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Abstract—In this paper, we present a novel structure-guided
framework for exemplar-based image inpainting to maintain the
neighborhood consistence and structure coherence of an inpainted
region. The proposed method consists of a data term for pixel
validity and boundary continuity, a smoothness term to depict the
compatibility of neighboring pixels for contextual continuity, and a
coherence term to investigate image inherent regularities to ensure
image self-similarity. To better reconstruct image structures, the
method utilizes image regularity statistics to extract dominant
linear structures of the target image. Guided by these structures,
homography transformations are estimated and combined to
globally repair the missing region using the Markov random
field model. To reduce computational complexity, a hierarchical
process is implemented to utilize the regularity effectively. The
experimental results demonstrate that our method yields better
results for various real-world scenes than existing state-of-the-art
image inpainting techniques.

Index Terms—Image inpainting, image self-similarity, homogra-
phy transformation, linear structure, image completion.

I. INTRODUCTION

IMAGE inpainting or image completion, an important topic
in image processing, is carried out to reconstruct the miss-

ing parts of an image. In recent years, it has attracted much
attention in the research community because of its intensive
popularity in digital life. Image inpainting can be widely used
in image editing applications, such as panorama generation,
cultural heritage restoration, restoring images from scratches or
text overlays, and loss concealment in impaired image trans-
mission [1]. Generally, image inpainting can be classified into
two categories: diffusion-based approaches and exemplar-based
approaches [1].

Diffusion-based methods smoothly propagate information
from known boundaries to missing regions. In the pioneering
work by Bertalmio et al. [2], the authors made use of geometric
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and photometric information and propagated Laplacian descrip-
tors along the isophote direction. Following that study [2], sev-
eral improved mathematical models, including total variation
(TV) [3], curvature driven diffusion (CDD) [4] and Mumford-
Shah [5], were proposed. This class of techniques yields good
results when inpainting long thin regions but is less effective in
handling large holes, as it fails to consider global image struc-
tures and synthesize textures for image details.

To address the drawback of diffusion-based image inpainting
techniques, exemplar-based methods sample pixels or patches
in the known regions and fill the missing regions with textures
synthesized from these samples, which effectively preserves im-
age details. Therefore, in exemplar-based methods, many efforts
are made in structure preservation to obtain promising inpaint-
ing results. Many structure preservation algorithms have been
proposed, including isophote-based filling priority [6], search-
ing along structure curves [7], [8], directional image inpainting
[9] and guidance by statistics of patch offsets [10]. Accord-
ing to the inpainting strategies, exemplar-based methods can be
classified as greedy methods [6], [9], [11] and global methods
[12]–[15].

Greedy methods fill one target pixel/patch at a time by search-
ing for the best matches as samples and iteratively complete
the missing regions. Structure-based priority [6] was put for-
ward to preserve structure continuity. It is realized by prefer-
entially reconstructing the patches where the isophote direction
and the filling direction are consistent. Based on filling priority,
various studies have attempted to improve the greedy meth-
ods with respect to the priority definition [16], [17], matched
patch searching [18], [19] and texture synthesis [20]. Compared
with simply copying and pasting, texture synthesis methods
using weighted average [19], [21], sparse representation [22],
[23] and energy function optimization [24] have been proposed.
Human-interactive methods have also been proposed to provide
user-specified structure lines [7] for structure preservation. Nev-
ertheless, greedy methods might run into a local optimum and
introduce inconsistency when filling large missing regions with
complicated structures.

Compared with greedy methods, global methods regard im-
age inpainting as an optimization problem to assign the best
candidate sample to each unknown pixel/patch. Recent studies
focused on two kinds of global inpainting tools: a coherence
energy function optimized using EM-like schemes [25], [26]
and a Markov random field (MRF) energy function optimized
using belief propagation [12], [24] or graph cuts [13], [27].
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Global methods based on the coherence energy function take
image self-similarity into account and fill the unknown region
such that the inpainted region shares the most similar patches
with the known region. This kind of method gains its practi-
cability using the fast patch search method of PatchMatch [14]
and is employed in Adobe Photoshop Content Aware Fill. Based
on PatchMatch, patch transformations such as rotation, scaling
[28], [29], reflecting [30] and perspective transform [31] have
been put forward to make the method robust with respect to
complicated scenes.

Compared with coherence-based methods, global methods
based on the MRF energy function naturally pose inpaint-
ing problems as labeling problems to assign each unknown
pixel/patch a valid value (called a label). In the MRF model,
overlapped patches or neighboring pixels are defined as adja-
cent nodes, and the relationship of each adjacent node pair is
evaluated to ensure contextual continuity. In [12], [13], with the
whole image available for sampling, the number of candidate
labels could be considerably large, which limits MRF optimiza-
tion efficiency. Priority belief propagation [12] and graph cuts
[13] have been utilized to efficiently solve the optimization prob-
lem. To constrain the search space, Ruzic et al. [32] divided an
image into several regions according to the context and searched
candidate samples in similar regions. In addition, He and Sun
[10] limited the search space for each unknown pixel to only
60 candidates using the statistics of the patch offsets, obtaining
gains in both algorithm speed and inpainting quality. In addition,
Liu and Caselles [15] utilized a hierarchical scheme to reduce
computational complexity.

In this paper, we propose a novel model for exemplar-based
single image inpainting. The main idea is to exploit the regularity
of image self-similarity to guide and improve the inpainting pro-
cess. The model is formulated using a data term, a smoothness
term and a coherence term to evaluate the pixel validity, con-
textual continuity and image self-similarity, respectively. More-
over, we design an efficient EM-like optimization approach to
solve the model. In the E step, guided by the linear structures of
the target image, we heuristically estimate several homography
transformations based on the repetitive regularity of the known
region to form the search space. These homography transfor-
mations shift textures and structures into the unknown region.
In the M step, the hole is filled by assigning each unknown
pixel a transformation under the MRF energy constraint. Mean-
while, a hierarchical scheme is devised to obtain good structure
preservation and low computational complexity.

Here, we intend to clarify the differences between the pro-
posed method and other existing related methods. Although,
according to our previous review, the optimization of the en-
ergy function is a common and effective approach to examplar-
based image inpainting, there are some limitations that affect the
inpainting qualities in the existing methods. In the aforemen-
tioned MRF-based methods [10], [12], [13], the basic operation
is pixel/patch translation, which might yield broken structures in
non-fronto-parallel scenes. Instead of pixel/patch translations,
general transformations are used as the search space in the
proposed method to enable non-fronto-parallel scene inpaint-
ing; thus, there is no broken structure in the inpainting results.

Meanwhile, although some coherence-based methods [28], [29],
[31] consider patch transformations, they suffer from structure
distortions because these methods break images into overlapped
patches and fail to search for and transform matched patches
uniformly. On the contrary, the proposed method uses global
transformations to uniformly shift valid information into the
hole, preserving image structures well with less distortion. An-
other limitation of coherence-based methods is the blurring ar-
tifacts due to the patch compositing procedure. The proposed
method has no such procedure and is free of this drawback; thus,
it can preserve texture details. Hence, the proposed method is
superior to the aforementioned MRF-based methods for non-
fronto-parallel scene inpainting as well as to the aforementioned
coherence-based methods because of its better structure and tex-
ture preservation.

In summary, the main contributions of our work include the
following two aspects:

� In the proposed method, the exemplar-based image
inpainting problem is formulated as a novel energy opti-
mization problem for structure-guided transformation es-
timation and assignment. It contains a data term, a smooth-
ness term and a coherence term, which take data validity,
contextual continuity and self-similarity, respectively, into
account.

� We propose an EM-like approach based on homogra-
phy transformations to solve the proposed optimization
problem. A heuristic transformation estimation strategy
for search space establishment and a transformation as-
signment strategy for hierarchical exemplar-based image
inpainting are presented for robust scene inpainting and
better structure preservation.

The rest of this paper is organized as follows. In Section II, the
proposed exemplar-based inpainting model is presented. The E
step and M step of the optimization approach are described in
Sections III and IV, respectively. More specifically, Section III
introduces the homography transformation candidate estima-
tion, and Section IV explains the hierarchical exemplar-based
image inpainting. We validate our method by comparing it with
state-of-the-art image inpainting algorithms using both artificial
scenes and natural scenes in Section V. Concluding remarks are
given in Section VI.

II. PROPOSED IMAGE INPAINTING FRAMEWORK

In this section, we describe the main idea of the proposed
model and the corresponding inpainting algorithm. First, we
provide some notations of important concepts. Then, the general
framework of the MRF for image processing is given. Finally, we
introduce the details of the proposed image inpainting algorithm.

A. Notation

The following notations are used throughout this paper:
� I is the 2D target image. p(x, y) is a pixel with (x, y) as

its spatial coordinates, and its color is denoted as I(p).
� Ω is the missing part of I , and its contour is indicated by

δΩ. Φ = I − Ω is the source region.
� Ψ(p) is the patch centered at pixel p.
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Fig. 1. Image priors for image inpainting. The inpainting problem involves
filling Ω seamlessly using the information of Φ. The contextual continuity
prior is measured based on the smoothness between adjacent pixels. The self-
similarity prior is measured based on the patch difference.

� H denotes a homography transformation matrix. It projects
pixel p onto p′ = H(p), where H(·) is the transform
operation using H.

� Sx = {xi}, i = 1, 2, . . . , N represents a set of N elements
x. The element x could be a pixel, line, or matrix.

B. The Proposed Inpainting Model

Formally, we define the inpainting problem as a labeling prob-
lem: Given the target image I , the goal is to fill Ω seamlessly
using the information of Φ. Let us define a set of homogra-
phy transformations SH = {Hi}, i = 1, . . . , NH and a label-
ing function L : Ω→ SH . The main idea is to assign transfor-
mation matrices (labels) to unknown pixels for inpainting. If
L(p) = Hi , then the unknown pixel p ∈ Ω is inpainted with the
value of the known pixel Hi(p) ∈ Φ. To design an effective in-
painting model to evaluate SH and L, intrinsic image properties
(as shown in Fig. 1) are utilized as priors:

1) The contextual continuity prior is a basic prior in image
processing. In our method, we realize the global contex-
tual continuity using a smoothness term Es by measur-
ing the local adjacent pixel smoothness. In addition, a
data term Ed is designed to evaluate patch similarities
along inpainting boundaries, which further emphasizes
the boundary structural continuity.

2) The self-similarity prior is ubiquitous in both natural and
artificial scenes. Essentially, textures are repeating two-
dimensional patterns, and structures are repeating one-
dimensional patterns [6]. The self-similarity property as-
sumes that textures and structures are repetitive, and the
patches in an image are considered to recur within the
image. Therefore, in this paper, we use a coherence term
Ec , defined as the sum of differences between matched
patches, to evaluate this property.

By taking the above priors into consideration, we propose a
novel inpainting model, which is formulated as follows:

E(L, SH ) = αEd(L, SH ) + Es(L, SH ) + Ec(L, SH ), (1)

where

Ed(L, SH ) =
∑

p∈Ω

ed(L(p), SH ),

Es(L, SH ) =
∑

(p,q)∈N
es(L(p), L(q), SH ),

Ec(L, SH ) =
∑

p∈I

ec(L(Ψ(p)), SH ).

Ed is the data term that considers the property of individual
pixels, Es is the smoothness term characterizing mutual influ-
ences among neighboring pixels, and α is the weight used to
combine the data term and the smoothness term. By assuming
the properties of positivity and Markovianity [33], we can define
Ed and Es using the well-studied MRF model. The mathemat-
ical formulation of these two terms will be exploited to realize
the contextual continuity in Section IV. Meanwhile, Ec is the
coherence term used to measure image self-similarity. It is de-
fined as the sum of differences ec between image patches Ψ(p)
in the inpainted image and their matched patches in the source
region:

ec(L(Ψ(p)), SH ) = min
q∈Φ ,H∈SH

‖ΨL (p)−H(Ψ(q))‖22 , (2)

where ΨL (p) is the image patch in the inpainted image and H
is utilized to make the metric robust to scaling, rotation and
perspective transformations. For simplicity, ec is set to 0 for
patches that have unknown pixels, have pixels assigned with
different labels, or go across the inpainting boundary.

C. Algorithm Overview

Given the model, we need to find the optimal SH and L to
minimize (1). Here, we propose an EM-like optimization ap-
proach. The main idea is to update one variable iteratively while
keeping another variable fixed. In the E step, we set L as the
fixed variable, and the optimization problem becomes estimat-
ing the transformation matrices that best depict the regularity
statistics of the target image. In the M step, we set the estimated
SH as the fixed variable, and the problem can be reformulated
as a standard MRF label assignment problem.

Transformation estimation step (E step): We attempt to esti-
mate SH while setting L as the fixed variable. Since SH is the
range of the labeling function L in the data term and smoothness
term, with L fixed, SH in these two terms should be fixed as
well. Thus, in the i-th iteration, the optimal Si

H satisfies:

Si
H = arg min αEd(Li−1 , Si−1

H ) + Es(Li−1 , Si−1
H )

+ Ec(Li−1 , Si
H ),

= arg min Ec(Li−1 , Si
H ). (3)

Since the coherence of the patches in the unknown region is not
calculated, we only focus on the known region:

Si
H = arg min

∑

p∈Φ

min
q∈Φ ,H∈SH

‖ΨL (p)−H(Ψ(q))‖22 . (4)



LIU et al.: STRUCTURE-GUIDED IMAGE INPAINTING USING HOMOGRAPHY TRANSFORMATION 3255

Fig. 2. Flow chart of the proposed structure-guided image inpainting approach using homography transformation.

We heuristically solve the above equation by seeking the reg-
ularities of the repetitive patterns in Φ and estimating the
transformations that best agree with these regularities, which
will be described in detail in Section III.

Transformation assignment step (M step): The coherence of
the patches in Ω is zero, as these patches are filled by shifting
the values from Φ to Ω using exact transformations in SH .
Therefore, if Si

H is fixed, for any L, Ec =
∑

p∈Φ min ‖Ψ(p)−
H(Ψ(q))‖22 is constant. Then, (1) can be rewritten as a standard
MRF function:

Li = arg minαEd(Li, Si
H ) + Es(Li, Si

H ) + Ec(Li, Si
H ),

= arg minαEd(Li, Si
H ) + Es(Li, Si

H ),

= arg minα
∑

p

ed(Li(p)) +
∑

(p,q)

es(Li(p), Li(q)), (5)

where Si
H forms the range of the labeling function Li . This

problem can be solved using the graph cuts algorithm. To de-
crease computational complexity, a pyramid implementation is
proposed. The hierarchical solution will be presented at length
in Section IV.

The framework of the proposed method is illustrated in Fig. 2
with two main procedures: structure-guided homography trans-
formation estimation and assignment. In the estimation step,
dominant linear structures are extracted to guide the estimation
of three kinds of transformations: translation, bilateral sym-
metry and perspective shift. These transformations depict the
self-similarity property of an image and are assigned to each
unknown pixel based on a global optimization of the MRF in
the assignment step. After that, the target image is inpainted by
transforming the known pixel values into its unknown region.
Moreover, a hierarchical implementation is adopted. A low-
resolution image is first built and restored using the proposed
transformation-based inpainting algorithm. It is then upsam-
pled to its full resolution, with the quality of its inpainted region
improved using the proposed label refinement technique. We
include the pseudocode of the transformation-based inpainting
in Algorithm 1.

Algorithm 1: Transformation-Based Inpainting
Input: Input image I , mask Ω
Output: Inpainted image I

1: Initialize i = 0 and Li(Ω) = 0 and Si
H = ∅

2: while Ω �= ∅ do
3: i← i + 1
4: Si

H ← TransformationEstimation(I,Ω, Li−1 )
5: Li ← TransformationAssignment(I,Ω, Si

H )
6: I,Ω← Inpainting(I,Ω, Li, Si

H )
7: end while

III. STRUCTURE-GUIDED HOMOGRAPHY

TRANSFORMATION ESTIMATION

In this section, we propose a heuristic algorithm for the
transformation estimation problem in (4). The statistics of the
matched image patches and feature points are calculated to ob-
tain the regularity of the source region. The dominant linear
structures are extracted using the regularity statistics. These
statistics are then used to estimate a set of homography transfor-
mation matrices for sampling under the guidance of dominant
linear structures.

First, we give the notation of the linear structure and the
transformation. Since human eyes are sensitive to the structure
continuity, by detecting and preserving dominant linear struc-
tures, the inpainting quality can be improved significantly. In
this paper, we define dominant linear structures as a set of lines
Sl = {li}, i = 1, 2, . . . , Nl . l ∈ Sl is called a dominant struc-
ture line, and its direction is denoted as φ(l) ∈ [0, π].

The homography transformation matrix, which is used to map
an image from a two-dimensional view plane onto another view
plane, takes the form of:

H =

⎡

⎣
a1 a2 a3
a4 a5 a6
a7 a8 1

⎤

⎦ , (6)

where a1 , ..., a8 are transformation parameters. Specifically,
H projects p(x, y) to its corresponding pixel H(p) =
p′(x′/w′, y′/w′), where

[x′, y′, w′]T = H[x, y, 1]T . (7)
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Fig. 3. Translation transformation estimation. (a) Target image and matched patches in Φ. (b) Visualized distribution of displacement vectors. The distribution
shows high sparsity. The white dotted lines are the extracted dominant structure lines. Note that the textures of the fence demonstrate regularity in the horizontal
direction. The proposed method successfully detects the horizontal structure line l1 even if there are only a few horizontal lines in the image. (c) Estimated
SH T

= {HT i}(i = 1, 2, . . . , NT ) in the (dx-dy) space. (d) Inpainting result and (e) visualized labeling. The missing region is mainly reconstructed using three
translation transformations, which are represented as red, green and yellow circles in (c).

In this paper, we focus on three kinds of homography transfor-
mations:

� Translation: SHT
= {HT i}, i = 1, 2, . . . , NT .

� Bilateral symmetry: SHS
= {HSi}, i = 1, 2, . . . , NS .

� Perspective shift: SHP
= {HP i}, i = 1, 2, . . . , NP .

and SH = SHT
∪ SHS

∪ SHP
.

A. Dominant Structure Line and Translation Transformation

We first consider the simplest case: translation transforma-
tion, the matrix of which is defined as:

HT =

⎡

⎣
1 0 dx
0 1 dy
0 0 1

⎤

⎦ , (8)

where (dx, dy) is the displacement vector. For simplicity, we use
v = (dx, dy) to represent the whole HT , and the calculation of
the transformed pixel in (7) can be simplified to HT (p) := p +
v = (x + dx, y + dy). Inspired by [10], we use the statistics of
the displacement vectors of the matched patches in the source
region to estimate translation transformation matrices and the
dominant structure lines.

The displacement vectors can be found using:

v(p) = arg min
vd

‖Ψ(p + v)−Ψ(p)‖22 s.t. |v| > τ. (9)

The constraint |v| > τ is added to prevent insignificant small
displacements. Given all these matched patches, we calculate
the frequency of their displacement vectors:

f(v) =
∑

p∈Φ

ω(v(p) = v)/|Φ|. (10)

where ω(·) is 1 when the argument is true and 0 otherwise. |Φ|
is the number of pixels in the source region Φ.

Since image patches demonstrate high similarity along linear
structures, displacement vectors are likely distributed along the
dominant structure line in the (dx-dy) space. Then, we define the
dominant structure line l as the line with the most displacement

vectors lying on it:

l̂ = arg max
l

f(l) = arg max
l

∑

v∈l

f(v), (11)

where f(l) is the sum of the frequencies of the displace-
ment vectors lying on l. The best fitting line l̂ is extracted
via RANSAC-based voting [34]. We repeat the voting process
for all outliers to search for multiple dominant structure lines
Sl = {li}, i = 1, 2, . . . , Nl until f(lNl +1) < λlinef(l1).

Since the displacement vectors near the dominant structure
lines better depict the principal structures of the target image,
they contribute more to the inpainting process compared with
other displacement vectors. Thus, we use Sl to refine the fre-
quency of the displacement vectors as follows:

f̂(v) =

{
2f(v), if ∃l ∈ Sl → v ∈ l

f(v), other
. (12)

Finally, we choose a number of NT displacement vectors
with the greatest f̂(v), and their corresponding transformation
matrices form SHT

= {HT i}, i = 1, 2, . . . , NT . As shown in
Fig. 3, the distribution of these vectors demonstrates sparsity,
and most of the displacement vectors assemble around the es-
timated SHT

, which can well describe the self-similarity of the
target image and thus be used to predict the desired texture and
structure patterns.

B. Bilateral Symmetry Transformation

Objects in natural images often possess bilateral symmetry
and can be utilized for inpainting. We estimate bilateral sym-
metry transformation matrices with the form of:

HS = HStHSr

=

⎡

⎣
1 0 dx
0 1 dy
0 0 1

⎤

⎦

⎡

⎣
cos 2θ sin 2θ 0
sin 2θ − cos 2θ 0

0 0 1

⎤

⎦ ,
(13)

where θ is the direction of the axis of symmetry. A bilat-
eral symmetry transform operation can be decomposed into a
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reflection operation HSr using the line passing through the ori-
gin as the axis and a translation operation HSt .

Given a dominant structure line l ∈ Sl , HSr is determined by

θ = φ(l) + π/2. (14)

This means that the axis is perpendicular to the dominant struc-
ture line l, which retains the direction of l after reflection.

Then, we estimate HSt using the method proposed in the
previous section. The main difference is that in (9), the matched
patches Ψ(p + v) are searched for in the reflected imageHSr (I)
rather than in I itself.

C. Perspective Shift Transformation

The ubiquitous foreshortening effects severely degrade the
results of MRF-based image inpainting methods [10], [13], as
they only perform the translation operation. We put forward
the concept of perspective shift in addition to the traditional
translation operation. Objects are shifted in a way that satisfies
the foreshortening effects. To accomplish this task, we estimate
perspective shift transformation matrices HP of the following
form

HP =

⎡

⎣
b1 b2 b3
b4 b5 b6
b7 b8 1

⎤

⎦ . (15)

To find non-fronto-parallel self-similarities for HP estima-
tion, feature points are used. We begin with speeded up robust
features (SURF, [35]) point detection and compute SURF de-
scriptors for each feature point. Then, these feature points are
matched under the guidance of the dominant structure line l.
Specifically, two feature points (assuming that they are located
at pixels p and q) are matched if their vector −→pq satisfies the
angle constraint:

dπ (φ(−→pq), φ(l)) < λθ , (16)

where dπ (φ1 , φ2) = min(|φ1 − φ2 |, π − |φ1 − φ2 |). The angle
constraint facilitates the estimation of orientational consistent
transformations.

Then, we apply a RANSAC-based voting algorithm to the
matched feature point pairs to find the best fitting homography
matrix H as a candidate perspective shift transformation. We
repeat the RANSAC-based voting process for all outliers to
obtain a set of candidate perspective shift transformations.

To determine the optimal candidate, we define two measure-
ments:

� Information magnitude: Let Λ(H) = H(Φ) ∩ Ω denote
the region perspectively shifted from the source region
to the missing region using H. The information magnitude
is defined as the percentage of Λ(H) in Ω:

Rmag(H) = |Λ(H)|/|Ω|. (17)

H with low Rmag(H) is not desirable, as it can only fill a
small portion of the missing region.

� Information quality: The boundary consistency is taken
into account. As shown in Fig. 4(b) and (c), we concentrate
on the outer boundary of Ω, which has a width of λΔΩ

Fig. 4. Perspective shift transformation estimation. (a) The target image.
(b) (c) The outer boundary of I and HP (I), respectively. The violet region
Λ is generated by HP to fill the blue triangular region Ω. Rmag(HP ) is the
percentage of the violet region in the blue triangle. Meanwhile, Rquality(HP )
is the correlation between X and Y , which evaluates the consistency of the
boundary between Λ and X. (d) Estimated perspective shift transformations.
From left to right: HP (I), H2

P (I), H3
P (I) and H4

P (I).

pixels (denoted as ΔΩ). The information quality is defined
as the correlation coefficient of the pixel values in ΔΩ:

Rquality(H) = Cov(X,Y)/σ(X)σ(Y). (18)

In the above equation, X is a vector whose elements are
raster-scanned pixel values of I in ΔΩ; Y is similarly
defined. Higher Rquality(H) indicates a more seamless in-
painting result.

Then, HP is obtained by solving:

max
H

Rquality(H) s.t. Rmag(H) > λmag. (19)

Moreover, if a certain perspective shift transformation HP ex-
ists, Hi

P could possibly be valid perspective shift transformation
matrices as well. Intuitively, H2

P represents a double perspec-
tive shift operation, and H−1

P represents an inverse perspective
shift operation. Thus, we update SHP

= SHP
∪ {Hi

P }, |i| ∈
{1, . . . , λZ}, if Rmag(Hi

P ) > λmag. Fig. 4(d) gives an example
of the estimated SHP

, with λZ = 4.
Finally, SH = SHT

∪ SHS
∪ SHP

is obtained. The pseu-
docode of the transformation estimation algorithm is summa-
rized in Algorithm 2.

IV. HIERARCHICAL EXEMPLAR-BASED IMAGE INPAINTING

In this section, we give detailed definitions of the data term
and the smoothness term in (5), which could be solved using
graph cuts. In addition, a hierarchical implementation is pro-
posed to achieve lower computational complexity and better
structure estimation.

A. MRF Energy Function Definition

After homography transformation estimation, we obtain a
set of transformation matrices SH = {Hi}, i = 1, . . . , NH .
To accomplish contextual-continuous inpainting, we seek the
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Algorithm 2: Transformation Estimation
Input: Input image I , mask Ω
Output: Transformations SH

1: Initialize Sl = SHT
= SHS

= SHP
= ∅

2: � Dominant structure line estimation:
3: match patches to compute v (9) and f(v) (10)
4: estimate l1 (11) and i← 1
5: while f(li) ≥ λlinef(l1) do
6: Sl ← Sl ∪ {li} and i← i + 1
7: estimate li (11)
8: end while
9: � Translation estimation:

10: refine f̂(v) by Sl (12)
11: for i = 1→ NT do
12: seek HT with the i-th highest f̂(v)
13: SHT

← SHT
∪ {HT }

14: end for
15: � Bilateral symmetry estimation:
16: for all l ∈ Sl do
17: compute HSr by l (14)
18: estimate HSt using the statistics of matched patches

between I and HSr (I) as in Translation estimation
19: HS = HStHSr and SHS

← SHS
∪ {HS }

20: end for
21: � Perspective shift estimation:
22: match feature points under angle constraint (16)
23: estimate candidate transformations {H} using

RANSAC-voting over matched feature points
24: seek HP from {H} (19)
25: for all i such that |i| ∈ {1, . . . , λZ} do
26: if Rmag(Hi

P ) > λmag then
27: SHP

← SHP
∪ {Hi

P }
28: end if
29: end for
30: SH = SHT

∪ SHS
∪ SHP

optimal labeling function that minimizes the following MRF
energy function:

αEd(L) + Es(L) = α
∑

p∈Ω

ed(L(p)) +
∑

(p,q)∈N
es(L(p), L(q)),

(20)
where α is the weight used to combine two energy terms, and

� Smoothness term: es(L(p), L(q)) penalizes the discontinu-
ity of nearby pixels. It is defined as follows (for simplicity,
we assume that L(p) = Hi , L(q) = Hj ):

es(L(p), L(q)) = dp(Hi(p),Hj (p))+dp(Hi(q),Hj (q)),
(21)

where dp(·, ·) measures the similarity between two pixels:

dp(p, q) = ‖I(p)− I(q)‖1 + β‖∇I(p)−∇I(q)‖1 ,
(22)

where ∇I is the magnitude of the image gradient and β
is the weight used to combine the intensity and gradient
terms. Fig. 5(a) presents the definition of the smoothness
term. Since (Hj (p)) and (Hj (q)) are two adjacent pixels

Fig. 5. Illustration of the MRF energy function. We use translation trans-
formations as examples to achieve a more intuitive presentation. The small
boxes represent pixels, and the large boxes represent image patches. The trans-
formation H is represented by an arrow. (a) The smoothness term measures
the similarity between pixel (Hi (p)) and (Hj (p)) as well as between pixel
(Hi (q)) and (Hj (q)) (see the small boxes to which the purple arrows point).
(b) The data energies are written next to their corresponding arrows. The energy
of the pixel on δΩ is measured based on patch differences in the blue area
(Ψ ∩ Φ). The energy of the inner pixel depends on whether the pixel to which
the considered arrow points is valid. (a) Smoothness term. (b) Data term.

in the source region, their values satisfy contextual con-
tinuity. Therefore, the continuity between p (with a value
of I(Hi(p))) and q (with a value of I(Hj (q))) can be
measured based on the similarity between (Hi(p)) and
(Hj (p)). The same is true for (Hi(q)) and (Hj (q)).

� Data term: ed(L(p)) is defined as:

ed(L(p)) =

⎧
⎪⎪⎨

⎪⎪⎩

+∞, if Hi(p) /∈ Φ

0, if Hi(p) ∈ Φ ∧ p ∈ Ω\δΩ
dΨ(ΨH i

(p),Ψ(p)), other

, (23)

where ΨH i
(p) is the patch centered at p in the inversely

transformed image H−1
i (I) and dΨ(·, ·) is the patch dif-

ference that measures the consistency along the boundary
between Ω and Φ. dΨ(·, ·) is calculated as follows:

dΨ(Ψ1 ,Ψ2) = ‖G⊗ (Ψ1 −Ψ2)‖1
+ β‖G⊗ (∇Ψ1 −∇Ψ2)‖1 , (24)

where G is the Gaussian weight matrix and⊗ is the point-
wise product operator. Only known pixels in the patch are
computed, as shown in Fig. 5(b) in blue.

Once the MRF graph is given, the energy optimization is
achieved using multi-label graph cuts.1

1http://vision.csd.uwo.ca/code/
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Algorithm 3: Hierarchical Inpainting
Input: Input image I , mask Ω, level K
Output: Inpainted image I

1: Initialize I(0) = I
2: {I(k)}, {Ω(k)} ←Downsample(I,K),

k = 1, . . . , K − 1
3: L(K−1) ←TransformationBasedInpainting

(I(K−1) ,Ω(K−1))
4: for k = K − 2, ..., 1, 0 do
5: L(k) ←Upsample(L(k+1)) (25)
6: while Ω(k) �= ∅ do
7: select p ∈ δΩ(k) with highest priority
8: L(k)(p)←LabelRefinement(L(k)(p)) (26)
9: update Ω(k)

10: end while
11: end for
12: I ← Inpainting(I,Ω, L(0))

B. Hierarchical Implementation

At the coarse level, image inpainting benefits from low com-
putational complexity. Furthermore, it becomes less sensitive to
noise and local singularities. Thus, estimated transformations
are more reliable for demonstrating image regularity. Based on
this consideration, we propose a hierarchical implementation
of our inpainting algorithm. The pseudocode of the proposed
hierarchical inpainting is given in Algorithm 3.

The target image is first downsampled by a factor of 2 to form
a K-level image pyramid {I(k)}, k = 0, . . . , K − 1, where the
superscript k denotes the image pyramid level, with k = 0 and
k = K − 1 corresponding to the highest and lowest resolution
levels, respectively. L(K−1) is obtained using the proposed EM-
like optimization approach to inpaint I(K−1) . Instead of up-
sampling the inpainting results directly, which leads to blurring
artifacts, we upsample the labeling function using the nearest
neighbor interpolation:

L(k)(p) =

⎡

⎣
2 0 0
0 2 0
0 0 1

⎤

⎦ · L(k+1)(�p/2�), (25)

where �·� is the rounding down operation. However, the nearest
neighbor interpolation may cause small misalignments along
the outer boundaries δΩ and inner boundaries between different
label assignments. To solve this issue, we propose an outside-in
labeling refinement method based on pixel priority. The pixel
priority is calculated according to the formula given in [6].
Regarding the pixel p with the highest priority on δΩ, its label
is refined as follows:

L̂(p) = H′ = arg min
H ′∈N (L(p))

dΨ(ΨH ′(p),Ψ(p)), (26)

where N (H) contains transformation matrices that project p
to the neighborhood of H(p), as shown in Fig. 6. Specifically,
we define SN as a set of 5 translation transformation matrices
with (dx, dy) ∈ {(−1, 0), (1, 0), (0,−1), (0, 1), (0, 0)}. Then,
N (H) = {HT H|HT ∈ SN}. Compared with [6], our search

Fig. 6. The proposed labeling refinement method. Before refinement, L(p) =
H is assigned to the p with the highest priority. The red, magenta, purple and
blue pixels are neighbors of H(p). Their corresponding patches are inversely
transformed using H′−1 ∈ N (H) to measure the similarity with Ψ(p) in the
blue area. The central pixel of the most matched patch is used to fill p, and the
label of p is updated accordingly.

Fig. 7. Correction of the misalignments via labeling refinement. The first row:
(a) original image, (b) inpainting result before refinement and (c) inpainting
result after refinement. The second row: patches with misalignments in (b). The
third row: corresponding refined patches in (c).

range for the matched patches is only five pixels rather than the
whole Φ. In each iteration of refinement, the labeling function
changes by at most one pixel, but the final adjustment can be
large thanks to the hierarchical process. Fig. 7 demonstrates
that image structures are preserved by the proposed labeling
refinement method.

In the end, we obtain the optimal labeling for the target image
at the original resolution to fill the missing region. In addition,
a Poisson fusion [36] is used to further hide seams.

V. EXPERIMENTAL RESULTS AND ANALYSIS

The proposed method is implemented using C++ on the Vi-
sual Studio 2013 platform and tested using various images of
natural/semi-natural scenes2 and artificial scenes.3 We use the
state-of-the-art image inpainting methods [10], [14], [24], [25],
[31] to conduct a comparison experiment. In the experiment,

2http://people.irisa.fr/Olivier.Le_Meur/publi/2013_TIP/index.html
3https://sites.google.com/site/jbhuang0604/publications/struct_completion

http://people.irisa.fr/Olivier.Le_Meur/publi/2013_TIP/index.html
https://sites.google.com/site/jbhuang0604/publications/struct_completion
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Fig. 8. Refinement of the frequency of displacement vectors using dominant
structure lines. (a) The target image. (b) (c) Inpainting results obtained using
different translation transformations. (d) Translation transformations for (a) and
the dominant structure line (red dotted lines) detected. (e) Translation transfor-
mations after refinement. Noises (in yellow) are effectively suppressed.

we set the following thresholds: λline = 0.6, λΔΩ = 200, λθ =
π/8, λZ = 4, and λmag = 0.2. The minimum allowed length of
displacement vectors is τ = max(W,H)/15, where W and H
are the width and height of the target image, respectively. The
weights α and β used to balance different energy terms are set
to 2. The number of transformations is NH = 60.

A. Guidance of the Dominant Structure Lines

Our method extracts the dominant structure line to guide
the homography transformation estimation. We investigate how
structures are well preserved using this guidance.

Translation Transformation. In Section III-A, the frequency
of the displacement vectors is refined using the dominant struc-
ture lines. Fig. 8 illustrates how the refinement affects the in-
painting results. The original translation transformation matri-
ces suffer from noises that lead to poor local minima. After
frequency refinement based on the dominant structure line (sea
level), the noise offsets are suppressed, and the sea level is better
preserved.

Bilateral Symmetry Transformation. Dominant structure
lines determine the reflection operation HSr of the bilateral
symmetry transformation. Fig. 9 illustrates the reflected images
HSr (I). The dominant structure lines detected exactly match
the ground plane and water plane. Thus, the reflected results
effectively enrich the samples available for the inpainting of the
ground and water.

Perspective Shift Transformation. For perspective shift
transformation estimation, dominant structure lines take the role
of the angle constraint in (16). Fig. 10(c) shows the point pairs
that were matched under the direction guidance of the dominant
structure line l, with φ(l) = 137.1◦. To demonstrate how domi-
nant structure lines guide the transformation estimation results,
we enumerate different angles to guide the direction and obtain
the corresponding perspective transformation matrix HP . The
corresponding Rquality is calculated. Fig. 10(d) shows how angle

Fig. 9. Bilateral symmetry transformation. (a) Target image. (b) Domi-
nant structure lines (dotted lines). The dominant structure lines detected ex-
actly match the ground plane (yellow line) and water plane (red line) in (a).
(c) (d) Results obtained via reflection transformations HS r . The samples avail-
able for the inpainting of the ground and water are dramatically enriched.

Fig. 10. Use of dominant structure lines to guide the main direction of the
perspective shift transformation. (a) The input image. (b) Dominant structure
lines (dotted lines). (c) Matched feature points. (d) Illustration of how the
angle constraint affects Rquality(HP ) and how dominant structure lines lead to
relatively high Rquality(HP ).

restriction affects Rquality, proving that the dominant structure
lines can reliably guide the algorithm to find HP with relatively
high information quality.

B. Comparisons Using Natural/Semi-Natural Scenes

We compare our approach with Photoshop’s content-aware
fill tool [14], [25], He’s MRF-based method [10], Le Meur’s
hierarchical SR-based method [24] and Huang’s planar struc-
ture guidance method [31] using natural/semi-natural scenes.
The software corresponding to Le Meur’s method and Huang’s
method are available on their respective project websites23.
The results of He’s method are from the project websites.4

4http://research.microsoft.com/en-us/um/people/kahe/eccv12/
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Fig. 11. Comparison with state-of-the-art methods using natural and semi-natural scenes: Tiger (top), House (middle) and Trashcan (bottom). (a) Original
pictures with unknown regions, (b) Photoshop results, (c) Le Meur’s results [24], (d) Huang’s results [31], and (e) results of the proposed method.

Fig. 12. Comparison with state-of-the-art methods using natural and semi-natural scenes: Sea (top) and Lion (bottom). (a) Original pictures with unknown
regions, (b) Photoshop results, (c) He’s results [10], (d) Huang’s results [31], and (e) results of the proposed method.

Figs. 11 and 12 show the inpainting results. Please enlarge
these figures on the screen to achieve a better comparison. The
coherence-based methods (Photoshop and Huang’s work) tend
to produce blurring artifacts, leaving textures that are not well
preserved. For example, in the Tiger image, the wood grain
of the trunk is not well reconstructed. In Huang’s result, the
structure of the trunk is even incomplete. Although Le Meur’s
method preserves the wood grain, it overpropagates the trunk
structure on the left side. By comparison, our method uses the
strong structure guidance and successfully reconstruct a richly
textured and structure-preserved trunk. Meanwhile, as shown
in the House image, the bilateral symmetry transformations en-
able the proposed method to recover the left part of the house.
In addition, for images without strong symmetry, such as Lion
in the last row of Fig. 12, the proposed method has advantages
over He’s work in filling the ground plane and water plane

thanks to the bilateral symmetry transformations (see Fig. 9).
For natural/semi-natural scenes, the proposed method is better
than or comparable to the state-of-the-art methods with respect
to both texture and structure preservation.

C. Comparisons Using Regular Artificial Scenes

We compare our approach with Photoshop’s content-aware
fill tool [14], [25], He’s MRF-based method [10] and Huang’s
planar structure guidance method [31]. The test images and re-
sults are taken from Huang’s project website3. Fig. 13 shows
the results for challenging artificial scenes. Please enlarge these
figures on the screen to achieve a better comparison. In Photo-
shop’s and He’s results, the structures appear severely cracked,
as both methods search for patches in only the translation
transformation space and fail to reconstruct the structures with
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Fig. 13. Comparison with state-of-the-art methods using regular artificial scenes. From top to bottom: Exhibition, Pane, Glass, Windows and Locker.
(a) Original pictures with unknown regions, (b) Photoshop results, (c) He’s results [10], (d) Huang’s results [31], and (e) results of the proposed method.

Fig. 14. Comparisons with Huang’s work using local images: Exhibition (left) and Pane (right). Our approach suffers fewer structure line distortions.
(a) Huang [31]. (b) Our result. (c) Huang [31]. (d) Our result.

foreshortening effects. Compared with Photoshop and He’s
method, the proposed method and Huang’s method allow for
a broader perspective transformation search space and suffer
fewer artifacts.

Huang’s method has the same base algorithm as that of
Photoshop in regard to objective function optimization [25]
and PatchMatch [14]. By guiding the patch searching and
propagation using mid-level structure cues, Huang’s method
allows for a search space with more degrees of freedom

without the problem of falling into poor local minima. There-
fore, structures are well preserved. Compared with Huang’s
results, our approach suffers less distortion thanks to the per-
spective shift. As shown in Fig. 14, although mid-level con-
straints are utilized, the structure lines are more or less distorted
in Huang’s results because the search for each patch is relatively
separated. In the Exhibition image (left), the picture frames are
distorted, and the head portrait is blurred. By comparison, the
proposed method perspectively shifts all known pixel values to-
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Fig. 15. Effect of the date term weight α on the inpainting result. From left to right: input image, inpainting results of the proposed method with α = 0.5, α = 1,
α = 2, α = 4 and α = 8. The area in the red rectangle in the original image is enlarged in the results.

TABLE I
THE AVERAGE RUNNING TIMES (SECONDS) OF DIFFERENT METHODS

wards the unknown regions, and adjacent pixels are dealt with
uniformly, leading to better inpainting quality. In the Pane im-
age (right), the window frames are distorted and even appear as
cracked in Huang’s results, while the proposed method synthe-
sizes physically plausible inpainting results.

D. Running Time

We compare the running times of different methods using the
Natural image set (five images from Figs. 11 and 12), Artificial
image set (five images from Fig. 13) and Textural image set
(thirty-two images from the texture dataset5). The average im-
age sizes of these three sets are 345 × 466, 532 × 640 and 200
× 200, respectively. Their average missing rates are 19.02%,
23.43% and 59.04%, respectively. Table I shows the average
running times for these images using an Intel Xeon 3.00 GHz
CPU E5-1607 and 16 GB RAM. It can be observed that the time
costs of the two MRF-based approaches (He’s method6 and
the proposed method) are similar in magnitude. The Photoshop
commercial software is much faster than the proposed method
because it is well tuned and fully parallelized. Meanwhile, the
time-consuming super-resolution process in Le Meur’s method
becomes its major computational burden. Moreover, the effi-
ciency of Huang’s method is limited because its released soft-
ware is implemented using MATLAB. Because the proposed
method is not multi-threaded, it uses only one core. Our method
can be further sped up by matching patches and feature points
in parallel.

E. Effect of the Parameters

A crucial aspect of our approach is the transformation assign-
ment performed to accomplish contextual continuity. In (20),
the data term and smoothness term are combined using the
weight α. Since the data term and smoothness term emphasize

5http://graphics.stanford.edu/projects/texture/demo/synthesis_misc.html
6We use the C++ re-implementation of He’s method in the OpenCV

3.0 xphoto module to test the running time: https://github.com/Itseez/
opencv_contrib/tree/master/modules/xphoto

Fig. 16. Inpainting of Markov-process-disenabled scenes with/without user
guidance. (a) Input image. (b) Our inpainting result without user guidance.
(c) User guidance, in which user specifies the horizontal symmetry transforma-
tion. (d) Inpainting result with user guidance.

Fig. 17. Failure cases. Top: Three kinds of images without well-defined struc-
tures. Artwork with complex structure fragments (left), Tree with structure
ambiguity (middle) and Building with high missing rate (right). Bottom: The
corresponding inpainting results.

the boundary continuity and inner continuity, respectively, we
can control the boundary structure using different values of α, as
shown in Fig. 15. The use of a higher α value can better preserve
the boundary structures. However, an extremely high α value
will overemphasize the local continuity and may yield some
artifacts around the boundary (see yellow arrows in Fig. 15).
The best inpainting result is obtained with an intermediate
weight of 2.

The other parameter, i.e., β, denotes the weight used to com-
bine the intensity term and gradient term in (22) and (24). The
gradient term makes the proposed algorithm robust to illumi-
nance and color variations. It can, however, also affect the con-
textual continuity. We found via an experiment that β = 2 is a
good choice for the pixel/patch similarity measurement.

F. Limitations

Since our method is based on the MRF model, the reconstruc-
tion of Markov-process-disenabled scenes will be challenging.
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Fig. 18. Effect of the missing rate on the inpainting result for the Building image. The cyan frames in the images indicate the inpainted regions. The missing
rates are shown in the upper-left corner. Since the sky in the image provides no valid information for inpainting, it is not considered when determining the missing
rate in this experiment; hence, the missing rate is |Ω|/(|I | − |sky region|).

Fig. 19. Plausible inpainting result (right) obtained from the well-structured
Balcony image (left) using the proposed method with 80.0% of the valid infor-
mation missing.

Fig. 20. Effect of the missing rate on the inpainting result for the Pebbles
image. Top: Input images, with missing rates given in the upper-right corner.
Bottom: The corresponding inpainting results.

For example, our method fails to detect the symmetry of a face
when half of the face is covered, as shown in Fig. 16(a), thus
yielding an odd result [Fig. 16(b)]. One possible solution is to
introduce user guidance, as is done in many human-interactive
methods [7], [30]. As shown in Fig. 16(c), (d), by artificially
specifying a horizontal symmetry transformation, our inpaint-
ing result becomes much more reasonable.

Our method may fail for images without well-defined struc-
tures. Fig. 17 shows the failure cases under three challenging
situations. In the first case, the artwork is composed of complex
structure fragments without dominant structures. In the second
situation, the trunk is reconstructed in the wrong direction due to
the structure ambiguity between the source region and missing
region. The last case concerns the missing rate. With too much
information lost, it is hard to estimate valid dominant structure
lines to guide the inpainting process.

We further investigate the critical missing rate at which our
method is no longer effective. We find via experiments on mul-
tiple images that the critical missing rate is image-dependent.
As shown in Fig. 18, our method demonstrates robustness with
respect to information loss for well-structured images; an ex-

treme example is given in Fig. 19, in which the missing rate
reaches 80.0%. For natural scenes, the critical missing rate is a
little lower. The results in Fig. 20 show that with increased miss-
ing rate, our method fails to preserve the boundary structures
(42.0% missing rate) and even the inner textures (50.7% missing
rate). Empirically, it seems that the performance of our method
will decrease when the missing rate of the valid information
becomes greater than 40%−60%.

VI. CONCLUDING REMARKS

In this paper, we introduce a novel inpainting model that takes
both contextual continuity and self-similarity into account. An
efficient EM-like optimization approach is proposed to solve
the inpainting problem. Given a target image with missing
regions, our approach can detect its dominant structure lines
and use these features to automatically guide the homography
transformation estimation. These estimated transformations are
combined to reconstruct the target image using the proposed
hierarchical inpainting approach. The hierarchical implementa-
tion accelerates the algorithm and offers robust structure feature
detection. We validate the effectiveness of our method via com-
parisons with state-of-the-art image inpainting algorithms using
both natural/semi-natural and artificial scenes. The experimen-
tal results demonstrate that the image inpainting results can be
greatly improved using the proposed inpainting model.
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