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ABSTRACT

Matching non-rigid shapes is a challenging research field in
content-based 3D object retrieval. In this paper, we present
an image-based method to effectively address this problem.
Multidimensional Scaling (MDS) and Principal Component
Analysis (PCA) are first applied to each object to calculate its
canonical form, which is afterward represented by 66 depth-
buffer images captured on the vertices of an unit geodesic
sphere. Then, each image is described as a word histogram
obtained by the vector quantization of the image’s salient lo-
cal features. Finally, a multi-view shape matching scheme is
carried out to measure the dissimilarity between two models.
Experimental results on the McGill Articulated Shape Bench-
mark database [1] demonstrate that, our method obtains better
retrieval performance compared to the state-of-the-art.

Index Terms— 3D shape retrieval, Non-rigid 3D shape,
Multidimensional Scaling (MDS), Bag-of-Features (BOF)

1. INTRODUCTION

The explosion in the number of 3D models has led to the
rapid development of 3D shape retrieval systems that, given
a query object, retrieve similar 3D models based on their
shapes. Up to now, a large number of algorithms, includ-
ing statistic-based [2], graph-based [3], transform-based [4],
view-based [5], and composite methods [6], have been pro-
posed. For more details about different methods, we refer the
reader to some good survey papers [7, 8].

Probably due to the complexity of non-rigid shape pro-
cessing, previous efforts have been mainly devoted to the re-
trieval of rigid 3D models. Thereby, comparing non-rigid 3D
shapes is still a challenging problem in content-based 3D ob-
ject retrieval. Yet, as we know, non-rigid models are com-
monly seen in our surroundings. Take Fig. 1(a) for an exam-
ple, a human being might appear in several distinct postures
that could inevitably be identified as different shapes using
most existing methods. In order to properly and efficiently
measure the dissimilarity between two non-rigid objects, it is
preferable that the shapes can be described by some feature
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Fig. 1. Non-rigid models (a) and their canonical forms (b).

vectors which are invariant or approximately invariant under
isometric transformations (e.g. bending and articulation).

Recently, Ruggeri and Saupe [9] used the distributions
of geodesic distances to create a isometry-invariant shape
descriptor, while Mahmoudi and Sapiro [10] discussed six
such signatures via the distributions of several geometric
distances including diffusion distance, geodesic distance,
and a curvature weighted distance, etc. In [11], Ohbuchi et
al. reported an articulated-invariant shape descriptor using
salient local visual features. They represented a 3D object
by a word histogram derived from the vector quantization of
salient local descriptors extracted on the depth-buffer views
captured uniformly around the object. Elad and Kimmel [12]
suggested extracting bending-invariant signatures from em-
bedded 3D surfaces generated by applying Multidimensional
Scaling (MDS) techniques. In their paper, a moment-based
signature was tested in a simple classification experiment.
Gal et al. [13] introduced a pose-oblivious shape descriptor
which is actually a 2D histogram combining the distributions
of Euclidean distances in local regions and the distributions
of geodesic distances for the whole object.

Inspired by the papers mentioned above, we develop
a novel method for non-rigid 3D shape retrieval, which is
largely based on the utilization of Multidimensional Scaling
(MDS) [14] and Bag-of-Features (BOF). The key idea of our
method is to apply MDS and PCA [15] together to obtain the
3D object’s canonical form (see Fig. 1(b)), from which salient
local visual features are extracted to generate a discriminative



shape descriptor using BOF. Due to the fact that both the
canonical form and the local feature are (or approximately)
bending-invariant, the new shape descriptor is expected to be
well suited for non-rigid 3D shape matching. As we can see
from the experimental results evaluated on a commonly-used
articulated shape database, our method significantly outper-
forms the state-of-the-arts in terms of retrieval accuracy.

2. METHOD DESCRIPTION

In this section, we first present an overview of the method and
then elaborate on the implementation details. As depicted in
Fig. 2, our method performs step by step as follows:

1. Canonical Form Computation: Calculate the canoni-
cal form for a 3D model based on MDS and PCA.

2. Local Feature Extraction: Capture 66 depth-buffer
views for the canonical form on the vertices of a given
geodesic sphere, and then extract salient SIFT descrip-
tors [16] from these views.

3. Word Histogram Construction: Generate a word his-
togram by vector quantizing each view’s local features
against a pre-specified codebook, such that the shape
can be represented by a set of histograms.

4. Dissimilarity Calculation: Carry out an efficient multi-
view shape matching (Clock Matching) scheme to mea-
sure the dissimilarity between two models by calculat-
ing the minimum distance of their 24 matching pairs.

Since our method is mainly based on Multidimensional
Scaling, Clock Matching, and Bag-of-Features, for the sake of
convenience, we denote the algorithm as “MDS-CM-BOF”.

2.1. Canonical Form Computation

Fig. 3. The procedure of our canonical form computation.
The original mesh (a) is first simplified into a coarse version
(b) and then MDS is applied to map the simplified mesh into a
bending-invariant surface (c), on which we use a PCA-based
alignment to obtain the final canonical form (d).

Based on the fact that the geodesic distance between ev-
ery two points on a surface remains unchanged under isomet-
ric transformations, a bending invariant representation can be
obtained by applying MDS to map the geometric structure of
the surface to a new 3D Euclidean space, in which geodesic

distances are approximated by Euclidean ones. This idea is
originally proposed in [12], where three different MDS tech-
niques are also compared. To get better results, we here exper-
imentally choose the least squares technique with the SAM-
COF algorithm [14], whose source code written in Matlab is
publicly available on the web site of the book [17], to imple-
ment the MDS embedding.

As the calculation of geodesic distances and the SAM-
COF algorithm are both computational expensive, the 3D
surface is simplified before the MDS embedding procedure.
A reliable source code of mesh simplification can be found
in [18] and the number of vertices on the mesh is reduced to
about 1000.

Given the embedded surface, we first translate the center
of its mass to the origin and then scale the maximum polar dis-
tance of the points on the surface to one. Rotation invariance
is achieved by applying the PCA technique to find the prin-
cipal axes and align them to the canonical coordinate frame.
Note that, we only employ the information of eigenvectors to
fix the positions of three principal axes, namely, the direction
of each axis is still undecided and the x-axis, y-axis, z-axis
of the canonical coordinate system can be located in all three
axes. That means 24 different orientations are still plausible
for the canonical form of a 3D object, or rather, 24 matching
operations should be carried out when comparing two mod-
els. It should also be pointed out that, the exact values of the
surface moments used in our PCA-based pose normalization
are calculated via the explicit formulae introduced by [19].

To sum up, as illustrated in Fig. 3, our canonical form
computation consists of the following three steps: Mesh sim-
plification, MDS embedding, and PCA-based alignment,

2.2. Local Feature Extraction

After the first step, we obtain the canonical forms of 3D mod-
els, which have been well aligned to the canonical coordinate
frame. Then their 66 depth-buffer views with size 256 × 256
are captured on the vertices of a given unit geodesic sphere
whose mass center is also located in the origin, such that a
3D object can be represented by a set of images from which
we extract salient SIFT descriptors, as presented in [16]. The
SIFT descriptor is calculated, using the VLFeat matlab source
code developed by Vedaldi and Fulkerson [20].

2.3. Word Histogram Construction

Directly comparing 3D models by their local visual features is
time consuming, especially for the 3D shape retrieval meth-
ods that use large numbers of views. To address this prob-
lem, we quantize the SIFT descriptors extracted from a depth-
buffer image into one word histogram so that the view can be
represented in a highly compact and distinctive way.

Before vector quantization, a codebook with Nw visual
words is generated via off-line clustering. More specifically,



Fig. 2. Overview of our method.

huge numbers of feature vectors are first randomly sampled
from the feature set of the target database to form a training
set. Then, the training set is clustered into Nw clusters us-
ing the K-means method. At last, centers of the clusters are
selected as the feature vectors of visual words in the code-
book. Here, we choose the Integer K-means algorithm [20]
to do the clustering and the number of clusters is selected as
Nw = 1500 according to our experiments.

By searching for the nearest neighbor in the codebook,
a local descriptor is assigned to a visual word. Then each
view can be represented using a word histogram whose ith

bin records the number of ith visual words in the depth-buffer
image. We also design a compact data structure for our 3D
shape descriptor, where only the information (i.e. bin No.
and bin value) of some bins, whose values are not equal to
zero, appears in the feature vector.

2.4. Dissimilarity Calculation

The last step of the MDS-CM-BOF algorithm is the dissim-
ilarity calculation for two shape descriptors. The basic idea
of our multi-view shape matching (Clock Matching) scheme
is that, after we get the principal axes of an object, instead of
completely solving the problem of fixing the exact positions
and directions of these three axes to the canonical coordinate
frame, all possible poses are taken into account during the
shape matching stage.

The dissimilarity between the query model q and the
source model s is defined as,

Disq,s = min
0≤i≤23

65∑
k=0

D
(
FVq(p

′

0(k)), FVs(p
′

i(k))
)

,

where FVm = {FVm(k)|0 ≤ k ≤ 65} denotes the shape de-
scriptor of 3D object m, FVm(k) stands for the feature vec-
tor of view k, the permutations p

′

i = {p′

i(k)|0 ≤ k ≤ 65},
0 ≤ i ≤ 23 indicate the arrangements of views for all (24)
possible poses of a canonical form, and D(·, ·) measures the
distance between two histograms H1,H2 with Nw bins by the
formula,

D(H1,H2) = 1 −
∑Nw−1

j=0 min(H1(j),H2(j))

max(
∑Nw−1

j=0 H1(j),
∑Nw−1

j=0 H2(j))
.

More details of this shape matching scheme can be found in
our previous paper [6].

3. EXPERIMENTAL RESULTS

The goal of this section is to evaluate the retrieval perfor-
mance of our MDS-CM-BOF algorithm and compare it with
other state-of-the-art methods. We carry out experiments on
the McGill Articulated Shape Benchmark database (255 artic-
ulated models with 10 categories) and evaluate the retrieval
accuracy by Precision-recall plots as well as the following
four quantitative measures (see [7] for their explicit defini-
tions): Nearest neighbor (NN), First-tier (1-Tier), Second-tier
(2-Tier), and Discounted Cumulative Gain (DCG).

In Fig. 4, the Precision-recall curves of our method
and other well-known approaches, including BF-SIFT [11],
GSMD [6], LFD [5], G2 [10], SHD [4], and D2 [2], are dis-
played. Among them, BF-SIFT produces the best result we
can find so far for non-rigid 3D shape searching and LFD is
the top ranked rigid shape descriptor in [7]. As we can see



Fig. 4. Precision-recall plots of our method (MDS-CM-BOF)
and other six approaches evaluated on the McGill database.

Table 1. Comparing retrieval results of our method (first row)
with the state-of-the-art on the McGill database.

NN 1-Tier 2-Tier DCG
MDS-CM-BOF 99.6% 84.7% 95.5% 97.2%

BF-SIFT 97.3% 74.6% 87.0% 93.7%
LFD 91.0% 52.8% 69.7% 83.7%

more clearly from Table 1, our method (MDS-CM-BOF) ob-
tains excellent results and markedly outperforms all existing
methods for the application of non-rigid 3D shape retrieval.
Moreover, the new shape descriptor is compact (about 4800
byte), the comparison of two feature vectors takes less than
1.0 millisecond, and the feature extraction for an object can
be calculated within 15 seconds on average using a common
PC (2.66GHz CPU and 4.0GB memory) under Windows XP.

4. CONCLUSION

In this paper, using Multidimensional Scaling and Bag-of-
Features, a practical and powerful method was developed for
the retrieval of non-rigid 3D objects. By taking advantage
of the canonical form and salient local features, the proposed
method obtains excellent results when searching for non-rigid
shapes. Experiments on a commonly-used articulated shape
benchmark database verified that, our performance results are
superior to the state-of-the-art.
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