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Abstract

Automatic generation of Chinese fonts that consist of large
numbers of glyphs with complicated structures is now still a
challenging and ongoing problem in areas of AI and Com-
puter Graphics (CG). Traditional CG-based methods typi-
cally rely heavily on manual interventions, while recently-
popularized deep learning-based end-to-end approaches often
obtain synthesis results with incorrect structures and/or seri-
ous artifacts. To address those problems, this paper proposes
a structure-guided Chinese font generation system, SCFont,
by using deep stacked networks. The key idea is to integrate
the domain knowledge of Chinese characters with deep gen-
erative networks to ensure that high-quality glyphs with cor-
rect structures can be synthesized. More specifically, we first
apply a CNN model to learn how to transfer the writing tra-
jectories with separated strokes in the reference font style into
those in the target style. Then, we train another CNN model
learning how to recover shape details on the contour for syn-
thesized writing trajectories. Experimental results validate the
superiority of the proposed SCFont compared to the state of
the art in both visual and quantitative assessments.

Introduction
Compared to uniform-looking glyphs, now more and more
people prefer using personalized fonts, especially those in
distinguished handwriting styles, in many scenarios. On the
one hand, handwriting styles are flexible to express person-
ality and endow texts with writers’ distinctive characteristics
and hallmarks. On the other hand, glyphs in personalized
handwriting styles bring about dynamic visual perceptions,
which are able to attract more attentions in various social
networking media.

However, creating a handwriting Chinese font library is
still a time-consuming and laborious work with long pro-
duction cycle. The reasons are threefold: 1) Chinese charac-
ters have complex structures and thus yield great variance in
writing styles. 2) Unlike the English or Latin typefaces that
only contain a small number of glyphs, even the most com-
monly used Chinese charset (i.e., GB2312) is composed of
6763 characters. It is hard for ordinary people to write out
such large amounts of characters while still maintaining the
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Figure 1: An overview of our system.

style consistency. 3) The handwriting fonts now available
on electronic devices are mainly produced by professional
font designers in commercial companies. They rely heavily
on elaborate adjustments for each glyph, which is impracti-
cal and infeasible for fast font generation aiming at common
customers. Thereby, generating Chinese handwriting fonts
for ordinary people is still a tough task.

The majority of traditional CG-based methods take ad-
vantage of structural correlations among Chinese characters
to reuse parts of input glyphs. Typically, the input character
images are first decomposed into pre-defined strokes or radi-
als. Then, unseen characters are synthesized by properly as-
sembling the extracted components. Nevertheless, the quali-
ties of many synthesized glyphs are unsatisfactory such that
manual interventions are typically required.

Recently, the utilization of deep learning-based ap-
proaches enables the font generation problem to be resolved
in an end-to-end manner. For one thing, the font generation
can be regarded as a style transfer problem where charac-
ters in the reference style are transferred to a specific style
while maintaining the consistency of the contents. For an-
other, with the advances of generative adversarial networks
(GAN), more realistic and higher-quality glyphs can be syn-
thesized. However, the entire generative process is uncon-
trollable and unpredictable. Blur and ghosting artifacts are
often contained in the generated glyphs. Besides, for char-
acters with complicated structures and/or in cursive hand-
writing styles, those end-to-end approaches often produce
results with unreasonable strokes or/and incorrect structures.

In this paper, we propose a structure-guided Chinese font
generation system, SCFont, which integrates the prior do-
main knowledge of Chinese characters with deep stacked
networks to synthesize visually-pleasing character images
with correct contents. We decompose the font generation
task into two separate procedures, namely writing trajecto-



ries synthesis and font style rendering. The whole pipeline
is shown in Figure 1. In the first phase, each character is
represented as a series of writing trajectories with separated
strokes, which is also named as the skeleton of character in
this paper. We utilize a multi-stage CNN model to trans-
fer writing trajectories in the reference style into those in
the target style. In the second phase, synthesized skeletons
of characters are rendered with a specific handwriting style
via a GAN model to recover shape details on the contour of
glyphs. Finally, the complete font library composed of 6763
characters in the writer’s handwriting style can be obtained.

Compared with existing methods in the literature, the pro-
posed SCFont is more capable of handling two crucial re-
quirements in font generation, i.e., structure correctness and
style consistency. To be specific, writing trajectories can be
synthesized by the learned skeleton flow vectors which in-
dicate how to map the corresponding pixels in the input to
those in the output. In this manner, we not only make the
learning problem more tractable, which avoids learning to
generate writing trajectories from scratches, but also pro-
vide a natural way of preserving the identity and structure
of glyphs. Additionally, to further enhance style similarity
with the original handwritings, a stacked generation network
is designed to refine the ambiguous parts or/and artifacts and
precisely recover the stylish details on the contour of glyphs.

Related Work
Up to now, large numbers of methods on font synthesis have
been proposed. Generally speaking, those existing methods
can be classified into two categories: Computer Graphics-
based methods and Deep Learning-based methods.

Computer Graphics-based Methods (Xu et al. 2005)
proposed the shape grammar to represent each charac-
ter in a multi-level manner and generate calligraphy via
a constraint-based reasoning system. Considering personal
handwriting style biases, the shape grammar was augmented
by a statistical modeling for a specific writer (Xu et al.
2009). Later, the Chinese Character Radical Composition
Model (Zhou, Wang, and Chen 2011) and StrokeBank (Zong
and Zhu 2014) were proposed to synthesize characters
by means of mapping the standard font components, i.e.,
strokes or radicals, to their handwritten counterparts. (Lin et
al. 2015) also designed an algorithm to synthesize a given
character in the target style through assembling extracted
components according to the human labeled position and
size information. However, expert knowledge is always re-
quired to manually define basic constructive elements. Be-
sides, human supervision and fine-tuning are inevitable to at-
tain perfect stroke/radical extraction results. More recently,
(Lian, Zhao, and Xiao 2016) developed the “FontSL” system
to learn stroke shape and layout separately in which human
intervention is avoided. But, the composition rules are based
on strong assumptions of the reference font style, which are
not well suited for handwriting fonts with huge shape differ-
ence compared to the reference data.

Deep Learning-based Methods Glyphs of Chinese char-
acters can be represented as the combination of the given

content and a specific font style. Many researchers attempted
to synthesize Chinese characters using models adapted from
style transfer (Gatys, Ecker, and Bethge 2015; Johnson,
Alahi, and Fei-Fei 2016; Chen et al. 2017). “Rewrite” was
proposed by (Tian 2016) to transfer a given character from
the standard font style to a target style. In addition, font gen-
eration can be considered as an instance of image-to-image
translation problem (Isola et al. 2017; Zhu et al. 2017b;
2017a; Kim et al. 2017; Yi et al. 2017), which transforms
the image from one domain to another while preserving the
content consistency.

With the help of generative adversarial networks (Good-
fellow et al. 2014; Mirza and Osindero 2014; Radford, Metz,
and Chintala 2015; Odena, Olah, and Shlens 2017), more
realistic and higher-quality character images can be synthe-
sized. For instance, “zi2zi” (Tian 2017) exploited a condi-
tional GAN-based model to generate characters with the cat-
egory embedding added to both the generator and discrim-
inator. “DCFont” (Jiang et al. 2017) employed a font fea-
ture reconstruction network to estimate the features of un-
seen characters and then synthesized a given content char-
acter via a generative network. After that, many font gener-
ation networks (Azadi et al. 2018; Lyu et al. 2017; Sun et
al. 2017; Chang, Gu, and Zhang 2017; Chang et al. 2018;
Zhang, Zhang, and Cai 2018) were proposed, which often
utilized CNN-based models to capture the style of a specific
writer and then apply it to unseen characters. Yet, the low-
quality synthesis results hinder the practical uses of these
approaches. For one thing, ghosting artifacts and blurred
strokes are common problems existing in the generated char-
acters. For another, those deep neural networks often pro-
duce incomplete or unreasonable strokes for characters with
complicated structures.

To address the problems mentioned above, we follow the
idea of flow prediction to generate high-quality writing tra-
jectories and then recover contour details on them. As for
flow prediction, (Dosovitskiy et al. 2015) proposed FlowNet
to predict the flow field from a pair of images. More recently,
FlowNet2.0 (Ilg et al. 2017), stacked networks of FlowNet,
was designed to solve small displacements and noisy arti-
facts in the estimated flow. There also exist some works
(Zhou et al. 2016; Park et al. 2017) utilizing the predicted
flow to synthesize novel views of objects via learning pixel-
to-pixel correspondence between the input and output views.

Method Description
In our SCFont system, the font generation task is decoupled
into two steps: writing trajectories synthesis and font style
rendering. In the first step, we use SkelNet, which can learn
the flow of points on the writing trajectories from the refer-
ence style to the target style, to predict the target trajectories
of characters. The input of SkelNet is the mean writing tra-
jectory of a given character and the output is the predicted
flow. After applying the flow to the reference trajectory, an
image of writing trajectory in the desired style is obtained.
In the second step, StyleNet is trained for enriching the tra-
jectories with a specific font style on contours. The entire
pipeline requires only a few samples in the training stage



Figure 2: The architecture of the first-stage netwok in the SkelNet. It predicts the skeleton flow, in a coarse to fine way, to build
correspondence between pixels in the reference and target writing trajectories so as to synthesize the target skeleton image.

and then other unseen characters can be synthesized to ob-
tain the complete font library.

Data Preprocessing
We adopt the method presented in (Lian, Zhao, and Xiao
2016) to automatically extract strokes. Followed by that, in
order to establish the correspondence between different font
skeletons of a given stroke, a non-uniform sampling method
is used to sample the same number of key points for each
stroke in the writing trajectories containing the connection,
ending and important turning points, to preserve the struc-
ture information as much as possible. The key points are
connected to form a single-pixel wide skeleton, and then ex-
panded to the image with certain width skeleton. In addition,
we collected a set of Chinese fonts in different styles and ex-
tracted the writing trajectory for every glyph, and then cal-
culated the mean value of coordinates in the sampled points
on the strokes to get the mean skeleton for each character,
which is used as our reference writing trajectory.

More specifically, the skeleton flow field is defined as
SFF , where each element SFF (i) is a 2-D coordinate
vector specifying the correspondence between (x

(i)
r , y

(i)
r )

in the reference writing trajectories Ir and its counterpart
(x

(i)
t , y

(i)
t ) in the target style It

SFF (i) = (x
(i)
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(i)
f ) = (x

(i)
t − x(i)r , y

(i)
t − y(i)r ), (1)

where i ∈ Ir. Considering that it is difficult for CNNs to
effectively extract features of such single-pixel skeleton im-
ages, we broadcast the single-pixel wide skeletons to those
with certain width (e.g., 4 pixels wide).

Skeleton Transformation Network (SkelNet)
Given a mean skeleton image, the goal of SkelNet is to pre-
dict the dense skeleton flow of each pixel from the mean
writing trajectory to that in the target writing trajectory. The
basic architecture of our SkeNet is similar to the FlowNet
(Dosovitskiy et al. 2015). Here, we incorporate the stroke

category information into the model to guide the transfor-
mation. Moreover, stacked networks are also employed to
further improve the performance of flow estimation.

Network Architecture. As shown in Figure 2, our Skel-
Net contains two parts: contracting and expanding. The in-
put skeleton image is first shrunk into high-level seman-
tic features conditioned on the stroke category information.
Then, the expanding part estimates the dense flow values in
a coarse-to-fine way.

The contracting part contains a series of convolutional
layers with a stride of 2, resulting in a total downsampling
factor of 64. The expanding part of the network gradually
and nonlinearly upsamples the encoded result, taking into
account features from the contractive part. To disentangle
different font styles and learn the features of different stroke
categories, we also concatenate the encoded result of the
contracting part with the category embedding hf and stroke
embedding hs, which indicate the font category and cate-
gories of strokes appearing in the target character, respec-
tively.

We adopt a hierarchical prediction architecture and be-
gin estimating the skeleton flow field from a low-resolution
(5×5) map. As illustrated in Figure 2, each time we concate-
nate the deconvolution result with the feature map from the
corresponding contrasting layer and the upsampled coarse
flow estimation. In this manner, the network is able to pre-
serve more details and refine the estimation results progres-
sively. Besides, we add an additional convolutional layer
with stride one after each concatenation operation to make
the estimated flows as smooth as possible.

Furthermore, we stack the second stage flow estimation
network to further refine the predicted flow values, which is
similar to the first stage except without spatial feature layers.

Loss Function. We train the entire stacked network in an
end-to-end manner and supervise on two stages simultane-
ously. The multi-scale losses are accumulated, and the total
loss is defined as the sum of weighted losses in all dimen-
sions



Figure 3: The architecture of StyleNet, which contains two-stage generative networks and a discriminative network. It renders
the skeleton image in a specific font style to recover stylish details on the contour of glyphs.
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where the weight of each loss layer λj increases with the
dimension, and lossij(j ∈ [0, 6]) denotes the endpoint error
(EPE) in the stage i, i.e., the average Euclidean distance be-
tween the predicted flow vector and the ground truth over all
pixels.

Stroke Category Semantic Prior. We define 33 cate-
gories of strokes according to their shapes and meanings in
the characters. The stroke category of every pixel in the im-
age can be regarded as a type of semantic information in
the Chinese character. The SkelNet uses the spatial feature
transform (SFT) layer (Wang et al. 2018) following each
convolution layer in the contracting part. The SFT layer tries
to learn the parameters of affine transformation based on the
category prior, which are then applied to the intermediate
feature maps. Here, the category prior is defined as

S = (S1, S2, S3, Sk, ..., SK), (3)

where Si
k indicates whether the pixel i(i ∈ Ir) belongs to

the stroke category k and K is the total number of stroke
categories. The input of jth SFT layer is the feature map F j

in

and the conditions P j coming from the encoded results of
the stroke category map S. This layer learns parameters αj

and βj through respective convolutional layers to produce
the output with the same dimension as F j

in (see Figure 2).
Then, we have

F j
out = F j

in � α
j + βj , (4)

where F j
out indicates the ouput of the SFT layer and � de-

notes the element-wise multiplication.

Style Rendering Network (StyleNet)
The goal of StyleNet is to render the writing trajectories
in a specific handwriting style and recover shape details on
the contour of glyphs. StyleNet utilizes an image-to-image

transformation model with adversarial network to transform
the input skeleton to the target image. Meanwhile, we try
to preserve the structural consistency between the input and
output images so as to make the generation process more
controllable. The whole generation process contains two
stages. Stage-I generator transforms the skeleton image to
its corresponding character image while Stage-II generator
fixes artifacts to further polish synthesis results.

Stage-I Generator. As shown in Figure 3, the input skele-
ton image x is sent to a sequence of downsampling layers to
encode the skeleton image to high-level representation. Sim-
ilar to SkelNet, we also combine the font category embed-
ding hf and stroke embedding hs with the encoded feature.
In this way, the network could better build the latent style
space and distinguish the characteristics of different strokes.
Then, deconvolution layers are used to upsample the features
progressively. Meanwhile, the output of each deconvolution
layer is concatenated with its corresponding layer in the en-
coder to propagate the low-level information directly.

Stage-II Generator for Refinement. Since the generated
images of the Generator I inevitably has some ghosting arti-
fact and blur, we employ the Stage-II generator to refine un-
desired results. The input G1(x) is firstly downsampled to
40 × 40, then sent to some residual blocks (He et al. 2016),
finally up-sampled to the target resolution. The encoder-
decoder architecture used in the generation network is intrin-
sically well-suited to fix small displacements and maintain
the consistent attributes of the given input image.

Loss Function. The loss function of our StyleNet consists
of adversarial loss, consistency loss and pixel space loss.

The adversarial networks have achieved great success in
generative problems. In our model, D examines not only
the genuineness (Ds(·)), but also the font category of the
image pair (Dc(·)), namely, the input and its correspond-
ing fake or real character image (see Figure 3). Instead
of downsampling the image to one dimension, we clas-
sify whether the N × N patch is real or fake. The aver-



age of classification results for all patches in the image is
the final output. During training, the discriminator tries to
maximize LGANs + LGANc while the generator minimizes
LGANs − LGANc, where

LGANs =Ex,y∼pdata(x,y)
[logDs(x, y)]+

Ex∼pdata(x)
[log(1−Ds(x,G(x)))]

(5)

LGANc =Ex,y∼pdata(x,y)
[logDc(x, y)]+

Ex∼pdata(x)
[logDc(x,G(x))].

(6)

Here, x and y are the input skeleton image and the target
character image, respectively.G1, G2 denote the Stage-I and
Stage-II generators, and G represents the whole two-stage
generator {G1, G2}.

In order to make the output character image preserve
structure attributes of the input skeleton, we utilize the con-
sistency loss to penalize the difference of high-level features,
which are results of the encoder EncI in the Stage-I gener-
ator:

Lconst = Ex∼pdata(x)
[‖EncI(x)− EncI(G(x))‖1]. (7)

We also calculate the weighted L1 loss in the pixel space
for G1 and G2, focusing more on pixels of the character
rather than the background, to enforce the generated image
to resemble the real one

Lpixel =Ex,y∼pdata(x,y)
M � [‖y −G1(x)‖1+

‖y −G2(x)‖1],
(8)

where M ∈ {1, 5}H×W is the weighted visuality map. The
weight of pixels on the character is 5 times of those in the
background.

Finally, the total loss function for G can be computed by
Lstyle =λad(LGANs − LGANc) + λpixLpixel+

λconLconst.
(9)

Experimental Results
In this section, we firstly introduce the dataset and imple-
mentation details of our method. After that, we evaluate the
performance from different aspects to verify its advantages
over other approaches. Finally, the networks are fully ana-
lyzed to confirm the validity of the entire architecture.

Dataset
We select to conduct experiments on seventy Chinese font
libraries in different handwriting styles as well as design-
ing styles. Here, the trajectories of stokes in all character
images have been attained by stroke extraction techniques
and a few wrong extraction results have been manually cor-
rected. We assume the correctness of stroke extraction re-
sults since our major concern is how the proposed font style
transfer method works. We conduct experiments on vari-
ous fonts with different degrees of difficulty, from approxi-
mately standard to cursive or stylish handwritings with huge
shape deformation.

Although our method already can generate attractive re-
sults by learning quite a few (e.g., 50) samples, to en-
sure more stable and high-quality performance in real ap-
plications, we take the optimal input set (OptSet) presented

in (Lian, Zhao, and Xiao 2016) which contains 775 charac-
ters as the input set. It covers all kinds of components in the
GB2312 character set. Under this setting, the network could
be able to “see” enough samples to effectively handle glyphs
with complicated structures or in very cursive styles.

Implementation Details
In our experiment, the input and output character images are
both of size 320 × 320 × 3. We use mini-batches with size
16 and train the model with the Adam optimizer. The learn-
ing rate is initialized as 0.001 and is decayed by a half after
5 iterations. In the SkelNet, λj = 2−j for j ∈ [0, 6] ; in
the StyleNet, λpix, λcon , and λad are set to 100, 15 and
1, respectively. We selected 25 fonts, 6000 characters ran-
domly chosen from GB2312 charset for each font, to pre-
train the entire network. When it comes to a specific font
to be generated, we fine-tune the model by a small num-
ber (e.g., 775) of writing samples. This manner brings about
two benefits. Firstly, compared with training from scratch, it
greatly speeds up the rate of convergence of the model and
enhances the quality of generated results. Secondly, the pre-
trained process enables the network to “see” diverse fonts so
as to learn the underlying style representation, which makes
it more robust for complex handwritings with great shape
difference against the reference style.

Performance Evaluation
In this subsection, we first compare SCFont with some re-
cently proposed methods to prove the effectiveness of our
method. Additionally, the results are also quantitatively an-
alyzed. Then, a user study is carried out to measure the real-
ism and style-similarity qualitatively. Finally, texts rendered
in the styles generated by our method are illustrated to indi-
cate its feasibility in real applications.

Comparisons. We compare the results of SCFont
with 4 existing methods: “pix2pix”(Isola et al. 2017),
“DCFont”(Jiang et al. 2017), “zi2zi”(Tian 2017) and
“FontSL”(Lian, Zhao, and Xiao 2016). The former 3 meth-
ods are deep learning-based approaches while “FontSL” is
a type of CG-based method. For fair comparison, the three
deep learning-based approaches are all pre-trained with the
same dataset mentioned above and fine-tuned on the glyphs
in a specific font style.

As depicted in Figure 4, our method produces realistic and
high-quality results showing great superiority over others in
visual appearance. Although the deep learning based meth-
ods (“pix2pix”, “DCFont”, and “zi2zi” ) seem to be able to
transfer the overall font style, the generated results are still in
low-quality. When zooming in the details, ambiguity and se-
vere artifacts often exist in the synthesized glyphs especially
for those with complicated structures (see Figure 4 (a), (c),
(e)). As for CG-based methods (e.g.,“FontSL”) that make
full use of domain knowledge of Chinese characters, they
could, to some extent, guarantee the structure correctness.
However, it fails to precisely capture the overall character-
istics as well as local details and thus lacks style-similarity
(see Figure 4(b)). When glyphs in the target font style (e.g.,
FZTLJW) look dramatically different against those in the



Figure 4: Comparison of synthesized glyphs in five different styles obtained using our SCFont and other four existing methods.

Table 1: Quantitative evaluations of our SCFont and other 4 methods.

Method
FZJHSXJW FZSSBJW FZTLJW FZYNJW FZZJ-LPYBJW

L1 loss IOU L1 loss IOU L1 loss IOU L1 loss IOU L1 loss IOU

pix2pix 0.1851 0.4007 0.2290 0.1846 0.1687 0.2048 0.1782 0.4135 0.1491 0.2331
DCFont 0.1630 0.4125 0.1906 0.1672 0.1459 0.1223 0.1640 0.3908 0.1327 0.1808

zi2zi 0.1483 0.4682 0.1936 0.2598 0.1558 0.2431 0.1527 0.4328 0.1400 0.2688
FontSL 0.1943 0.4087 0.2395 0.1928 0.1560 0.1839 0.2272 0.3609 0.1492 0.2379
SCFont 0.1173 0.5459 0.1627 0.3163 0.1188 0.3574 0.1245 0.5442 0.1191 0.3197

Table 2: User study results.

Font Accuracy

FZJHSXJW 0.5207
FZSSBJW 0.4971
FZTLJW 0.5119
FZYNJW 0.4986

FZZJ-LPYBJW 0.5299
Average 0.5116

reference style, poor-quality synthesis results will be gener-
ated by both types of methods mentioned above (see Figure
4(c)). On the contrary, the proposed method not only guaran-
tees the correctness in structures, but also preserves stylish
details on the contour.

In addition to visual appearance, SCFont also outperforms
others in quantitative measurements. We calculate the L1
loss, IOU (Intersection over Union) between synthesized im-
ages and the corresponding ground truth. As we can see
from Table 1, our method achieves the lowest L1 loss and
the highest IOU accuracy, which clearly demonstrate the su-
periority of the method over others.

User Study. We also conduct a user study to examine the
realism and style-similarity of synthesis results generated by
our method. To be specific, each participant was presented
with an online questionnaire composed of 100 ground-truth
and 100 synthesized character images in the same font style,
which are both randomly selected and placed in the table
each time. Meanwhile, 50 randomly chosen ground-truth
character images are also shown to participants as the se-
lecting guidance. Participants were required to find out all
character images which they think are machine-generated.

In total, 124 educated people of different age groups
took part in this test. The average accuracy of distinguish-
ing machine-generated glyphs from the ground truth in five

different font styles is 51.16% (see Table 2). The value is
approximate to random selection (50%) indicating that it
is struggling for participants to determine whether a given
character image is machine-generated or not.

Text Rendering Effects. To illustrate the effectiveness of
our method in real applications, we vectorize the original
human-created and machine-generated character images to-
gether and package them into a GB2312 font library. As
shown in Figure 5, the same texts are rendered in different
font styles. To indicate which characters are generated by
our method, Figure 5(a) marks the machine-generated char-
acters in red color. The entire text rendered using the font
library generated by our SCFont is consistent in style and
it is quite hard to distinguish the machine-generated glyphs
from human-created ones.

Analysis of Network Architecture
Stroke Category Prior in the SkelNet. In the SkelNet,
we incorporate the stroke category prior into the contrast-
ing part by spatial feature transformation layers. To verify
its effectiveness, we compare it with a SkelNet variant with-
out using the prior information. Figure 6 indicates that with
the guidance of stroke category prior, severe distortions on
the synthesized writing trajectories can be greatly alleviated,
especially on the stroke overlapping regions. Besides, the



Figure 5: Texts rendered in 5 different font libraries gen-
erated by our SCFont. Synthesized characters in (b-f) are
marked in red in (a).

Figure 6: The effect of stroke category prior knowledge.
With the guidance of stroke category prior, distortions can
be greatly alleviated.

stroke category prior enables the network to better learn the
correlations between strokes in the same category so as to
further smooth the writing trajectories.

Stacked Network Design. In our model, we utilize the
stacked networks to modify the small displacements and fur-
ther refine the details in both SkelNet and StyleNet. Figure
7 shows the intermediate results in seperate networks. In the
SkelNet, the second-stage network effectively reduces dis-
tortions and jitters on the writing trajectory and makes the
entire skeleton more smooth. In the StyleNet, the stacked
architecture enhances the quality of generated images and
enriches the contour details in the character images while
alleviating noises and distortions.

Effect of Training Set Size. To investigate the relation-
ship of the quality of generated characters with the size of
training set, we evaluate the performance of our method with
a series of training sets with various sizes that contain 50,
100, 200, 266, 300, 400, 500, 600, 775 glyphs, respectively.
The dataset with 266 and 775 images are the MinSet and
OptSet, respectively, introduced in (Lian, Zhao, and Xiao
2016). Images in the other input sets are randomly chosen
from the OptSet (775 glyphs). As shown in Figure 8, even
with only 50 input samples, our model could get impressive
results. As we expected, along with the increasing size of

Figure 7: The effect of stacked architectures used in both
SkelNet and StyleNet.

Ntrain L1 loss IOU

50 0.1543 0.3121

100 0.1488 0.3346

200 0.1458 0.3466

266 0.1442 0.3570

300 0.1404 0.3632

400 0.1374 0.3727

500 0.1353 0.3858

600 0.1335 0.3914

775 0.1285 0.4163

Figure 8: The effect of training set size.

Figure 9: The ablation study of loss functions.

training set, the quality of generated results gets improved
accordingly.

Effect of Loss functions. We also conduct an ablation
study investigating the effect of components (Lad , Lpixel

, Lconst) in the loss function of StyleNet (see Figure 9). The
adversarial loss indeed encourages more stylish details in
generated glyphs while the pixel space loss guides the net-
work to obtain clearer results, and is essential to the con-
vergence of the entire model. Besides, the consistency loss
guarantees the structure correctness of glyphs and avoids un-
reasonable strokes. Experimental results show that the com-
bination of these components in the loss function could take
advantage of their respective benefits and thus result in the
best performance.

Conclusion
This paper presented a novel structure-guided Chinese font
generation system, SCFont, via deep stacked networks.
Our method incorporates the benefits of deep neural net-
works with prior knowledge of Chinese characters to en-
sure structure correctness and style consistency simultane-
ously. Specifically, writing trajectories in the reference style
are transformed to a specific style by the skeleton transfor-
mation network, and the synthesized writing trajectories are



rendered with stylish details on the contours by a novel gen-
erative model. Experimental results demonstrated our ad-
vantages in both visual perceptions and quantitative evalu-
ations compared to other existing methods.
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