
DynTypo: Example-based Dynamic Text Effects Transfer

Yifang Men, Zhouhui Lian∗, Yingmin Tang, Jianguo Xiao
Institute of Computer Science and Technology, Peking University, China

Figure 1: The dynamic text effects from an exemplar video (far left) can be transferred to a target text image (bottom) using
our method. Exemplar video: c© Thirdmenson via YouTube.

Abstract
In this paper, we present a novel approach for dynamic

text effects transfer by using example-based texture synthe-
sis. In contrast to previous works that require an input video
of the target to provide motion guidance, we aim to animate
a still image of the target text by transferring the desired
dynamic effects from an observed exemplar. Due to the sim-
plicity of target guidance and complexity of realistic effects,
it is prone to producing temporal artifacts such as flickers
and pulsations. To address the problem, our core idea is
to find a common Nearest-neighbor Field (NNF) that would
optimize the textural coherence across all keyframes simul-
taneously. With the static NNF for video sequences, we
implicitly transfer motion properties from source to target.
We also introduce a guided NNF search by employing the
distance-based weight map and Simulated Annealing (SA)
for deep direction-guided propagation to allow intense dy-
namic effects to be completely transferred with no semantic
guidance provided. Experimental results demonstrate the
effectiveness and superiority of our method in dynamic text
effects transfer through extensive comparisons with state-
of-the-art algorithms. We also show the potentiality of our
method via multiple experiments for various application do-
mains.

1. Introduction
Dynamic typography is an essential visual element in a

variety of media such as films, advertisements and video

* Corresponding author. E-mail: lianzhouhui@pku.edu.cn

clips. Using typographies with fantastic dynamic effect-
s can markedly enhance the atmosphere of the scene and
make it be more attractive to viewers. However, creating
a dynamic text requires a series of complicated operations
with editing software like Adobe After Effects and typical-
ly takes several hours even for skilled designers. Moreover,
restructuring different texts with an existing dynamic effect
can be painstaking, as huge amounts of repetitive operations
are involved. It is already a labor-intensive work to gener-
ate a dynamic typography with the same effect for 26 letters
in the English alphabet, let alone large-scale font libraries
(e.g., Chinese fonts) with huge amounts of characters.

To solve the aforementioned problem, we introduce
“DynTypo”, a brand-new system that automatically trans-
fers various dynamic effects such as burning flame, flowing
water and billowing smoke from the source exemplar to the
target plain texts. The input to our system includes a source
text image, a source stylized video with dynamic effects and
a target text image. With DynTypo the target stylized video
with the same dynamic text effects in source can be gen-
erated (see Figure 1). Our system allows users to transfer
an observed instance of dynamic typography to a new text
and even non-experts can quickly and easily produce so-
phisticated dynamic texts in their own projects. Compared
to LiveType [30], the earliest model to generate dynamic ty-
pography via simple shape deformations, this paper has the
completely different motivation mentioned below.

Creating a dynamic typography with the chosen style
from an exemplar poses several challenges. First, we use
only a single image of the target text as input to animate and

1



stylize it. In contrast to previous works of stylized anima-
tion (e.g., [6, 19, 14]) that feed a target video or a sequence
of motion fields as input, it is more difficult to maintain
the temporal coherence without flow guidance. Second, the
composition of effect patterns is more complicated with re-
alistic fluid animation than a single designed image [36, 3].
And the static and dynamic effects are often blended mak-
ing it easily suffer pulsation artifacts. Third, little semantic
information is contained in raw text images and no guidance
for intense text effects (such as flame effects in Figure 1).

To address these challenges, we propose a novel dynam-
ic text effects transfer method to synthesize high-quality
results with temporal smoothing and sophisticated dynam-
ic effects. Unlike previous works [9, 13, 14] searching
the Nearest-neighbor Field (NNF) for target synthesis in
a frame-by-frame fashion, we simultaneously optimize the
textural coherence across all keyframes to find a common
NNF for all temporal frames, with which any frame of out-
put sequence can be easily computed. In this way, we im-
plicitly achieve a perfect temporal consistency with the stat-
ic NNF and preserve the spatial texture continuity at the
same time. Keyframes are extracted automatically by e-
valuating the intensity of particle movements and used to
construct the semantic similarity term and spatial-temporal
coherence term for dynamic guidance in the synthesis pro-
cess. Moreover, we introduce a guided NNF search with the
distance-based weight map and Simulated Annealing (SA)
for deep direction-guided propagation to ensure that com-
plicated effects can be completely synthesized. Our main
contributions are as follows:

• We are the first to achieve the automatic generation
of dynamic typography with sophisticated dynamic ef-
fects, and the effectiveness of our system is demon-
strated via extensive experiments.

• We tackle the challenge of eliminating temporal ar-
tifacts such as flickers and pulsations by utilizing a
single shared NNF and preserve spatial continuity
at the same time via parallel optimization across all
keyframes.

• We develop a guided NNF search by integrating the
idea of Simulated Annealing and weight map, imple-
menting deep direction guided propagation to make
complicated intense effects without semantic guidance
propagate more sufficiently.

2. Related Work
Up to now, many techniques have been proposed to syn-

thesize stylized animations. Texture advection is a common
approach to produce an animation by applying a velocity
field to a static image. This technique was firstly proposed
by [25] and later extended by [27]. A follow-up work by [8]

utilized the bidirectional texture advection along lines of op-
tical flow to create watercolor-like animations from videos.
[37] proposed the Lagrangian texture advection to generate
animated textures preserving local properties while follow-
ing the velocity field. However, this method easily suffers
from texture distortion for a long-time sequence and need-
s to be alleviated by new source blending. Thus, it fails to
blend textures in different luminance and synthesize reason-
able textures.

Another type of approach is to adopt an example-based
texture synthesis technique. Earlier methods [12, 11] most-
ly relied on additional spatial constraints in the image quilt-
ing procedure to achieve texture transfer. A later work
by [22] presented an optimization-based method to produce
high-quality results with Expectation Maximization (EM)-
like algorithm and image pyramid. They also animated a
static image to a video via flow-guided synthesis [22, 7],
which can be regarded as a combination of texture advec-
tion and synthesis. Later, [4, 5] introduced the PatchMatch
algorithm to accelerate the search step of EM optimization.

The optimization-based method has been extended to a
variety of scenes, such as video completion [34], stylized
3D rendering [13] and text effects transfer [36]. Yang et
al. [36] assumed that the spatial distribution for text effects
is closely related to their distances to the text skeleton and
used the distance-based distribution term to guide synthe-
sis. Here we seek to extend this application [36] to ani-
mation and enable it to transfer more delicate text effects,
which do not satisfy the distribution regularity mentioned
above. [26] proposed a general-purpose texture transfer
method to guide the spatial distribution of internal struc-
tures. However, it needs additional stroke segmenting op-
erations for better structure preservation in the text effect-
s transfer task. Previous stylized animation synthesizing
methods mostly leveraged optical flow to constrain the tem-
poral coherence [6, 15, 19]. Unfortunately, these method-
s cannot perform well in our scenario where only a single
target text image is used as input and the source exemplar
contains complicated dynamic effects with the combination
of dynamic and static patterns.

Neural-based image style transfer proposed by [17, 18]
applied pre-trained deep convolutional networks like VGG-
19 [31] to address the problem. It presented impressive style
transfer results and attracted many follow-ups in model im-
provement [23] and algorithm acceleration [20, 33]. [29]
and [2] extended it to video stylization with the optical flow
constrained initialization and loss function. An online video
style transfer system was proposed by [10] considering tem-
poral coherence for feed-forward networks. More recently,
deep convolutional networks are used to synthesize dynam-
ic textures for fluid animations [35, 16, 32]. Despite the
great success of neural style transfer methods, there still ex-
ists a key limitation that they are unable to reproduce tex-



Figure 2: Overview of the dynamic text effects transfer
problem. With three inputs Stext (source text image), Ssty

(source stylized video aligned to Stext) and Ttext (target
text image), the target stylized video Tsty with dynamic ef-
fects as Ssty can be generated.

tures with high-quality low-level details (as demonstrated
in [14]).

3. Our Approach

In this section, we first formulate the task of dynamic
text effects transfer and outline a strategy to solve the prob-
lem (Section 3.1). Then we leverage extracted keyframes
(Section 3.2) to constrain the spatial-temporal coherence
(Section 3.3) and introduce a guided NNF search algorithm
with SA and weight map for deep direction-guided propa-
gation (Section 3.4). Finally, we utilize a joint formulation
(Section 3.5) to encompass the above-mentioned issues into
one optimization problem and introduce two extended ver-
sions of our method (Section 3.6).

3.1. Problem Formulation and Analysis

Given a source text image Stext , its stylized animation
Ssty and a target text image Ttext, the goal is to synthesize
the target stylized animation Tsty such that Stext : Ssty ::
Ttext : Tsty (see Figure 2).

The native extension of applying text effects transfer to
consecutive frames independently would result in strong
flickers due to subtle appearance changes (e.g., motion,
luminance, etc.) in the source animation Ssty . More-
over, unnoticeable changes in input would be amplified due
to the unstable projection from source to target. To pre-
serve temporal consistency, a common solution is to warp
the previously synthesized frame by following the motion
field and use it to guide the synthesis of the current frame
(e.g., [14, 19]). However, no target motion field can be esti-
mated from a single target image and the common solution
still suffers from temporal pulsations when we use source-
to-target projected motion field. Thus, a different method-
ology is required.

Through experiments, we observed that flickers always
occur in pixels where the correspondences between source
and target are unstable over the time. If we use the same N-
NF throughout the time domain, the target patch will imitate
a series of dynamic changes containing texture appearances

in the temporal sequence. In other words, the image patch
will be extended to temporal patch by keeping the NNF un-
changed. Such an intuitive strategy kills two birds with one
stone: 1) it makes stylized results temporally smooth by re-
moving the temporal domain for search space and only the
two-dimensional plane needs to be considered; 2) it speeds
up the synthesis procedure since all frames share a common
NNF and the iterative optimization for NNF search, compu-
tationally expensive in runtime, is only performed once.

However, the strategy outlined above only preserves the
temporal consistency and ignores the spatial continuity. Di-
rectly applying an NNF searched at one frame to others is
prone to produce discontinuous textures. To further main-
tain the spatial continuity for all frames, we simultaneously
optimize the textural coherence and reconstruct target styl-
ized images across all keyframes to find the common NNF.
Moreover, we utilize the direction guided deep propagation
to encourage the text effects to spread around from the text
contour, where patches contain more semantic features and
could easily find correct correspondences from the source.
In this way, it is sufficient for our method to transfer stylized
appearance from source to target.

3.2. Keyframe Extraction

In our system, keyframes are extracted based on the mo-
tion intensity and used to construct spatial-temporal coher-
ence described in the next section. As shown in Figure 3
(a), it is easy for the left pair to find the best correspon-
dence a but it is confused to choose one between b and
c, which are completely identical with background patch-
es. However, the right pair make it clearly that correspon-
dence b is required for the texture continuity at current
frame. We can introduce more constraints for texture coher-
ence with keyframes containing more representative textu-
ral features. Thus, the keyframes are expected to show vi-
olent movements compared with previous frames, especial-
ly more emitters-places where new fluid is spawned (pixels
marked in pink in Figure 3 (c)). We first extract dynamic
pixels using color-changed ones at consecutive frames and
compute changed values by

mt =| g(St
sty)− g(St−1

sty ) |, 2 ≤ t ≤ N, (1)

where mt is the map of color-changed values at tth frame
and g(St

sty) is the gray image of source stylized image at
tth frame. The same goes for g(St−1

sty ) at (t − 1)th frame.
N is the total number of video frames.

We normalize the color-changed map mt with the Min-
Max method and the normalized map m̃t is shown in Fig-
ure 3 (d). Compared with emitters in Figure 3 (c)), emitters
in map m̃t have larger color-changed values due to new flu-
ids spawned. So we use values in m̃t as weights to evaluate
the importance of each pixel when we compute the number



Figure 3: Keyframe extraction. (a) Two source-target pairs
at different frames. (b) Two source stylized images at con-
secutive frames. (c) The overlying masks for textures with
special effects at consecutive frames. (d) The normalized
color-changed map m̃t.

of color-changed pixels. The motion intensity can be com-
puted by weighted numbers of color-changed pixels with
the following equation

υt =
∑

p=1...w×h

m̃t(p), (2)

where vt is the value of motion intensity at the tth frame
and m̃t(p) represents the value of each pixel in map m̃t.
Then, the frames with top β motion intensity are picked up
as keyframes.

3.3. Spatial-temporal Coherence

After extracting keyframes, we construct the spatial-
temporal coherence term to preserve both temporal consis-
tency and spatial texture continuity. For temporal consis-
tency, we find a single, shared NNF that would simultane-
ously optimize the textural coherence and reconstruct target
images across all keyframes. Since the NNF is static, it
implicitly achieves a perfect temporal coherence. For ex-
ample, once the correspondence between patch Nq in target
and patch Np in source is confirmed, the image patch Nq

will imitate the appearance variances of Np over video se-
quences and pixels in target will acquire motion properties
of their correspondences implicitly. For spatial continuity,
we search for target patches that are independently simi-
lar to the source at each keyframe and employ the sum of
this source-target similarity across all keyframes as spatial-
temporal coherence term, a soft constraint for texture trans-
fer guidance. We show the intuitive idea in Fig. 4.

Figure 4: Visualization of the spatial-temporal coherence
term. This term is constructed by computing the indepen-
dent similarity between source and target at keyframes. We
find a single shared NNF that would simultaneously opti-
mize the textural coherence across all keyframes. Since the
NNF is static over video sequences, it implicitly achieves a
perfect temporal coherence.

This simple strategy improves the final results signifi-
cantly as shown in Fig. 5. Without the spatial-temporal ter-
m for a common NNF, the results in Fig. 5 (b) suffer from
severe temporal flicks. With a common NNF introduced
but only the first frame used for NNF search, the results in
Fig. 5 (c) become temporally smooth but spatially discon-
tinuous at subsequent frames. When the spatial-temporal
term is introduced with keyframes selected by uniform sam-
pling, texture discontinuity in Fig. 5 (d) can be obviously
improved but still exists. Fig. 5 (e) shows our results with
both temporal consistency and spatial continuity.

3.4. Guided Nearest-neighbor Field Search

Our NNF search is designed based on PatchMatch [4]
using propagation and random search. In addition to the
regular propagation, we extend the propagation by incor-
porating our distance-based weight map for direction guid-
ance, which encourages the text effects to spread around
from the text contour. To make complicated textures prop-
agate more sufficiently, we introduce the idea of Simulated
Annealing [21] (an optimization method imitating the phys-
ical process of heating a material) to our method to get a
self-adaptive propagation probability, which declines as the
temperature decreases.
Direction Guided Propagation. In our dynamic text ef-
fects transfer, raw text images (Stext and Ttext) are provid-
ed as semantic inputs. With more features in the boundary



Figure 5: Effects of the spatial-temporal term and keyframe
selection. (a) Source stylized images at tth and (t + 1)th

frames. (b) Stylized results at consecutive frames synthe-
sized without the spatial-temporal term. (c) Results synthe-
sized with a common NNF but no keyframe. (d) Result-
s synthesized with a common NNF and uniformly-spaced
keyframes. (e) Results synthesized with a common NNF
and our motion-based keyframes. Close-up views for tem-
porally smooth (in green) and spatially continuity (in blue).

patches of Ttext, we utilize the direction guided propagation
to lead the flow of information outward from the boundary.
As shown in Figure 6, we first compute the distance be-
tween each pixel q of Ttext and the contour of text Ω (out-
line in red). For each patch Nq with the center coordinate q,
we define its weight map based on the distance as

αq′ = γ−(d⊥(q′,Ω)−d⊥(q,Ω)), (3)

where αq′ is the weight of pixel q′ in patch Nq, the base γ
is equal to 2 and d⊥(q′,Ω) is the distance between q′ and
its nearest pixel on the text contour Ω. We normalize the
weights of all pixels in each patch so that the normalized
weight of the center pixel αq equals to 1. The smaller the
distance between a pixel to the text contour is, the larger the
pixel’s weight will be. The weight map is then used to com-
pute the patch similarity in NNF search and reconstruct the
target image in vote step for optimization. In this manner,
we can direct the propagation outward from the text contour
for complicated textures without semantic guidance.
Deep Propagation. As described in Algorithm 1, we set the
initial and terminal temperature as T0 and Tf , respectively.
The parameters ϕcur and ϕtotal denote the current itera-
tion time and the total time of EM iterations (described in
Section 3.5), respectively. The temperature decreases with
iterations. A weaker candidate solution generated in neigh-
bors is accepted with a probability, which reduces when the
temperature is decreasing. Thus, the effect textures can be
propagated more sufficiently in the initial stage and later on-
ly better correspondences will be accepted. In this way, the
stylized textures can be thoroughly spread with few seman-

Figure 6: Utilizing the weight map for direction guided
propagation. The weight map of each patch with the center
coordinate q is computed using the distance to the text con-
tour Ω. By leveraging the weight map to compute the patch
similarity in search step and reconstruct the target image in
vote step, we achieve direction guided propagation which
leads the flow of information outward from the boundary.

ALGORITHM 1: Deep Propagation with Simulated Annealing
Input: Stext, Ttext, Ssty, Tsty, NN,ϕcur, ϕtotal, T0, Tf

Output: Nearest neighbor fields NN
repeat

Generate candidate solution NN ′ and compute its energy
value E′ using the weight map;
Compute ∆E = E′ − E;
if ∆E < 0 then

Update nearest neighbor NN = NN ′;
else

Set Tk = T0 − ϕcur
ϕtotal

(T0 − Tf );
Compute acceptance probability
prob = min(1, exp{−∆E

Tk
});

if prob > ξ(random(0, 1)) then
Update nearest neighbor NN = NN ′;

end
end

until nUpdate ≤ 0;

tic information provided. The effects of the weight map and
SA for the deep direction-guided propagation are shown in
Figure 7.

3.5. Joint Formulation

In this section, the implementations proposed in Section-
s 3.2, 3.3 and 3.4 are combined into one joint patch-based
optimization problem. The energy function concatenating
the semantic guidance and spatial-temporal coherence is de-
fined as follows

E =
∑
Q∈T

min
P∈S

(λD(Ptext, Qtext) +
∑
t∈kf

D(P t
sty, Q

t
sty)),

(4)
where P and Q denote the patches in Stext/St

sty and
Ttext/T t

sty , respectively. Ptext and P t
sty represent the patch-

es in the source text image Stext and target stylized image



(a) τ=0, T0=0 (b) τ=1, T0=0 (c) τ=1, T0=2 (d) τ=1, T0=5

Figure 7: Effects of the weight map and SA. Results are
synthesized with various configurations (binary value τ for
weight map (1-with, 0-without) and initial temperature T0

for SA).

St
sty at frame t. The same goes for patches Qtext and Qt

sty

in Ttext and T t
sty . We compute the distance between Ptext

and Qtext to ensure that the distribution of stylized textures
well follows the target text image. The distance between
P t
sty and Qt

sty at keyframes kf is used to constrain the
spatial-temporal coherence. The distance D is computed
by the weighted L2-norm in RGB space using the weight
map described in Section 3.4. λ is used to control the bal-
ance between semantic similarity and spatial-temporal co-
herence. We define it as a linear variable decreasing with
iteration times for dynamic guidance as mentioned in [26].

To minimize Equation (4), we use the multi-scale EM-
like iterations with two steps (i.e., guided NNF search and
vote) performed alternatively. The guided NNF search de-
scribed in Section 3.4.2 is used for deep direction-guided
propagation. In the vote step, the target stylized images at
keyframes are reconstructed simultaneously with the given
NNF. We compute each pixel in T t

sty with the weighted av-
erage color of co-located pixels in neighbor patches and we
use weights presented in Section 3.4.1. The image patch-
es over the entire video sequences are regarded as a whole
and the optimization is performed once to find the common
NNF. Finally, we apply the shared NNF to all frames to gen-
erate the dynamic typography with text effects as exemplar.

3.6. Further Extensions

Background Embedding. To make DynTypo widely ap-
plicable in real situations, we extend the method with ar-
bitrary background embedding. The texts with texture ef-
fects can be easily extracted from the target stylized image
using image segmentation techniques such as [1]. Then,
we seamlessly insert the texts into a background image by
leveraging Poisson Image Editing [28], a powerful object
insertion method in a seamless and effortless manner with
no need for precise object delineation. In this way, even
source videos with complex background (e.g., gradient col-
or, illumination) can be perfectly processed. Figure 8 shows
a comparison of synthesis results obtained with and without
the proposed background refinement.
Potential Applications. Actually, no step specially tailored

Figure 8: Comparison of synthesized results with and with-
out background refinement.

Figure 9: Animating portraits. With a source exemplar as
driving video (first row), a target doodle can be turned into
the stylized portrait animation (second row).

for texts is used in our method, and thus the method can be
easily extended to dynamic effects transfer between other
objects with semantically related or geometrically similar
parts. We show an example for animating portraits in Fig-
ure 9 and more results can be found in the supplemental
video (online version at https://youtu.be/FkFQ6bV1s-o).

4. Results
We implement our method in Matlab. It takes around 20

minutes with a 4 GHz quad-core CPU to synthesize a tar-
get stylized animation with 160 frames in the resolution of
500× 360. For the NNF retrieval over all video sequences,
we use an image pyramid of 10 levels with a fixed coars-
est size (32 × 32). In each level, m optimizing iterations
are performed with two steps (NNF search and vote), where
m linearly decreases when synthesizing from coarse to fine.
The patch size is fixed to 5 × 5 and the keyframe number
β = 15.

To demonstrate the effectiveness of the proposed Dyn-
Typo, we transfer dynamic text effects with various styles
to some representative types of glyphs (English letters, Chi-
nese characters, handwritings) and illustrate that it performs
better than other state-of-the-art methods.

4.1. Dynamic text effects transfer

We apply our dynamic texture transfer method to the
set of English letters from A to Z and other representa-
tive glyphs such as Chinese characters and handwritings
with some stylized examples we collected through the Inter-
net. Various sophisticated dynamic effects such as burning
flame, flowing water and other designed ones can be suc-



Figure 10: Results of applying different dynamic text effects to several representative glyphs (English letters, Chinese char-
acters, handwritings).

cessfully transferred via our method. Results are shown in
Figure 10 and more are available in the supplemental video
(online version at https://youtu.be/FkFQ6bV1s-o).

4.2. Comparisons

In this subsection, we compare our method with several
state-of-the-art style transfer approaches [22, 14, 36] for dy-
namic typography generation. Results of some representa-
tive frames are depicted in Figure 11 and the corresponding
complete videos can be found in supplemental materials.

Flow-guided synthesis [22] is a pioneering approach for
combining texture synthesis with the advection technique.
Since it does not intrinsically support dynamic effects trans-
fer with a single target text image, we add our semantic
guidance term to its objective function and use this to syn-
thesize the first frame of the target stylized animation. The
flow field Fs is computed by using SiftFlow [24] to estimate
the motion in source stylized sequences and Fs is trans-
formed based on the correspondences between source and
target to acquire the target flow field Ft. With the target
flow field, the first frame can be animated by applying the
flow-guided synthesis. As shown in the second row of Fig-
ure 11, limited by the accuracy of the estimated optical flow
and transformation from source to target, synthesis result-
s suffer from notable texture distortions after propagating
over a long period. Moreover, small flow errors may accu-
mulate, causing ghosting artifacts.

Still text effects transfer [36] exploits a distribution term

to guide the synthesis process based on the high correlation
between patch patterns and their distances to the text skele-
ton. One possible way to achieve dynamic effects transfer
with the above-mentioned method [36] is to directly perfor-
m still text effects transfer frame-by-frame. However, with-
out temporal constraint it suffers severe flickers. To allevi-
ate the problem, we introduce a temporal coherence as de-
scribed in [19] to this dynamic text effects transfer process.
It improves temporal smoothing but still generates subtle
trembling for short-term consistency, and fails to produce
stable results over longer periods of time for long-term con-
sistency (as shown in the third row of Fig. 11). Moreover, it
is difficult to transfer the intense flame effect whose effect
patterns do not distribute according to the distances.

Fišer et al. [14] proposed an animation stylization
method tailored to portrait videos. We implement the
method in our scenario by using semantic text images (Stext

and Ttext) as the segmentation guide and discarding the spe-
cial treatments for facial features. As shown in the fourth
row of Figure 11, the synthesized results are optimized over
frames as we propagate NNF from the previous moment
and use it as the initialization of the current frame. Howev-
er, it generates unsatisfactory results in the early stage and
suffers from temporal artifacts similar to [36].

From the last row of Figure 11, we can see that our
method convincingly preserves realistic fluid effects, while
avoiding disturbing temporal artifacts. The static effect-
s like rust are stable and the dynamic effects like burning



Figure 11: Comparison with state-of-the-art methods on dynamic text effects transfer. The short-term consistency is marked
in blue with consecutive frames and the long-term consistency is marked in green for two frames with large time interval.
The last column shows close-up views for the short-term and long-term consistency.

flame follow the motion of the source exemplar. Further-
more, under the same experimental settings, our method
runs much faster (≈20 minutes for a stylized video) than
other existing approaches such as [36] (≈2 minutes per
frame and a total of 4∼6 hours) and [14] (≈3 minutes per
frame and a total of 8 hours).

5. Conclusion
This paper presented a novel approach for example-

based dynamic text effects transfer. To the best of our
knowledge, our system is the first to automatically gener-
ate dynamic typography with realistic fluid effects, while
avoiding disturbing temporal artifacts. Experimental results
demonstrated that our method is effective for various glyph-
s with different effects and can be easily extended to dy-

namic effects transfer for general objects. We also believed
that our spatial-temporal coherence guidance and the guid-
ed NNF search, which uses the weight map and simulated
annealing for deep direction-guided propagation, could in-
spire future researches that will further improve the perfor-
mance of semantic guided texture transfer and related ani-
mation stylization techniques.

Acknowledgements

This work was supported by National Natural Science
Foundation of China (Grant No.: 61672043 and 61672056),
National Key Research and Development Program of China
(2017YFB1002601) and Key Laboratory of Science, Tech-
nology and Standard in Press Industry (Key Laboratory of
Intelligent Press Media Technology).



References
[1] Texture segmentation using texture filters. https:

//ww2.mathworks.cn/help/images/examples/
texture-segmentation-using-texture-filters.
html.

[2] Alexander G Anderson, Cory P Berg, Daniel P Mossing, and
Bruno A Olshausen. Deepmovie: Using optical flow and
deep neural networks to stylize movies. arXiv preprint arX-
iv:1605.08153, 2016.

[3] Samaneh Azadi, Matthew Fisher, Vladimir Kim, Zhaowen
Wang, Eli Shechtman, and Trevor Darrell. Multi-content
gan for few-shot font style transfer. arXiv preprint arX-
iv:1712.00516, 2017.

[4] Connelly Barnes, Eli Shechtman, Adam Finkelstein, and
Dan B Goldman. Patchmatch: A randomized correspon-
dence algorithm for structural image editing. ACM Trans-
actions on Graphics-TOG, 28(3):24, 2009.

[5] Connelly Barnes, Eli Shechtman, Dan B Goldman, and
Adam Finkelstein. The generalized patchmatch correspon-
dence algorithm. In European Conference on Computer Vi-
sion, pages 29–43. Springer, 2010.

[6] Pierre Bénard, Forrester Cole, Michael Kass, Igor Mordatch,
James Hegarty, Martin Sebastian Senn, Kurt Fleischer, Da-
vide Pesare, and Katherine Breeden. Stylizing animation by
example. ACM Transactions on Graphics (TOG), 32(4):119,
2013.

[7] Kiran S Bhat, Steven M Seitz, Jessica K Hodgins, and
Pradeep K Khosla. Flow-based video synthesis and editing.
In ACM Transactions on Graphics (TOG), volume 23, pages
360–363. ACM, 2004.

[8] Adrien Bousseau, Fabrice Neyret, Joëlle Thollot, and David
Salesin. Video watercolorization using bidirectional texture
advection. ACM Transactions on Graphics (ToG), 26(3):104,
2007.

[9] Mark Browning, Connelly Barnes, Samantha Ritter, and
Adam Finkelstein. Stylized keyframe animation of flu-
id simulations. In Proceedings of the Workshop on Non-
Photorealistic Animation and Rendering, pages 63–70.
ACM, 2014.

[10] Dongdong Chen, Jing Liao, Lu Yuan, Nenghai Yu, and Gang
Hua. Coherent online video style transfer. In Proc. Intl. Conf.
Computer Vision (ICCV), 2017.

[11] Alexei A Efros and William T Freeman. Image quilting for
texture synthesis and transfer. In Proceedings of the 28th an-
nual conference on Computer graphics and interactive tech-
niques, pages 341–346. ACM, 2001.

[12] Alexei A Efros and Thomas K Leung. Texture synthesis by
non-parametric sampling. In Computer Vision, 1999. The
Proceedings of the Seventh IEEE International Conference
on, volume 2, pages 1033–1038. IEEE, 1999.

[13] Jakub Fišer, Ondřej Jamriška, Michal Lukáč, Eli Shecht-
man, Paul Asente, Jingwan Lu, and Daniel Sỳkora. Stylit:
illumination-guided example-based stylization of 3d render-
ings. ACM Transactions on Graphics (TOG), 35(4):92, 2016.

[14] Jakub Fišer, Ondřej Jamriška, David Simons, Eli Shechtman,
Jingwan Lu, Paul Asente, Michal Lukáč, and Daniel Sỳkora.

Example-based synthesis of stylized facial animations. ACM
Transactions on Graphics (TOG), 36(4):155, 2017.

[15] Jakub Fišer, Michal Lukáč, Ondřej Jamriška, Martin Čadı́k,
Yotam Gingold, Paul Asente, and Daniel Sỳkora. Color me
noisy: Example-based rendering of hand-colored animations
with temporal noise control. In Computer Graphics Forum,
volume 33, pages 1–10. Wiley Online Library, 2014.

[16] Christina M Funke, Leon A Gatys, Alexander S Ecker,
and Matthias Bethge. Synthesising dynamic textures us-
ing convolutional neural networks. arXiv preprint arX-
iv:1702.07006, 2017.

[17] Leon Gatys, Alexander S Ecker, and Matthias Bethge. Tex-
ture synthesis using convolutional neural networks. In Ad-
vances in Neural Information Processing Systems, pages
262–270, 2015.

[18] Leon A Gatys, Alexander S Ecker, and Matthias Bethge.
Image style transfer using convolutional neural networks.
In Computer Vision and Pattern Recognition (CVPR), 2016
IEEE Conference on, pages 2414–2423. IEEE, 2016.

[19] Ondřej Jamriška, Jakub Fišer, Paul Asente, Jingwan Lu, Eli
Shechtman, and Daniel Sỳkora. Lazyfluids: appearance
transfer for fluid animations. ACM Transactions on Graphics
(TOG), 34(4):92, 2015.

[20] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual
losses for real-time style transfer and super-resolution. In
European Conference on Computer Vision, pages 694–711.
Springer, 2016.

[21] Scott Kirkpatrick, C Daniel Gelatt, and Mario P Vecchi. Op-
timization by simulated annealing. science, 220(4598):671–
680, 1983.

[22] Vivek Kwatra, Irfan Essa, Aaron Bobick, and Nipun Kwatra.
Texture optimization for example-based synthesis. In ACM
Transactions on Graphics (ToG), volume 24, pages 795–802.
ACM, 2005.

[23] Tsung-Yu Lin and Subhransu Maji. Visualizing and under-
standing deep texture representations. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 2791–2799, 2016.

[24] Ce Liu, Jenny Yuen, and Antonio Torralba. Sift flow: Dense
correspondence across scenes and its applications. In Dense
Image Correspondences for Computer Vision, pages 15–49.
Springer, 2016.

[25] Nelson Max, Roger Crawfis, and Dean Williams. Visualizing
wind velocities by advecting cloud textures. In Proceedings
of the 3rd conference on Visualization’92, pages 179–184.
IEEE Computer Society Press, 1992.

[26] Yifang Men, Zhouhui Lian, Yingmin Tang, and Jianguo X-
iao. A common framework for interactive texture transfer.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 6353–6362, 2018.

[27] Fabrice Neyret. Advected textures. In Proceedings of the
2003 ACM SIGGRAPH/Eurographics symposium on Com-
puter animation, pages 147–153. Eurographics Association,
2003.

[28] Patrick Pérez, Michel Gangnet, and Andrew Blake. Pois-
son image editing. ACM Transactions on graphics (TOG),
22(3):313–318, 2003.

https://ww2.mathworks.cn/help/images/examples/texture-segmentation-using-texture-filters.html
https://ww2.mathworks.cn/help/images/examples/texture-segmentation-using-texture-filters.html
https://ww2.mathworks.cn/help/images/examples/texture-segmentation-using-texture-filters.html
https://ww2.mathworks.cn/help/images/examples/texture-segmentation-using-texture-filters.html


[29] Manuel Ruder, Alexey Dosovitskiy, and Thomas Brox.
Artistic style transfer for videos. In German Conference on
Pattern Recognition, pages 26–36. Springer, 2016.

[30] Ariel Shamir and Ari Rappoport. LiveType: a parametric
font model based on features and constraints. ACM, 1997.

[31] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

[32] Matthew Tesfaldet, Marcus A Brubaker, and Konstantinos G
Derpanis. Two-stream convolutional networks for dynamic
texture synthesis. arXiv preprint arXiv:1706.06982, 2017.

[33] Dmitry Ulyanov, Vadim Lebedev, Andrea Vedaldi, and Vic-
tor S Lempitsky. Texture networks: Feed-forward synthesis
of textures and stylized images. In ICML, pages 1349–1357,
2016.

[34] Yonatan Wexler, Eli Shechtman, and Michal Irani. Space-
time completion of video. IEEE Transactions on pattern
analysis and machine intelligence, 29(3), 2007.

[35] Jianwen Xie, Song-Chun Zhu, and Ying Nian Wu. Synthe-
sizing dynamic patterns by spatial-temporal generative con-
vnet. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 7093–7101, 2017.

[36] Shuai Yang, Jiaying Liu, Zhouhui Lian, and Zongming Guo.
Awesome typography: Statistics-based text effects transfer.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 7464–7473, 2017.

[37] Qizhi Yu, Fabrice Neyret, Eric Bruneton, and Nicolas
Holzschuch. Lagrangian texture advection: Preserving both
spectrum and velocity field. IEEE Transactions on Visual-
ization and Computer Graphics, 17(11):1612–1623, 2011.


