
Deep Learning on Mobile Devices with Ubiquitous
Cognitive Computing

Yueyu Hu 1400012817
huyy@pku.edu.cn

Hao Wang 1300012703
hao.wang@pku.edu.cn

ABSTRACT
The proliferation of mobile devices with increasing comput-
ing capacity and the rapid development of effective Deep
Neural Networks (DNN) triggered the birth of intelligent
sensing with applications like instant face recognition, indoor-
outdoor detection, and personal health care. Following the
design principle of human-centered philosophy, there is a
need to customize one pre-trained deep model for each user.
However, training or fine-tuning deep models on mobile de-
vices is one challenging task due to the heavy resource con-
suming. In this paper, we proposed a distributed deep learn-
ing framework to run on mobile devices with the capacity of
fine-tuning pre-trained Deep Neural Networks (DNN) mod-
els, which, to our knowledge, is the first distributed Deep
Learning framework to run on mobile devices. Experiments
show that our framework can successfully manage the syn-
chronous training phase of deep models on multiple devices.

1. INTRODUCTION
Sensors are now deployed on a wide variety of devices like

smartphones, tablets, cars and home appliances. Like digital
cameras, built-in barometers and accelerometers and other
sensors generate a huge amount of data on these devices.
With the access to these statistics, analysis can be done to
facilitate applications like personal health care and smart
personal assistant.

With the recent development of DNN, the performance
of the automatically learned feature descriptor has already
outstood human hand-craft feature. The training of DNN
usually requires high-end GPUs for it largely accelerates the
computation of the training phase of DNNs. The compu-
tation of forwarding and backward propagation of a deep
model requires intensive computation due to the large pa-
rameter space and enormous training dataset but it can be
scaled up easily for largely paralleled GPU executing.

One approach to enable mobile devices to be capable of
training from sensor data is to deploy computation inten-
sive tasks onto remote servers, aka on the cloud. Raw data

ACM ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

are sent continuously from local storage to remote server.
However, there are two main problems with this kind of ap-
proach. First, the transmission consumes a large amount of
bandwidth, especially for the server side. As the users ac-
cumulate, the network loads get heavier. And for the client
side, which is usually a mobile device, it is usually hard
to transmit raw training data of large scale in mobile net-
works. Second, the server should keep one unique model for
each user for model optimization and customization, which
could take up a large amount of storage and reduce per-
formance. To address these problems, local deep networks
are developed. The method in [4] reduce the time for com-
puting convolutional layers on mobile devices by utilizing
on-chip GPUs and doing some modification on the origi-
nal complicated deep models. [7] decompose monolithic deep
model network architectures into several blocks with various
type and deploy those blocks to heterogeneous computing
units in mobile devices. These units include CPU, GPU and
even Digital Signal Processor (DSP). By performing reason-
able resource scaling, this method largely improved the per-
formance of the computing of Fully-Connected(FC) layers,
which is common in DNNs. However, this kind approaches
shared the problem of hardware dependency and accuracy
dropping and only support the inference phase. Changes in
resource availability can make big difference in the usability
of these frameworks, especially in mobile devices. The abil-
ity for these models to adapt to a new environment is limited
for there is little or no further training or fine-tuning pro-
cess for the model on mobile devices. These static models
are not suitable for applications where the models should be
able to learn new knowledge, like auto-driving and behavior
fitting. An example of indoor-outdoor detection [10] shows
the need for on-device fine-tuning.

To address these problems, we explore a different source
of computing capacity. Recently the idea of cognitive com-
puting is gaining popularity. With low-latency local wireless
network built on most of the public and private area, mobile
devices are now closely connected to each other. Intuitively
thinking, one task that cannot be done by one may have the
chance to be done by many. Following this idea, we design
the framework the Deep Learning with Ubiquitous Cognitive
Computing. Here we develop a kind of distributed system on
the network of personal handsets to enable on-device post-
training for large-scale deep learning network. Much work
has been undertaken in the past few years about deep learn-
ing on GPU clusters [2, 5] and some of the ideas have been
implemented [1], which is closely related to our work. But
these clusters are often well placed in a fixed environment



Initial Model Model Loss Model Gradients Accumulated
Gradients

Update with
Normalized
Gradients

Forward
Propagation

Backward
Propagation

Sync
Gradients

Update
Weights

Figure 1: Framework of Training

Figure 2: A typical DCNN architecture: AlexNet [6]

and some of them even share the same control apartment.
For most cases, the main computing devices share data using
highly efficient data link. But in handsets, the mobility de-
termine that the network should be ad-hoc. The latency for
communication would increase accordingly and this should
be taken into consideration in the system design.

In the following sessions we first introduce our approach
to enable parallel DNN training on mobile devices, we then
introduce our synchronization design to maintain model con-
sistency.

2. PROPOSED METHOD
In this section, we talk about the technical approach to ad-

dress this problem. To enable the co-computation described
earlier, it is necessary to introduce parallel computing to the
design. The system is separated into two part, the parallel
solver and the synchronization mechanism.

2.1 Overview of Deep Learning
Recent years, deep learning has brought a revolutionary

power in amounts of the field in artificial intelligence, includ-
ing visual object recognition, object detection, and speech
recognition. By discovering intricate structure in large data
sets by using the backpropagation algorithm to indicate how
a machine should change its internal parameters, deep learn-
ing can model high-level abstractions in data. There exist

several architectures of neural networks. Deep convolutional
networks have brought about breakthroughs in processing
images, video, speech, and audio, whereas recurrent net-
works have shone the light on sequential data such as text
and speech [8]. In this paper, we mainly study the deep
convolutional networks.

Similar to their predecessors, shallow neural networks,
deep convolutional neural networks (DCNN) consist of a
large collection of neural units, which are usually arranged
in several layers. DCNN are simply neural networks that
use convolution in place of general matrix multiplication in
at least one of their layers [3] (Figure 2). The typical ap-
proach to train a DCNN model includes following steps: (1)
calling network forward to compute the output and loss; (2)
calling network backward to compute the gradients; (3) in-
corporating the gradients into parameter updates according
to the solver method; (4) updating the solver state accord-
ing to learning rate, history, and method. With the trained
DCNN model, the common way to deploy the network is
simply calling the network forward and get representations
in final layer.

2.2 Solver Design
The computation of DNN solver is naturally parallel. The

model is trained using the mini-batch optimization which
indicates that multiple similar processes can be executed at
one time. And this computation can usually be formulated
as general matrix operations, which make it more scalable
in a large scale parallel computing environment. In our pro-
posed method we choose to exploit the parallelism on the
solver level, which means different nodes do the forward
and backward propagation with different data but update
the model with the same gradient. Gradients distributed
among multiple client nodes are summed and normalized on
one specific node called the hub, and then the normalized
gradients are scattered to client nodes for weights update.

As is illustrated in Fig. 1, we first do a forward propaga-
tion in which we generate a loss value for given batch of data.



Figure 3: Synchronization Mechanism

This is done by applying the defined computational opera-
tions of each layer. When the forward propagation is done, a
backward propagation is undertaken to back-propagate the
loss to the very first layer for generating gradients respective
to each layer. When the forward and the backward compu-
tation is done, the gradients are stored in each layer ready
for the update procedure. Instead of continuing the updat-
ing process, our solver pushes the gradients to the hub node.
A set of merged gradients of all involved nodes will be pulled
from the hub to the worker node for the coming weights up-
dating process. Finally, all the worker nodes update their
weights using the provided merged gradients.

In our design, all nodes share the same model and the
model is updated in a synchronous manner. All nodes keep
the same model from the first time of the synchronization
and keep them synchronized to the end of optimization.

2.3 Synchronization Mechanism
The other main part of the system is the synchronization

mechanism, which is usually the essential part in common
distributed systems. We adopt the barrier base synchronous
model, in which we do synchronization in each iteration of
the optimization process. The whole process is shown in
Fig. 3. At the very beginning of the cooperative training,
each client will send a short message to the hub for the
registration. The registration process can provide enough
information to select the scaling parameter during the nor-

Table 1: Comparation

Setting Time for 10 Iterations. (s)

Nexus 6P only 5
Meizu MX3 only 28

Co-Training 25

malization of the merged gradients. In the training process,
a barrier is set before the clients’ pulling of merged gradients
to guarantee maintenance of the same model.

After the forward-backward process of one client, the gra-
dients of each layer is sent from the client node to the hub
node. The gradient is accumulated in the hub node and
when the accumulation finishes, the normalization is exerted
to the gradients. Then the gradients are broadcast to each
client node.

In practice, a strategy called early-stopping is usually ap-
plied during the training process. The main idea for this
strategy is to stop the training when the loss value is no
longer dropping, which indicates that the model has already
converged and reached the optimized state. In our syn-
chronous model, a goodbye message is sent from to hub to
each node to indicate the end of optimizing, and the whole
training process is finally done.

3. EXPERIMENTAL DESIGN
In this section, we introduce our design and results of the

experiment. We test our model using the LeNet [9] for the
MNIST number figure recognition task [9]. The neural net-
work is composed of seven layers including a convolutional
layer and several fully-connected layers. This is a quite sim-
ple network compared to those sophisticated deep neural
networks designed for complex task today. However, our
system is designed to be compatible for all kinds of layers
and networks, for the parallel part is on the solver layer of
the framework.

We test our model with three smartphones running An-
droid operating system, listed below.

• Google Nexus 6P, Qualcomm Snapdragon 820, 64-bit
2.0GHz, 4 threads

• Meizu MX 3, Samsung Exynos 5410, 32-bit 1.6GHz, 4
threads

• Google Nexus 7, NVIDIA Tegra 3, 32-bit 1.3GHz, 4
threads

Note that the Google Nexus 7 is only set as a hub node
in our experiment for it is weaker in computing capacity.
These devices are connected to each other within an 802.11n
wireless network with an average bandwidth of 32Mbps.

The result of the experiment is shown in Table 1. From
this result, we can see that, due to our synchronous model
design, one drag device, which is much slower than other
peers, can largely affect the performance of the whole sys-
tem. However, there are several possible solutions for this.
One is to modified computing workload specifically for each
worker node in accordance with its hardware setting, like
modifying the batch size and iteration number for one spe-
cific node.



4. CONCLUTION
In this paper, we proposed the first deep learning frame-

work for distributed training on mobile devices. We do
a solver level modification to enable sharing of gradients
among multiple clients. A synchronization model featur-
ing barriers is introduced to maintain a shared deep model.
Experiments show that our model can distribute the com-
putational workload to worker nodes in an 802.11 wireless
network and support cooperative training of deep neural net-
works among mobile devices.

5. CONTRIBUTIONS

• Design of deep learning algorithm on mobile: Yueyu
Hu, Hao Wang

• Implementation of deep learning algorithm on mobile:
Yueyu Hu

• Design of synchronization algorithm: Yueyu Hu

• Implementation of synchronization algorithm: Yueyu
Hu, Hao Wang

• Poster: Hao Wang, Yueyu Hu

• Report: Yueyu Hu, Hao Wang

6. REFERENCES
[1] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang,

T. Xiao, B. Xu, C. Zhang, and Z. Zhang. Mxnet: A
flexible and efficient machine learning library for
heterogeneous distributed systems. arXiv preprint
arXiv:1512.01274, 2015.

[2] G. Dahl, A. McAvinney, T. Newhall, et al.
Parallelizing neural network training for cluster
systems. In Proceedings of the IASTED International
Conference on Parallel and Distributed Computing
and Networks, pages 220–225. ACTA Press, 2008.

[3] I. Goodfellow, Y. Bengio, and A. Courville. Deep
learning. 2015, 2016.

[4] L. N. Huynh, R. K. Balan, and Y. Lee. Deepsense: A
gpu-based deep convolutional neural network
framework on commodity mobile devices. In
Proceedings of the 2016 Workshop on Wearable
Systems and Applications, pages 25–30. ACM, 2016.

[5] V. V. Kindratenko, J. J. Enos, G. Shi, M. T.
Showerman, G. W. Arnold, J. E. Stone, J. C. Phillips,
and W.-m. Hwu. Gpu clusters for high-performance
computing. In 2009 IEEE International Conference on
Cluster Computing and Workshops, pages 1–8. IEEE,
2009.

[6] A. Krizhevsky, I. Sutskever, and G. E. Hinton.
ImageNet Classification with Deep Convolutional
Neural Networks. NIPS, 2012.

[7] N. D. Lane, S. Bhattacharya, P. Georgiev, C. Forlivesi,
L. Jiao, L. Qendro, and F. Kawsar. Deepx: A software
accelerator for low-power deep learning inference on
mobile devices. In 2016 15th ACM/IEEE
International Conference on Information Processing in
Sensor Networks (IPSN), pages 1–12. IEEE, 2016.

[8] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning.
Nature, 521(7553):436–444, May 2015.

[9] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner.
Gradient-based learning applied to document
recognition. Proceedings of the IEEE,
86(11):2278–2324, 1998.

[10] V. Radu, P. Katsikouli, R. Sarkar, and M. K. Marina.
A semi-supervised learning approach for robust
indoor-outdoor detection with smartphones. In
Proceedings of the 12th ACM Conference on Embedded
Network Sensor Systems, pages 280–294. ACM, 2014.


