As shown in Fig. 2 , during training, we train

 standard DNN model which is equipped with BN layers with

he available labeled images. For inference, we adopt an online al-

orithm [48] to efficiently and accurately estimate the mean and

ariance, instead of the common moving average scheme in the

raining. Specifically, when given a batch of k simples for the neu-

on j in a BN layer, the mean μj and variance σ 2 
j 

can be updated

lgorithm 1 Adaptive Batch Normalization (AdaBN). 

for neuron j in DNN do 

Collect the neuron responses { x j (m ) } on all images of target

domain t , where x j (m ) is the response for image m . 

Compute the mean and variance of the target domain: μt 
j 

and

σ t 
j 

by Eq. (2). 

end for 

for neuron j in DNN, testing image m in target domain do 

Compute BN output y j (m ) := γ j 

(
x j (m ) −μt 

j 

)

σ t 
j 

+ β j 

end for 
t  
s follows: 

d = μ − μ j , 

μ j ← μ j + 

dk 

n j 

, 

σ 2 
j ← 

σ 2 
j 

n j 

n j + k 
+ 

σ 2 k 

n j + k 
+ 

d 2 n j k 

(n j + k ) 2 
, 

n j ← n j + k, 

(2) 

here μ and σ 2 are the mean and variance of the current input

atch for neuron j , and n j is the stored statistic of the number of

amples for neuron j in the past iterations. Note that the mean

j and variance σ 2 
j 

are initialized as zero and one, respectively.

onsequently, we can update the mean and variance of the whole

arget domain after we iterate over all the samples. 

Given the pre-trained DNN model and a target domain, our

daptive Batch Normalization algorithm is summarized as follows:

The intuition behind our method is straightforward: the stan-

ardization of each layer by domain ensures that each layer re-

eives data from a similar distribution, no matter it comes from

he source domain or the target domain. 

For K domain adaptation where K > 2, we standardize each sam-

le by the statistics in its own domain. During training, the statis-

ics are calculated for every mini-batch, the only thing that we

eed to make sure is that the samples in every mini-batch are

rom the same domain. For (semi-)supervised domain adaptation,

e may use the labeled data to fine-tune the weights as well. As

 result, our method could fit in all different settings of domain

daptation with minimal effort. 

.3. Discussion about AdaBN 

The goal of the domain standardization of each layer in Ad-

BN is to make each layer receive data from a similar distribu-

ion to mitigate the domain shift problem. Our AdaBN shares sim-

lar distribution alignment idea with other common domain dis-

repancy metrics, such as MMD, which is also widely adopted in

omain adaptation. Actually, MMD with Gaussian kernel can be

iewed as minimizing distance between weighted sums of all mo-

ents. Since AdaBN normalizes samples from both two domains

ith zero mean and one variance, it can also be viewed as the

atching of the first moment and the second moments. In addi-

ion, AdaBN matches these two order moment explicitly and does

ot require time-consuming kernel computations in MMD. This ad-

antage also makes AdaBN possible to apply adaptation scheme in-

ide the whole network. 

The simplicity of AdaBN is in sharp contrast to the complica-

ion of the domain shift problem. One natural question to ask is
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Fig. 2. Illustration of the proposed method. The scatter points correspond to the samples from the two domains, respectively. The samples of the two domains are assumed 

to be composed of different underlying distributions which are represented by the distribution lines with different colors. For each convolutional or fully connected layer, 

we use different bias/variance terms to perform batch normalization for the training domain and the test domain. The domain specific normalization mitigates the domain 

shift issue. 
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whether such simple translation and scaling operations could ap-

proximate the intrinsically non-linear domain transfer function. 

Consider a simple neural network with input x ∈ R 

p 1 ×1 . It has

one BN layer with mean and variance of each feature being μi 

and σ 2 
i 

( i ∈ { 1 . . . p 2 } ), one fully connected layer with weight ma-

trix W ∈ R 

p 1 ×p 2 and bias b ∈ R 

p 2 ×1 , and a non-linear transforma-

tion layer f ( · ), where p 1 and p 2 correspond to the input and output

feature size. The output of this network is f (W a x + b a ) , where 

W a = W 

T �−1 
, 

b a = −W 

T �−1 μ + b , 

� = diag (σ1 , . . . , σp 1 ) , 

μ = (μ1 , . . . , μp 1 ) . 

(3)

The output without BN is simply f (W 

T x + b ) . We can see that the

transformation is not simple even for one computation layer. As

CNN architecture goes deeper, it will gain increasing power to rep-

resent more complicated highly non-linear transformations. 

Another question is why we transform the neuron responses in-

dependently, not decorrelate and then re-correlate the responses

as suggested in [35] . Under certain conditions, decorrelation could

improve the performance. However, in CNN, the mini-batch size

is usually smaller than the feature dimension, leading to singular

covariance matrices that is hard to be inversed. As a result, the

covariance matrix is always singular. In addition, decorrelation re-

quires to compute the inverse of the covariance matrix which is

computationally intensive, especially if we plan to apply AdaBN to

all layers of the network. 

4. Experiments 

In this section, we demonstrate the effectiveness of AdaBN on

standard domain adaptation datasets, and empirically analyze our

AdaBN model. We also evaluate our method on a practical applica-

tion with remote sensing images. 

4.1. Experimental settings 

We first introduce our experiments on two standard datasets:

Office [49] and Caltech-Bing [45] . 
Office [49] is a standard benchmark for domain adaptation,

hich is a collection of 4652 images in 31 classes from three

ifferent domains: Amazon ( A ), DSRL ( D ) and Webcam ( W ). Similar

o [3,4,35] , we evaluate the pairwise domain adaption performance

f AdaBN on all six pairs of domains. For the multi-source setting,

e evaluate our method on three transfer tasks { A, W } → D , { A,

 } → W , { D, W } → A . 

Caltech-Bing [45] is a much larger domain adaptation dataset,

hich contains 30,607 and 121,730 images in 256 categories from

wo domains Caltech-256( C ) and Bing( B ). The images in the Bing

et are collected from Bing image search engine by keyword

earch. Apparently Bing data contains noise, and its data distribu-

ion is dramatically different from that of Caltech-256. 

We compare our approach with a variety of methods, in-

luding four shallow methods: mSDA [13] , SA [24] , LSSA [26] ,

FK [25] , CORAL [35] , and four deep methods: DDC [3] , DAN [4] ,

evGrad [6] , Deep CORAL [36] . Specifically, mSDA introduces

arginalized Stacked Denoising Autoencoder to learn better repre-

entation for different domains. GFK models domain shift by inte-

rating an infinite number of subspaces that characterize changes

n statistical properties from the source to the target domain. SA,

SSA and CORAL align the source and target subspaces by explicit

eature space transformations that would map source distribution

nto the target one. DDC and DAN are deep learning based meth-

ds which maximize domain invariance by adding to AlexNet one

r several adaptation layers using MMD. RevGrad incorporates a

radient reversal layer in the deep model to encourage learning

omain-invariant features. Deep CORAL extends CORAL to perform

nd-to-end adaptation in DNN. It should be noted that these deep

earning methods have the adaptation layers on top of the out-

ut layers of DNNs, which is a sharp contrast to our method that

elves into early convolution layers as well with the help of BN

ayers. 

We follow the full protocol [30] for the single source set-

ing; while for multiple sources setting, we use all the samples

n the source domains as training data, and use all the samples

n the target domain as testing data. We fine-tune the Inception-

N [7] model on source domain in each task for 100 epochs. The

earning rate is set to 0.01 initially, and then is dropped by a fac-

or 0.1 every 40 epochs. Since the office dataset is quite small, fol-
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Table 1 

Single source domain adaptation results on Office-31 dataset with standard unsupervised adaptation 

protocol. 

Method A → W D → W W → D A → D D → A W → A Avg 

AlexNet [50] 61.6 95.4 99.0 63.8 51.1 49.8 70.1 

DDC [3] 61.8 95.0 98.5 64.4 52.1 52.2 70.6 

DAN [4] 68.5 96.0 99.0 67.0 54.0 53.1 72.9 

Deep CORAL [36] 66.4 95.7 99.2 66.8 52.8 51.5 72.1 

RevGrad [6] 73.0 96.4 99.2 – – – –

Inception BN [7] 70.3 94.3 100 70.5 60.1 57.9 75.5 

mSDA [13] 66.1 96.2 99.4 69.1 57.3 56.7 74.3 

SA [24] 69.8 95.5 99.0 71.3 59.4 56.9 75.3 

GFK [25] 66.7 97.0 99.4 70.1 58.0 56.9 74.7 

LSSA [26] 67.7 96.1 98.4 71.3 57.8 57.8 74.9 

CORAL [35] 70.9 95.7 99.8 71.9 59.0 60.2 76.3 

AdaBN 74.2 95.7 99.8 73.1 59.8 57.4 76.7 

AdaBN + CORAL 75.4 96.2 99.6 72.7 59.0 60.5 77.2 

Table 2 

Multi-source domain adaptation results on Office-31 dataset with stan- 

dard unsupervised adaptation protocol. 

Method A, D → W A, W → D D, W → A Avg 

Inception BN [7] 90.8 95.4 60.2 82.1 

CORAL [35] 92.1 96.4 61.4 83.3 

AdaBN 94.2 97.2 59.3 83.6 

AdaBN + CORAL 95.0 97.8 60.5 84.4 
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Table 3 

Single source domain adaptation results on 

Caltech-Bing [45] dataset. 

Method C → B B → C Avg 

Inception BN [7] 35.1 64.6 49.9 

CORAL [35] 35.3 67.2 51.3 

AdaBN 35.2 68.1 51.7 

AdaBN + CORAL 35.0 67.5 51.2 
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owing the best practice in [4] , we freeze the first three groups

f Inception modules, and set the learning rate of fourth and fifth

roup one tenth of the base learning rate to avoid overfitting. For

altech-Bing dataset, we fine-tune the whole model with the same

ase learning rate. 

.2. Results 

.2.1. Office dataset 

Our results on Office dataset is reported in Tables 1 and 2

or single/multi source(s), respectively. Note that the first 5 mod-

ls of the Table 1 are pre-trained on AlexNet [50] instead of

he Inception-BN [7] model, due to the specific design based on

lexNet structure or the lack of publicly available implementation

f some methods. Thus, the relative improvements over the base-

ine (AlexNet/Inception BN) make more sense than the absolute

umbers of each algorithm. 

From Table 1 , we first notice that the Inception-BN indeed im-

roves over the AlexNet on average, which means that the CNN

re-trained on ImageNet has learned general features, the im-

rovements on ImageNet can be transferred to new tasks. Among

he methods based on Inception-BN features, our method improves

he most over the baseline. Moreover, since our method is comple-

entary to other methods, we can simply apply CORAL on the top

f AdaBN. Not surprisingly, this simple combination exhibits 0.5%

ncrease in performance. This preliminary test reveals further po-

ential of AdaBN if combined with other advanced domain adap-

ation methods. Finally, we could improve 1.7% over the baseline,

nd advance the state-of-the-art results for this dataset. 

None of the compared methods has reported their performance

n multi-source domain adaptation. To demonstrate the capacity of

daBN under multi-domain settings, we compare it against CORAL,

hich is the best performing algorithm in the single source set-

ing. The result is reported in Table 2 . We find that simply combin-

ng two domains does not lead to better performance. The result is

enerally worse compared to the best performing single domain

etween the two. This phenomenon suggests that if we cannot

roperly cope with domain bias, the increase of training samples

ay be reversely affect to the testing performance. This result con-
rms the necessity of domain adaptation. In this more challenging

etting, AdaBN still outperforms the baseline and CORAL on aver-

ge. Again, when combined with CORAL, our method demonstrates

urther improvements. At last, our method archives 2.3% gain over

he baseline. This improvement should owe to the flexibility of Ad-

BN to extend to multi-source domain adaptation. As explained in

ection 3.2 , AdaBN could standardize each sample by the statistics

n its own domain. The training data could be treated specifically

or different domain during training, while for other methods, the

amples from different source domains are mixed when training

eural networks. 

.2.2. Caltech-Bing Dataset 

To further evaluate our method on the large-scale dataset, we

how our results on Caltech-Bing Dataset in Table 3 . Compared

ith CORAL, AdaBN achieves better performance, which improves

.8% over the baseline. Note that all the domain adaptation meth-

ds show minor improvements over the baseline in the task C →
 . One of the hypotheses to this relatively small improvement is

hat the images in Bing dataset are collected from Internet, which

re more diverse and noisier [45] . Thus, it is not easy to adapt

n the Bing dataset from the relatively clean dataset Caltech-256.

ombining CORAL with our method does not offer further im-

rovements. This might be explained by the noise of the Bing

ataset and the imbalance of the number of images in the two do-

ains. 

.3. Empirical analysis 

In this section, we empirically investigate the influence of the

umber of samples in target domain to the performance and ana-

yze the adaptation effect of different BN layers. 

Sensitivity to target domain size. Since the key of our method is

o calculate the mean and variance of the target domain on dif-

erent BN layers, it is very natural to ask how many target im-

ges is necessary to obtain stable statistics. In this experiment, we

andomly select a subset of images in target domain to calculate

he statistics and then evaluate the performance on the whole tar-

et set. Fig. 3 illustrates the effect of using different number of
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Fig. 3. Accuracy when varying the number of mini-batches used for calculating the statistics of BN layers in A → W and B → C , respectively. For B → C , we only show 

the results of using less than 100 batches, since the results are very stable when adding more examples. The batch size is 64 in this experiment. For even smaller number 

of examples, the performance may be not consistent and drop behind the baseline (e.g. 0.652 with 16 samples, 0.661 with 32 samples). 

Fig. 4. Accuracy when adapting with different BN blocks in B → C . x = 0 corre- 

sponds to the result with non-adapt method, and 1, 2, 3a, 3b, 4a, 4b, 4c, 5a, 5b 

correspond to the nine different blocks in Inception-BN network. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 

Domain adaptation results (mIOU) on 

GF1 and Tianhui datasets training on 

GF2 datasets. 

Method GF1 (%) Tianhui (%) 

Baseline 38.95 14.54 

AdaBN 64.50 29.66 
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batches. The results demonstrate that our method can obtain good

results when using only a small part of the target examples. It

should also be noted that in the extremal case of one batch of tar-

get images, our method still achieves better results than the base-

line. This is valuable in practical use since a large number of target

images are often not available. 

Adaptation effect for different BN layers. In this experiment, we

analyze the effect of adapting on different BN layers with our Ad-

aBN method. According to the structure of Inception-BN network,

we categorize the BN layers into 9 blocks: 1, 2, 3a, 3b, 4a, 4b, 4c,

5a, 5b . Since the back BN layers are influenced by the outputs of

previous BN layers, when adapting a specific block we adapted all

the blocks before it. Fig. 4 illustrates the adaptation effect for dif-

ferent BN layers. It shows that adapting BN layers consistently im-

proves the results over the baseline method in most cases. Specif-

ically, when incorporating more BN layers in the adaptation, we

could achieve better transfer results. 

4.4. Practical application for cloud detection in remote sensing 

images 

In this section, we further demonstrate the effectiveness of Ad-

aBN on a practical problem: Cloud Detection in Remote Sensing
mages. Since remote sensing images are taken by different satel-

ites with different sensors and resolutions, the captured images

re visually different in texture, color, and value range distribu-

ions, as shown in Fig. 5 . How to adapt a model trained on one

atellite to another satellite images is naturally a domain adapta-

ion problem. 

Our task here is to identify cloud from the remote sensing

mages, which can be regarded as a semantic segmentation task.

he experiment is taken under a self-collected dataset, which in-

ludes three image sets, from GF2, GF1 and Tianhui satellites.

ach image set contains 635, 324 and 113 images with resolution

ver 60 0 0 × 60 0 0 pixels, respectively. We name the three different

atasets following the satellite names. GF2 dataset is used as the

raining dataset while GF1 and Tianhui datasets are for testing. We

se a state-of-art semantic segmentation method [51] as our base-

ine model. 

The results on GF1 and Tianhui datasets are shown in

able 4 .The relatively low results of the baseline method indicate

hat there exists large distribution disparity among images from

ifferent satellites. Thus, the significant improvement after apply-

ng AdaBN reveals the effectiveness of our method. Some of the

isual results are shown in Fig. 6 . Since other domain adapta-

ion methods require either additional optimization steps and extra

omponents ( e.g . MMD) or post-processing distribution alignment

like CORAL), it is very hard to apply these methods from image

lassification to this large-size (60 0 0 × 60 0 0) segmentation prob-

em. Comparatively, besides the effective performance, our method

eeds no extra parameters and very few computations over the

hole adaptation process. 

. Conclusion and future works 

In this paper, we have introduced a simple yet effective ap-

roach for domain adaptation on batch normalized neural net-

orks. Besides its original uses, we have exploited another func-

ionality of Batch Normalization (BN) layer: domain adaptation.
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Fig. 5. Remote sensing images in different domains. 

Fig. 6. Visual cloud detection results on GF1. White pixels in (b) and (c) represent the detected cloud regions. 
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he main idea is to replace the statistics of each BN layer in source

omain with those in target domain. The proposed method is easy

o implement and parameter-free, and it takes almost no effort to

xtend to multiple source domains and semi-supervised settings.

ur method established new state-of-the-art results on both sin-

le and multiple source(s) domain adaptation settings on standard

enchmarks. At last, the experiments on cloud detection for large-

ize remote sensing images further demonstrate the effectiveness

f our method in practical use. We believe our method opens up a

ew direction for domain adaptation. 

In contrary to other methods that use Maximum Mean Discrep-

ncy (MMD) or domain confusion loss to update the weights in

NN for domain adaptation, our method only modifies the statis-

ics of BN layer. Therefore, our method is fully complementary to

ther existing deep learning based methods. It is interesting to see

ow these different methods can be unified under one framework.
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