Structure Preserving Video Prediction

CVPR 2018, Poster
Jingwei Xu, Bingbing Ni, Zefan Li, Shuo Cheng
and Xiaokang Yang
Shanghai Jiao Tong University

Presented by Yuzhang Hu
2018.12.9
Outline

• Authorship
• Background
• Proposed method
• Training
• Experiment
• Conclusion
Background

• Video prediction is a long-standing task but faces two problems
 • Rich structure information like object boundary
 • Detailed motion like body movement
Background

• Static Structure loss

result from the motion of camera
Background

- Dynamic Structure Loss

moving direction of body parts are different
Proposed Method

Three parts:
- Encoder
- Prediction module
- Decoder

\[\mathcal{X} = (X_1, ..., X_T) \]

\[\mathcal{F}^L = (F^L_1, ..., F^L_T) \quad \mathcal{F}^H = (F^H_1, ..., F^H_T) \]

Encoder

Prediction module

\[(\hat{F}_{N+1}, ..., \hat{F}_{N+M}) \]

Decoder

\[(\hat{X}_1, ..., \hat{X}_N, \hat{X}_{N+1}, ..., \hat{X}_{N+M}) \]
Proposed Method

Two-branch video prediction framework

- The two-branch encoders designed for two different frequency domains
- raw pixels directly passed to the first encoder
- process the raw inputs with a high pass filter and then encode
Proposed Method

Temporal adaptive prediction module

To fully utilize the temporal variation information:

$$\tilde{W}_t(i, j) = \tilde{\phi}(F_t(i) - F_{t-1}(j))$$
Proposed Method

Temporal adaptive prediction module

Aim to pursue a more efficient temporal information sharing mechanism to facilitate the video prediction task

\[\Delta \mathcal{H}_{t-i} = \mathcal{H}_{t-(i+1)} - \mathcal{H}_{t-(i+2)}, \ i = 1, 2, 3, \]

\[\Delta \mathcal{C}_{t-i} = \mathcal{C}_{t-(i+1)} - \mathcal{C}_{t-(i+2)}, \ i = 1, 2, 3. \]
Training

Divide the training process into two processes

Stage #1

\[\mathcal{L}_1 = \| X - \hat{X} \|_1 + \| HF(X) - HF(\hat{X}) \|_1, \]
Training

Divide the training process into two process

Stage #2

\[\mathcal{L}_1 = \| \mathcal{X} - \hat{\mathcal{X}} \|_1 + \| HF(\mathcal{X}) - HF(\hat{\mathcal{X}}) \|_1, \]

\[\mathcal{L}_2 = \sum_{i=1}^{N+M-1} (\| \mathcal{X}_{i+1} - \hat{\mathcal{X}}_i \|_1 + \| \mathcal{F}_{i+1} - \hat{\mathcal{F}}_i \|_1 + \| HF(\mathcal{X}_{i+1}) - HF(\hat{\mathcal{X}}_i) \|_1). \]

\[\mathcal{L}_3 = \frac{1}{N+M} \sum_{t=1}^{N+M} \| (\| \mathcal{F}_t - \hat{\mathcal{F}}_t \|_1 - \sigma_{ths}) \|_1 \]

\[\mathcal{L} = \lambda_1 \mathcal{L}_1 + \lambda_2 \mathcal{L}_2 + \lambda_3 \mathcal{L}_3 + \lambda_4 \sum \| \Theta \|_2^2, \]
Experiment

Quantitative Evaluation
Experiment

Qualitative Evaluation

<table>
<thead>
<tr>
<th>Model</th>
<th>CityScape/Human3.6M/Clean-Jerk</th>
<th>PSNR</th>
<th>SSIM</th>
</tr>
</thead>
<tbody>
<tr>
<td>ConvLSTM</td>
<td>22.8/36.2/23.4</td>
<td>0.70</td>
<td>0.94/0.78</td>
</tr>
<tr>
<td>Two-B</td>
<td>25.2/37.2/25.3</td>
<td>0.74</td>
<td>0.96/0.85</td>
</tr>
<tr>
<td>Two-B+Fus-4</td>
<td>25.7/37.5/25.7</td>
<td>0.76</td>
<td>0.96/0.85</td>
</tr>
<tr>
<td>Two-B+Fus-4+Tem-K</td>
<td>26.6/39.7/27.5</td>
<td>0.77</td>
<td>0.97/0.89</td>
</tr>
</tbody>
</table>

Two-B: two-branch framework
Fus-4: Use of the hidden state of the last 4 time-steps
Tem-K: kernel generation
Conclusion

Solution
• Two-branch video prediction framework
• Temporal adaptive prediction module

Discussion
• Combine pixel domain with frequency domain
• Apply LSTM in inter prediction
• Transfer from inter to intra
Thanks!