
6

EasyFont: A Style Learning-Based System to Easily Build Your
Large-Scale Handwriting Fonts

ZHOUHUI LIAN, BO ZHAO, XUDONG CHEN, and JIANGUO XIAO, Institute of Computer Science

and Technology, Peking University, China

Generating personal handwriting fonts with large amounts of characters

is a boring and time-consuming task. For example, the official standard

GB18030-2000 for commercial font products consists of 27,533 Chinese

characters. Consistently and correctly writing out such huge amounts of

characters is usually an impossible mission for ordinary people. To solve

this problem, we propose a system, EasyFont, to automatically synthesize

personal handwriting for all (e.g., Chinese) characters in the font library

by learning style from a small number (as few as 1%) of carefully-selected

samples written by an ordinary person. Major technical contributions of

our system are twofold. First, we design an effective stroke extraction algo-

rithm that constructs best-suited reference data from a trained font skele-

ton manifold and then establishes correspondence between target and ref-

erence characters via a non-rigid point set registration approach. Second,

we develop a set of novel techniques to learn and recover users’ overall

handwriting styles and detailed handwriting behaviors. Experiments in-

cluding Turing tests with 97 participants demonstrate that the proposed

system generates high-quality synthesis results, which are indistinguish-

able from original handwritings. Using our system, for the first time, the

practical handwriting font library in a user’s personal style with arbitrar-

ily large numbers of Chinese characters can be generated automatically.

It can also be observed from our experiments that recently-popularized

deep learning based end-to-end methods are not able to properly handle

this task, which implies the necessity of expert knowledge and handcrafted

rules for many applications.

CCS Concepts: • Computing methodologies → Neural networks;

Shape modeling;

Additional Key Words and Phrases: Handwriting, Chinese, style learning,

fonts

ACM Reference format:

Zhouhui Lian, Bo Zhao, Xudong Chen, and Jianguo Xiao. 2018. EasyFont: A

Style Learning-Based System to Easily Build Your Large-Scale Handwriting

Fonts. ACM Trans. Graph. 38, 1, Article 6 (December 2018), 18 pages.

https://doi.org/10.1145/3213767

This work was supported by the National Natural Science Foundation of China (Grant
No.: 61472015, 61672056 and 61672043), National Language Committee of China
(Grant No.: ZDI135-9), National Key Research and Development Program of China
(2017YFB1002601) and Key Laboratory of Science, Technology and Standard in Press
Industry (Key Laboratory of Intelligent Press Media Technology).
Authors’ addresses: Z. Lian, B. Zhao, X. Chen, and J. Xiao, No. 128 Zhongguancun
North Street, Haidian District, Beijing 100080, China; emails: {lianzhouhui, bozhao,
chenxudong, xiaojianguo}@pku.edu.cn.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
© 2018 Association for Computing Machinery.
0730-0301/2018/12-ART6 $15.00
https://doi.org/10.1145/3213767

1 INTRODUCTION

Computer fonts are widely used in our daily lives. Nowadays, texts

displayed in almost all books, posters, computers, mobile devices,

and the like, are rendered using various fonts mainly created by

professional companies. Although the number of font products has

increased rapidly in the last two decades, existing resources still

cannot satisfy the demand of every individual since more and more

people want to render texts in their own handwriting styles, which

are unique and full of personal information. Communicating with

others by posting texts in personal handwriting styles instead of

using uniform printing font styles could make those experiences

more conformable and interesting.

However, building a handwriting font library with a large num-

ber of different characters is not easy. As we know, it is not a prob-

lem for writing systems (e.g., English) that only contain a small

alphabet. For example, to create your own English handwriting

font, only 26 letters and corresponding capitals need to be writ-

ten. The whole font generation process can be accomplished in a

few minutes by using some existing tools (e.g., FontCreator (2017)

and FontLab (2017)). Yet, the task becomes tougher when the num-

ber of characters included in the font library increases. Let us take

Chinese fonts as an example, the official character set GB18030-

2000 consists of 27,533 Chinese characters. What’s more, shapes

and structures of many Chinese characters are very complicated.

Figure 1(a) shows an example of the Chinese character pronounced

as “biang,” which has 57 strokes. As we know, to be a qualified font

library, not only the glyph of each character should represent the

correct meaning, but also the style of all glyphs must be consis-

tent. According to a report made by FounderType (Founder 2017),

a leading Chinese font producing company, it takes more than 12

months for a group with three to five experienced font designers to

generate a GB18030-2000 Chinese font library. Therefore, building

a complete Chinese font library in his/her own personal handwrit-

ing style is usually an impossible task for an ordinary person.

One possible way to accelerate the efficiency of producing large-

scale font libraries is to exploit the redundancy of components (i.e.,

radicals, stroke sets, and strokes) for characters in a given charac-

ter set. In other words, typically, components of characters in a

selected subset are adequate to cover all the characters’ compo-

nents. Following this intuitive idea, several methods have been re-

ported (Lin et al. 2014; Zhou et al. 2011) to generate a given user’s

handwriting font library from a number of characters written by

the user. However, there exist the following two intrinsic draw-

backs that hinder the application of this kind of method in prac-

tical use: (1) It is not guaranteed that all components to be reused

can be correctly extracted, which prevents those methods from be-

ing fully automatic; (2) Not only is the percentage of characters

that need to be written too large (more than 20%), but also the

ACM Transactions on Graphics, Vol. 38, No. 1, Article 6. Publication date: December 2018.

https://doi.org/10.1145/3213767
https://doi.org/10.1145/3213767

6:2 • Z. Lian et al.

Fig. 1. Examples of some writing systems that contain large numbers of

different characters.

quality of the auto-generated font library is not satisfactory for

real applications.

The other possible solution attracting many researchers is

the utilization of deep learning techniques, which have become

extremely popular in the last few years. Methods adopting deep

neural networks not only obtain state-of-the-art performance in

many classical Computer Vision tasks (He et al. 2016; Krizhevsky

et al. 2012; Long et al. 2015; Russakovsky et al. 2015; Simonyan and

Zisserman 2014) including image classification, object detection,

sematic segmentation, and so on, but also become more and

more competitive in solving generative problems (Gatys et al.

2017; Isola et al. 2017) thanks to the introduction of Generative

Adversarial Networks (GAN) (Goodfellow et al. 2014) and its

variants (Arjovsky et al. 2017). Deep learning based synthesis

approaches are good at transferring color/texture styles for

images, but less capable of constructing new shapes with complex

structures. Scripts, such as Chinese characters, are shapes with

high-level information and complicated structures in which even

tiny variations of location and geometry for their elements may

greatly change their meanings and/or styles. As we can see from

our experimental results, these kinds of end-to-end methods work

poorly for the task of synthesizing Chinese characters in hand-

writing styles. This is mainly due to the lack of understanding

of the high-level information about the characters such as the

constitution and layout of their basic elements (e.g., strokes).

Therefore, in order to establish such a fully automatic handwrit-

ing font generation system, we believe that the following two im-

portant problems need to be resolved: “How can we automatically

decompose the input glyphs and thus convert them into uniform and

learnable data?” and “How can we describe and reconstruct hand-

writing style for a given user?”

This article aims to handle the challenging task of automatic

generation of large-scale font libraries. We develop a system that

only requires the user to spend a short time (less than 30 minutes)

writing out a small number of commonly-seen Chinese characters

on blank papers. Then, the system can automatically synthesize

all the other characters in the same style and generate the user’s

personal handwriting font library with an arbitrarily large num-

ber of Chinese characters. It should be pointed out that although

our current system only supports the generation of Chinese fonts,

the proposed method can be easily extended to any other writing

systems (see some examples in Figure 1 and experimental results

in Figure 21) that have the following two properties: (1) the to-

tal number of different characters is relatively large; (2) all char-

acters can be decomposed into given limited numbers and types

of strokes. Unless otherwise specified, font library and character

mentioned in this article mean Chinese font library and Chinese

character, respectively.

As shown in Figure 2 , using our system to build a large-

scale handwriting font library is convenient, as the user only

needs to write a small amount (as few as 1%) of carefully-selected

Chinese characters on blank papers, take pictures of them, and

upload those photos to our system. After receiving these text im-

ages, a GB18030-2000 font library in the user’s personal hand-

writing style can be automatically generated by the system in

about two hours. More specifically, we first extract the writing tra-

jectory of each stroke for every individual character image seg-

mented from input text pictures based on a non-rigid point set

registration approach and several heuristic rules. Then, artificial

neural networks (ANNs) are utilized to learn and reconstruct the

user’s overall handwriting style, which can be decomposed into

stroke shape style and stroke layout style. Meanwhile, handwrit-

ing details including stroke connectivity and shapes of contours

are also properly described and recovered. Finally, a complete per-

sonal font library can be generated by vectorizing both images

of human-written samples and machine-generated handwritings

for all other characters. Experiments including Turing tests with

97 participants verify that the proposed system is able to accu-

rately learn personal handwriting style, automatically synthesize

indistinguishable handwritings, and quickly generate high-quality

large-scale font libraries for ordinary people. Our experiments also

demonstrate that domain knowledge is still critical for many ma-

chine learning tasks (e.g., handwriting synthesis and font design),

in which only a small number of training samples are available.

Recently-popularized deep learning based end-to-end approaches

cannot handle those kinds of problems well without hand-crafted

features and rules. To the best of our knowledge, our work (Lian

et al. 2016) is the first to be able to automatically generate a prac-

tical handwriting font library in a user’s personal style with ar-

bitrarily large numbers of Chinese characters. This article, which

upgrades the original system by adopting several new techniques

and presents more implementation details and experimental re-

sults, is the extended version of our conference papers (Chen et al.

2017; Lian et al. 2016).

Major contributions of this article are threefold:

(1) We design an effective stroke extraction algorithm that con-

structs the best-suited reference data from a trained font

skeleton manifold and then establishes correspondences be-

tween target and reference characters via a non-rigid point

set registration approach. In this way, we can know pre-

cisely how the user writes those characters.

(2) We propose a novel system that makes the easy generation

of large-scale handwriting fonts possible for ordinary peo-

ple. Moreover, by utilizing a carefully-designed input char-

acter selection scheme, automatic stroke extraction, and

handwriting detail recovery techniques, high-quality text

rendering results of font libraries generated by the system

can be guaranteed in practical use for almost any kind of

handwriting styles (even strange and cursive styles). Exten-

sive experiments have been conducted to verify the effec-

tiveness of our method.

(3) We have manually specified the writing trajectory of each

stroke for all 27,533 Chinese characters in the standard

“Kaiti” style (reference) and a smaller character set in other

two handwriting styles (target). This ground truth data to-

gether with a set of other handwriting image data in various

ACM Transactions on Graphics, Vol. 38, No. 1, Article 6. Publication date: December 2018.

EasyFont: A Style Learning-Based System to Easily Build Your Large-Scale Handwriting Fonts • 6:3

Fig. 2. Overview of the proposed system and comparison of our approach with an existing font generation method. Using our system, the user only needs

to write a small number (e.g., 266) of Chinese characters on a blank paper and uploads the photo to our system. The system can then automatically

generate a handwriting font library in the user’s personal style with huge amounts (e.g., 27,533) of Chinese characters. The text rendered using the font

library generated by our system looks similar to a text written by the user. In comparison, the one rendered by the other font library only containing 266

human-written characters is unreadable, due to the mixture of human-written samples and characters rendered in a word processor’s default font style

(e.g., “Songti”).

styles used in our experiments can serve as a benchmark for

handwriting synthesis, which are publicly available on our

website.1

2 RELATED WORK

Virtual Brush: Traditionally, font designers need to use pens,

brushes, and/or rulers to write or draw characters on paper, and

then scan and vectorize them to construct computer fonts. In

the last few years, many researchers have tried to develop “vir-

tual brushes” that could generate high-fidelity paintings or writ-

ings similar to results obtained using real brushes or pens. With

such kinds of virtual brushes, designers are able to conveniently

carry out their font design works on computers, and thus, the ef-

ficiency of font design and production can be markedly enhanced.

Wang and Pang (1991) simulated the writing speeds of callig-

raphers and the variation of ink amounts on brushes via some

computer graphic techniques to achieve different writing styles.

Then, the contours of characters were described using cubic Bezier

splines. In this way, users can interactively create Chinese calligra-

phy on the computer. However, simulation results of their system

are not satisfactory since the method they employed is too simple

to model the complicated physical properties of real brushes. In

Strassmann (1986), a 2D virtual brush model was first proposed by

taking above-mentioned physical properties into account. Strass-

mann (1986) described the brush as a collection of bristles that

evolve with writing trajectories. From then on, researchers have

developed a large number of algorithms for virtual brushes, such

as the multi-parameter controlled realistic virtual brush (Xu et al.

2003), the reverse modeling based virtual brush (Wong et al. 2008),

the data-driven 3D virtual brush (Baxter and Govindaraju 2010),

and so on.

1http://www.icst.pku.edu.cn/zlian/EasyFont/.

Using devices with multiple degrees of freedom (DOFs), skilled

users are able to generate expressive results based on above-

mentioned virtual brush techniques. However, it is hard to con-

trol such devices to create high-quality drawings and handwritings

for ordinary people, and most of them use common input devices

with lower DOFs. To address this problem, Lu et al. (2012) pro-

posed a data-driven method for synthesizing the 6D hand gesture

data for users of low-quality input devices, and the 6D trajecto-

ries generated by their method can be utilized as inputs for any

virtual brush engine to get expressive handwriting results. Then,

they successively reported two data-driven painting systems in-

cluding RealBrush (Lu et al. 2013), which uses scanned images of

physical media to synthesize drawings, and DecoBrush (Lu et al.

2014), which can synthesize structured decorative patterns along

with trajectories written by users. Meanwhile, Zitnick (2013) pre-

sented a handwriting beautification algorithm based on the in-

sight that the appearance of the average of multiple instances in

the same handwriting style is better than most of the individ-

ual instances. Recently, several virtual brushes that were specif-

ically designed for Chinese characters have been proposed (Xia

and Jin 2009; Yi et al. 2014). For instance, the approach pre-

sented in Yi et al. (2014) can synthesize high-quality Chinese

handwritings in any font style by assembling the best-suited

stroke segments, which are selected from the corresponding style

database trained offline, according to the trajectories written by

users.

Computer Calligraphy: The above-mentioned methods can be

applied to greatly facilitate the design and production of computer

fonts. However, what these methods simulate are tools people use

but not the artistic creation processes, and thus, large amounts

of manual operations are still required to generate calligraphy or

paintings by using virtual brushes on computers. Dong et al. (2008)

proposed to automatically generate new stroke shapes for Chi-

nese characters based on a statistical model that learns how to

ACM Transactions on Graphics, Vol. 38, No. 1, Article 6. Publication date: December 2018.

http://www.icst.pku.edu.cn/zlian/EasyFont/

6:4 • Z. Lian et al.

create strokes in brand new styles from a training set with lots

of calligraphy samples. Xu et al. (2005) presented an analogous

reasoning based system to automatically generate Chinese calli-

graphic artworks. The system is able to create Chinese calligraphy

in various new styles by learning parametric representations of

training calligraphic images. Then, Xu et al. (2007) designed a nu-

meric grading approach to evaluate the beauty of calligraphy based

on a back-propagation neural network and applied it in their pre-

vious system (Xu et al. 2005) to generate visually pleasing calli-

graphic artworks in completely new styles. Xu et al. (2009) also

proposed an augmented shape grammar system to describe the

personal handwriting styles of Chinese characters and employed

a trained ANN to measure the similarity of writing styles between

two character images. By integrating this method into the sys-

tem proposed in Xu et al. (2005), Chinese characters represented

in the same style of input calligraphic images can be automati-

cally generated. Wang et al. (2008) and Yu et al. (2009) introduced

automatic generation methods for Chinese calligraphy by reusing

strokes and/or radicals of a set of input character images, while Xu

et al. (2008) not only selected existing components in the input data

set but also used computer-generated components with a certain

probability to synthesize output character shapes. A different but

promising approach to generate handwritten characters was re-

ported in Dolinsky and Takagi (2009), where the authors found

that recurrent neural networks (RNNs) could be used to approx-

imately model the naturalness of handwritten characters, which

was defined in their paper as the difference between handwritings

and archetypal font characters. Based on the naturalness learning

approach, they successfully generated 34 hiragana characters in a

user’s handwriting style via the naturalness model learned from

27 hiragana characters written by the user. Li et al. (2014) pro-

posed to synthesize Chinese calligraphy in a similar topological

style by learning information extracted from characters written

by the user. They adopted a new feature called the WF-histogram

to measure the topological similarity between two characters and

then established a evaluation model to guide the synthesizing pro-

cess. More recently, Haines et al. (2016) developed a system that

is able to render new texts in a given user’s handwriting style. By

learning parameters for spacing, line thickness, pressure, color, pa-

per texture, and so on, high-quality synthesized handwritten texts

in the similar style as the input data can be obtained by the sys-

tem. However, the methodology presented in Haines et al. (2016)

cannot be extended to solve the problem of automatic generation

of large-scale handwriting fonts due to the following two reasons.

First, manual interactions on the semiautomatic user-interface are

still required to precisely segment and label the training data. If we

want to provide the service of our system to thousands of millions

of ordinary people, fully automatic processing is always necessary.

Second, as mentioned by the authors, “Languages with high char-

acter counts, e.g., Chinese (>3000), would be prohibitively difficult to

synthesize, as it is unreasonable to capture sufficient data,” and thus,

it is intrinsically unsuitable to solve the problem mentioned in this

article.

Font Generation: Although some expressive and creative cal-

ligraphic artworks can be generated by existing computer callig-

raphy approaches, they are still not applicable for creating large-

scale font libraries (e.g., Chinese fonts) that contain huge amounts

of different characters. On the one hand, a practical Chinese font

library typically consists of at least thousands of characters. How-

ever, those existing methods, which were originally tested on small

datasets specified by corresponding researchers, can only deal with

a small number (mostly several hundreds) of Chinese characters

with relatively simple topological structures and geometric shapes.

On the other hand, many results obtained by those existing meth-

ods are not able to satisfy the high requirements on visual quality,

readability, and style consistency for the shapes of characters in

practical font libraries. Therefore, instead of using automatic font

generation approaches, currently font designers still rely heavily

on personal experiences and manual operations to generate com-

mercial font products with the help of some typeface editing soft-

ware systems (e.g., FontCreator (2017) and FontLab (2017)). Due to

the complexity and particularity of Chinese characters, some com-

panies have developed their own font designing systems to create

Chinese fonts other than directly using universal typeface editing

software. For instance, HAND, a typeface editing system devel-

oped by the world’s largest Chinese font producer (i.e., Founder

Group (Founder 2017)), was specially designed for Chinese fonts

by taking the unique characteristics (e.g., hierarchical representa-

tions) of Chinese characters into account.

Indeed, these CAD systems could markedly improve the

efficiency of font design, but lots of times and manual operations

(spending about 12 months by three to five skilled font designers)

are still required to create a commercial Chinese font library.

During the last two decades, several works that tried to reduce

the heavy manual operations by introducing more heuristic rules

and automatic processing into the font producing procedure

have been reported (Fan 1990a, 1990b; Lai et al. 1996; Lian and

Xiao 2012; Lin et al. 2014), but these methods are still far from

practical. Recently, Suveeranont and Igarashi (2010) presented

a system to automatically generate all characters in the font

library based on a glyph designed by the user. Their key idea is

to manipulate in a natural manner the contours and skeletons of

characters in a template font library, which is selected to have the

most similar font style as the input character, to construct shapes

for all characters in the required font style. Their experiments

showed that the system could significantly enhance the efficiency

of font design for English characters. However, their system

needs to manually create accurate and complex shape models

for all characters, which is unsuitable for handling large-scale

font libraries that contain huge amounts of characters with

complicated shapes. Campbell and Kautz (2014) proposed to build

a generative manifold of standard fonts to smoothly interpolate

and move between existing fonts. In this way, large numbers of

new high-quality fonts can be easily generated from the so-called

font manifold. Nevertheless, their method is also unsuitable for

Chinese characters due to the requirement of establishing accurate

correspondence between the outlines of two glyphs. Phan et al.

(2015) developed a system called “FlexyFont,” which is able to

construct a complete English font library by applying the learned

style, transferring rules to assemble segmented parts of given

glyphs to generate other glyphs. More recently, Lake et al. (2015)

presented a concept learning method using probabilistic program

induction, which is able to produce new exemplars in novel writ-

ing styles given a single character image. However, their method

ACM Transactions on Graphics, Vol. 38, No. 1, Article 6. Publication date: December 2018.

EasyFont: A Style Learning-Based System to Easily Build Your Large-Scale Handwriting Fonts • 6:5

cannot handle the tough problem of generating handwritings in

the same style as input samples for all other unseen characters.

In the last decade, deep neural networks (Hinton and

Salakhutdinov 2006; Silver et al. 2016) have been widely adopted

to handle many challenging tasks in areas of Computer Vision

(Russakovsky et al. 2015), Computer Graphics (Soltani et al. 2017),

and the like, and obtain state-of-the-art results in tasks including

image classification, object detection, sematic segmentation, and

so on. Recently, the surprising performance of AlphaGo (Silver

et al. 2016) against professional Go players including large num-

bers of world champions shows more potential of deep learning

approaches in addressing many other tough problems previously

thought to be impossible. Until now, several deep learning based

architectures, which are either specifically designed or suitable for

font generation have been proposed. The Autoencoder (Hinton

and Salakhutdinov 2006) is well known to be able to effectively

reconstruct images. By implementing neural style transfer (Gatys

et al. 2017), a given image can be converted into a new perceptu-

ally appealing image that possesses the similar style as the other

target image. Learning texture/color styles is much easier than

shape geometric styles, which typically contain high-level intel-

ligent knowledge that is even hard to learn for ordinary human

beings. Generative tasks that aim to create high-quality 2D images

(Isola et al. 2017) or 3D objects (Soltani et al. 2017) have recently

attracted more and more attention from researchers. There also

exist some works specifically focusing on synthesizing fonts in

the same style as training samples (Baluja 2016; Bernhardsson

2016; Tian 2016), but according to our experiments, most of them

are not able to generate reasonable results for complex Chinese

handwritten characters. To the best of our knowledge, up to now,

“Rewrite” (Tian 2016) and “pix2pix” (Isola et al. 2017) are the

two best-performing existing frameworks that can be adopted

to automatically generate Chinese fonts from a small set of

handwritten samples. Specifically, “Rewrite” (Tian 2016) employs

a traditional top-down CNN structure while “pix2pix” (Isola et al.

2017) has a powerful capability to learn a mapping from input

images to output images mainly due to the utilization of a GAN.

Although those “end-to-end” deep learning based architectures

work well for some printing fonts given large amounts of training

samples, without high-level domain knowledge, they still fail

to achieve satisfactory performance when trying to synthesize

glyphs with complicated structures for many handwriting styles.

The work that is most relevant to this article was reported

in Zhou et al. (2011), where Zhou et al. developed a system to

construct the glyphs of 2,500 relatively simple Chinese characters

by reusing radicals of 522 characters written by a user, and thus

built a small font library in the user’s handwriting style. However,

there exist three major drawbacks that hinder the practical use

of their system. First, radicals instead of strokes are reused in

their system, which results in the requirement of large numbers

of input characters (more than 20%). Moreover, if characters with

more complicated shapes are considered, more input characters

will inevitably be needed by the system. Second, characters with

overlapped radicals cannot be properly segmented out by their

method, while these kinds of situations happen frequently in

handwritten Chinese characters. Third, in their method selected

radicals are reused and assembled directly based on the layout

information extracted from a standard font library. Unless the

required font style is almost the same as the standard one, it is

not guaranteed that high-quality results can be obtained by their

method. Also, at least 6,763 Chinese characters (GB2312 official

standard) are required for a commercial font product, but their

system can only deal with a much smaller character set. To solve

those problems, we propose a system to automatically generate

the practical handwriting font library (e.g., GB18030-2000) with

arbitrarily large amounts of Chinese characters by learning style

from a small number (as few as 1%) of human-written characters.

3 METHOD DESCRIPTION

As mentioned above, we intend to learn handwriting style from a

small amount of characters written by an ordinary person, then

automatically generate the whole handwriting font library, which

can have arbitrarily large numbers of characters in the user’s per-

sonal style. More specifically, during the offline processing period,

we first manually specify the writing trajectory of each stroke

for all (e.g., 27,533) characters in the standard “Kaiti” font library,

which is employed as reference data for style learning. Then, a

series of input character sets are properly chosen to satisfy dif-

ferent requirements in real applications (Section 3.1). Finally, a

font skeleton manifold is built to generate the best-suited refer-

ence data for stroke extraction (Section 3.2). Online, we first au-

tomatically extract stroke trajectories for individual character im-

ages segmented from input text photos (Section 3.3 and 3.4). Then,

we utilize ANNs to learn and reconstruct the user’s overall hand-

writing style, which can be decomposed into stroke shape style

and stroke layout style (Section 3.5). Meanwhile, handwriting de-

tails including stroke connectivity and shapes of contours are also

properly described and recovered (Section 3.6). Finally, a complete

personal font library can be generated by vectorizing both images

of human-written samples and machine-generated handwritings

for all other characters (Section 3.7). The pipeline of our system is

shown in Algorithm 1 and more details are presented below.

3.1 Selecting Input Character Set

In order to imitate a user’s handwritings, our system needs to learn

the handwriting style by analyzing some samples written by the

user. Here comes a critical question: “which characters should be

written?” Obviously, without “seeing” enough handwritten sam-

ples, neither our system nor even professional calligraphers would

be able to precisely mimic the user’s handwritings. As we know,

there exist 32 different types of strokes that constitute the basic ele-

ments of Chinese characters (see Figure 3(b)). So, one fundamental

requirement of our system is that all types of strokes should appear

at least once in the input character set. However, this is far from

enough. Therefore, during the offline processing period, we man-

ually specified the writing trajectory of each stroke for all 27,533

characters in the standard “Kaiti” font library, and defined 1,032

categories of components (see Figure 3(a)), which consist of a set

of strokes. Since shapes of strokes in the same basic type may vary

greatly, we further classify them into 339 fine-grained categories.

With these reference data, a suitable character set can be deter-

mined by choosing characters that cover all 339 kinds of strokes.

If better synthesis performance is required, we can select more

ACM Transactions on Graphics, Vol. 38, No. 1, Article 6. Publication date: December 2018.

6:6 • Z. Lian et al.

Fig. 3. (a) Demonstration of decomposing a Chinese character sample into

components and finally strokes. (b) Examples of strokes that constitute the

basic elements of Chinese characters. They can be classified into 32 basic

categories.

ALGORITHM 1: The pipeline of our system.

Input:

Photos of papers with some characters written by a user;

1: Text Segmentation: Obtain individual character images by

segmenting rectified text pictures;

2: Stroke Extraction: Extract writing trajectory of each stroke

for every character image and select correct extraction results;

3: Overall Style Learning: Employ ANNs to learn the user’s

overall handwriting style;

4: Details Modeling: Analyze and describe the connectivity of

all sequential stroke pairs and details on the contour for each

type of strokes;

5: Handwriting Synthesis: Create trajectory for each character

by adding the learned style on reference data and then recover

handwriting details;

6: Font Generation: Vectorize images of human-written sam-

ples and synthesis results for other characters, and then gen-

erate a TrueType font library.

Output:

The user’s personal handwriting font library.

characters for the input set so that all 1,032 types of components

can also be completely covered.

To make the font product generated by our system perform bet-

ter in real text rendering applications (see Figure 2), we choose

to vectorize images of human-written samples and machine-

generated handwritings for other characters together to build the

practical font library. This is due to the fact that characters written

by a person typically have random and unpredictable variations

while machine learning systems can only capture the person’s av-

erage and stable handwriting style. Through our experiments, we

found that text rendering results consisting of evenly-distributed

human-written samples and machine-generated characters look

more natural and more similar as real handwritten texts compared

to those containing only synthesized glyphs. Therefore, we would

like to have an input character set that is able to cover about 50%

or more characters that appear in all normal Chinese articles. To

achieve this goal, we utilized automated crawls to acquire huge

amounts of Chinese articles, comments on blogs, chatting notes,

and the like, from the World Wide Web, and thus obtained a data

set with more than 87 billion characters. By calculating the fre-

quency of occurrence of each character in this data set, we ob-

tain its average rate of coverage in a normal Chinese article. It can

Table 1. Three Input Character Sets Adopted in this Article

For test MinSet for OptSet for

Purposes only real uses real uses

Character Number 639 266 775
Coverage Rate 21.9% 50.7% 59.3%

be observed, after sorting the coverage rates of all characters in

descending order, that theoretically, the combination of the first

190 characters is able to cover about 50% content of any normal

Chinese article. In this manner, the average rate of human-written

characters appearing in an article rendered using the font library

generated by our system can be estimated.

Based on the aforementioned criteria, as shown in Table 1, three

input character sets are chosen for different purposes. The first

one, which consists of 639 characters, is used in the experiments

of this article to evaluate the performance of overall style learning

algorithms. In this case, without considering coverage rate, char-

acters are selected to simply ensure that all types of components

and strokes can be covered by the character set. The second one,

with 266 characters, serves as the minimum input character set

(MinSet) of our system in practical use. This input character set

not only includes the above-mentioned 190 characters that have

the highest coverage rates, but also contains another 76 charac-

ters to ensure that all 339 categories of strokes can be written at

least once. Adding the requirement of covering all kinds of com-

ponents to the selection criterion adopted in the second case, we

obtain the last character set that is composed of 775 commonly-

seen characters. We call it the optimal input character set (OptSet)

of our system due to the above-analyzed advantages and its high

and robust performance in our experiments.

3.2 Learning Font Skeleton Manifold

To construct a font skeleton manifold, the thinning algorithm us-

ing mathematical morphology (Jang and Chin 1990) is first applied

to get the writing trajectory (i.e., skeleton) of each character in

the training set. Using the skeleton instead of the contour of each

character simplifies the complexity of building a font manifold. We

match the skeleton points of each individual character across all

selected fonts via a non-rigid point set registration procedure with

predefined stroke trajectory models. Then we use the dense skele-

ton point correspondences for each character as a basis to fit a

non-linear manifold that ties the character in different font styles

together into a single space (see Figure 4). Here, the non-linear

manifold is learned by using the Gaussian Process Latent Variable

Model (GP-LVM) (Lawrence 2005).

3.2.1 Character Matching. Specifically, we construct a high di-

mensional vector that contains the stroke skeleton points to rep-

resent each glyph. To learn the font skeleton manifold, we need

to first establish point correspondences among glyphs in differ-

ent font styles. Campbell and Kautz (2014) developed an effective

approach to handle the character matching task. However, since

the energy model proposed by them (Campbell and Kautz 2014)

is only suitable to build correspondences among glyphs with the

equal number of closed outlines, it fails to match the skeletons of

Chinese characters that often possess different and complicated

ACM Transactions on Graphics, Vol. 38, No. 1, Article 6. Publication date: December 2018.

EasyFont: A Style Learning-Based System to Easily Build Your Large-Scale Handwriting Fonts • 6:7

Fig. 4. Using the trained font skeleton manifold to construct the best ref-

erence for an input character image during the stroke extraction proce-

dure.

Fig. 5. Key point alignment between a standard stroke model in our data-

base (left) and the corresponding stroke in another font style (right). The

triangles, diamonds, and squares denote the corresponding start points,

end points, and corner points of the two stroke trajectories.

topologies. Thereby, we choose to solve this problem by designing

a new method that is based on the point set registration algorithm.

To figure out the exact correspondence, we build a stroke model

database, which contains strokes in 339 different categories. We

manually select the key points on the writing trajectory of each

stroke model and then get its revised skeleton with no fork points.

There are mainly three kinds of skeleton key points: start point,

end point, and corner point, around which rich information of

writing styles exist. The skeleton segment between each key point

pair is then uniformly sampled into a certain number of points. We

develop a tool to manually label the stroke skeleton points of each

character across selected fonts. Afterwards, we directly use the Co-

herent Point Drift (CPD) (Myronenko and Song 2010) algorithm to

register the skeleton points of the input stroke to its correspond-

ing stroke model. As shown in Figure 5, the key points are aligned

to the stroke model and the skeleton segment between each key

point pair is sampled into the same number of points as the stroke

model.

Since the points on every stroke skeleton have been properly

aligned with each other, correspondences of each character among

a number of (e.g., 28) selected fonts can be established.

3.2.2 Training the GP-LVM. The Gaussian Process Latent Vari-

able Model (GP-LVM) (Lawrence 2005) is an effective non-linear

dimensionality reduction technique. It produces a probabilistic

model of a high-dimensional dataset Y with a low-dimensional

dataset X which is “latent”. We are working in a very high-

dimensional space at the beginning since there are about 600

skeleton points in each glyph on average. Compared to PCA, MDS,

IsoMap, and other linear dimensionality reduction methods, GP-

LVM performs much better in reconstructing high-dimensional

data from corresponding low-dimensional latent vectors.

Therefore, the GP-LVM is well suited for the task of learning such

a font skeleton manifold.

Suppose there are M fonts, we need to generate M high-

dimensional vectors for each character. Each vector is composed

by sequentially putting all skeleton point samples together in

stroke order as

vm =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎢⎢⎢⎣

vm
1,1

vm
1,2
...

⎤⎥⎥⎥⎥⎥⎥⎥⎦

T ⎡⎢⎢⎢⎢⎢⎢⎢⎣

vm
2,1

vm
2,2
...

⎤⎥⎥⎥⎥⎥⎥⎥⎦

T

· · ·

⎡⎢⎢⎢⎢⎢⎢⎢⎣

vm
n,1

vm
n,2
...

⎤⎥⎥⎥⎥⎥⎥⎥⎦

T ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

, (1)

where vm
i, j denotes the coordinate of the j-th point on the i-th

stroke skeleton in font style m and n is the stroke number of the

character. The value of the point coordinate should be normalized

to [0, 1]. To apply GP-LVM, we subtract the mean vector v̄ off to

get the vector ym = vm − v̄. This allows us to use a zero mean

function, and the mean vector v̄ is actually the average character

skeleton of the training data. Then, the high-dimensional dataset

Y can be represented as

Y = [y1 y2 · · · yi · · · yM]T. (2)

Using these skeleton vectors for Y , the training process of the GP-

LVM considers the likelihood of Y as

P (Y |X ,θ) =
M∏

i=1

N (yi |0,C (X ,X |θ) + σ 2I), (3)

where I is the identity matrix, M denotes the number of fonts,

C (X ,X |θ) denotes the covariance between vectors, and σ denotes

the noise variance accounting for difference between every origi-

nal high-dimensional vector and its reconstructed version. In our

experiments, the manifold works well only when the parameter σ
is set to be small (e.g., 0.1), which suggests that the font skeletons

actually lie on a low-dimensional manifold. We get the latent vari-

ables by jointly maximizing the likelihood below over the latent

vectors X = [· · · xj · · ·]T as well as the hyperparameters θ so that

X ∗,θ∗ = arg max
X ,θ

[log(P (Y |X ,θ))]. (4)

Generating the skeleton of a given character in a new font style

from the manifold is straight-forward with the latent variables

X ∗ and hyperparameters θ∗ (Lawrence 2005). Suppose x̂ is the

target location on the manifold, then the corresponding high-

dimensional vector ŷ can be calculated by the following equation

ŷ = C (x̂,X ∗ |θ∗)[C (X ∗,X ∗ |θ∗)]−1Y , (5)

where C (x̂,X ∗ |θ∗) denotes the covariance between vectors and

[C (X ∗,X ∗ |θ∗)]−1 is precomputed. We add the above-mentioned

mean vector v̄ to ŷ, to get v̂ that consists of the coordinates of

skeleton points of the character in a new font style. In this way, the

font skeleton manifold is constructed offline to provide the most

similar reference data for each input character image during the

stroke extraction step (Section 3.4) described below.

There are two major reasons for building such a font skeleton

manifold for our system. First, the manifold is able to generate

infinite numbers of meaningful character trajectories in different

styles while the number of manually labeled reference data is

ACM Transactions on Graphics, Vol. 38, No. 1, Article 6. Publication date: December 2018.

6:8 • Z. Lian et al.

Fig. 6. Comparison of stroke extraction results for a handwritten Chinese

character using the following three different reference data: Kaiti (a stan-

dard “Kaiti” font), NN-Fonts (nearest-neighbor retrieval on a given data-

base with 28 fonts), NN-Manifold (nearest-neighbor retrieval on our font

skeleton manifold).

always limited, and thus, better stroke extraction performance can

be achieved compared to other approaches (see Figure 6). Second,

searching on the trained low-dimensional (e.g., two in this article)

manifold instead of the high-dimensional (e.g., about 1,200)

interpolation space makes the task of finding similar reference

data for most input character images possible and more efficient.

3.3 Text Segmentation

As shown in Figure 2, anyone can use our system to generate their

handwriting fonts quickly and conveniently. The user should first

follow the instruction to write out all (266 or 775, depending on the

quality required) characters in a selected input character set. In or-

der to make a qualified font library, characters should be written

separately without touching each other in a given order and con-

sistently in size and style. Then, the user should take pictures for

those papers in correct directions and upload the text photos to

our system.

After receiving the user’s text images, the system will automat-

ically segment individual character images from those pictures in

the following five steps: (1) apply Gaussian smoothing and adap-

tive image binarization on the original text images; (2) find regions

with connected pixels, calculate their bounding boxes, and con-

sider them as candidates of characters; (3) discard unsuitable candi-

dates by applying several heuristic filters (e.g., size, ratio of length

to width, ratio of black and white pixels). Then, go to the next step

if the number of valid candidates is equal to the number of char-

acters required to be written. Otherwise, dilate the image and go

back to the second step; (4) compute the mass centers of the de-

tected candidates in the bottom row of the picture and thus the

rotation angle of the text image can be estimated by fitting a line

for these center points; (5) sequentially segment individual char-

acter images from the rectified text images and label them with the

unicode values of corresponding characters.

The text localization algorithm adopted here is quite simple

and straightforward, but already sufficient enough for the pro-

posed system. In practical use, the template-based text segmenta-

tion scheme we presented in Pan et al. (2014) has also been adopted

to collect handwriting data from thousands of users via our

Fig. 7. Illustration of our stroke extraction algorithm. Given a target hand-

written character and its best-suited corresponding reference (a), non-rigid

point set registration between two trajectories is first implemented (b).

Then, correspondences between them can be established (c). Finally, the

trajectory of each stroke for the target character is extracted and the regis-

tration process is carried out again to locate key points (triangles, crosses,

and squares denote start, end, and corner points, respectively) on each

stroke’s trajectory (d).

website.2 Other state-of-the-art text detection and recognition

methods (e.g., Sun et al. (2016) and Zhang et al. (2016)) can also

be integrated into our system to improve its robustness.

3.4 Stroke Extraction

Given a number of character images, in order to know how the user

wrote these characters, we must precisely locate the writing trajec-

tory of each stroke on the characters. The key idea of our method

is to utilize the Coherent Point Drift (CPD) (Myronenko and Song

2010) algorithm to implement non-rigid registration between the

skeletons of a given target character image and its best-suited ref-

erence (see Figure 7).

During the offline period mentioned above, a font skeleton man-

ifold is learned and thus numerous font skeletons can be gener-

ated, from which we can find the most similar one for the input

image as its reference data for stroke extraction. It is impractical

to traverse everywhere in the manifold since the manifold space

is continuous and infinite. However, it can be observed that lo-

cations nearby tend to generate similar character skeletons and

the skeleton changes continuously from one location to another.

Let z denote the location that generates the most similar skeleton

to the target character image among the existing selected fonts in

the manifold; we speculate that the best-suited reference character

skeleton is likely to be located in the neighbourhood of z.

Afterwards, we use the thinning directional feature (Jin and Gao

2004) to measure the similarity of character skeletons in different

fonts. Specifically, given the skeleton of a character, we divide the

image into 8 × 8 = 64 grids and then count the number of points in

four directions (the horizontal direction, the vertical direction, the

left falling diagonal direction and the right falling diagonal direc-

tion) in each grid. Thus, we get a feature vector of 8 × 8 × 4 = 256

dimensions for each character. By calculating the minimum Eu-

clidean distance between the feature vectors of the target character

and the corresponding characters in the styles of existing selected

fonts, we get the value of z. From Equation (5), we can generate

the corresponding character skeleton when traversing around the

2http://www.flexifont.com/.

ACM Transactions on Graphics, Vol. 38, No. 1, Article 6. Publication date: December 2018.

http://www.flexifont.com/

EasyFont: A Style Learning-Based System to Easily Build Your Large-Scale Handwriting Fonts • 6:9

location of z. Here, we choose to traverse in circles centered at z

and increase their radii gradually until reaching the threshold τ .

For each character skeleton we generate, the thinning directional

feature is calculated in the same way as mentioned above and we

choose the one that is most similar to the target character image

as its reference data (See Figure 4).

Since stroke labels are already known for all points on the best-

suited reference data, after establishing correspondence between

reference and target data, the writing trajectory of each stroke on

the target character image can be obtained automatically (see Fig-

ure 7(d)). More specifically, let XN×2 = (x1, . . . , xN)T be the tar-

get point set with N points evenly sampled on the skeleton of a

user-written character, and YM×2 = (y1, . . . , yM)T be the refer-

ence point set (i.e., centroids of Gaussian Mixture Models (GMM))

with M points sampled on the corresponding reference character’s

writing trajectory. Registering the reference point set with target

point set is equivalent to determining the locations of GMM cen-

troids (i.e., θ) and the equal isotropic covariances of GMM distri-

butions (i.e., σ 2) by minimizing the following objective function

E (θ ,σ 2) = −
N∑

n=1

log
�	

M∑

m=1

1

M

1

2πσ 2
exp
− ‖xn−ym ‖2

2σ 2 +
1

N
��

. (6)

Here, we adopt the EM algorithm to solve this problem by

iteratively implementing E and M steps until convergence.

After the above procedure, what we get are only a set of labeled

target point sets. To implement style learning and detail recovery,

we would like to describe the writing trajectory of each stroke as a

single directional curve with several key points including the start

point, end point, and corner points (see Figure 7(d)). We achieve

this goal by applying the CPD algorithm (Myronenko and Song

2010) again to establish correspondence between the point set

of each target stroke trajectory and the corresponding reference

stroke model. Here, 339 reference stroke models have been built

offline by manually specifying the writing trajectory and above-

mentioned key points for each stroke type once.

It should be pointed out that in real applications, incorrect

stroke extraction results always exist due to the existence of spe-

cial and cursive personal handwriting styles. Obviously, these in-

correct extraction results could seriously affect the performance

of handwriting synthesis and might even cause the breakdown of

our system. To solve this problem, we evaluate the correctness of

stroke extraction results for a character by computing

C = Cr ec +Csim +Crule , (7)

whereCr ec denotes the overlap ratio of the reconstructed charac-

ter image, which is obtained by continuously drawing discs whose

diameters are equal to the average stroke width along extracted

stroke trajectories, to the original one;Csim measures the similar-

ity between each target stroke trajectory and its corresponding ref-

erence using several shape descriptors (i.e., Sobel-Roberts feature

(Khosravi and Kabir 2010) and angles of lines between key points);

and Crule is related to the correctness of each stroke based on its

intrinsic properties (e.g., stroke “heng” and “shu” should look like

horizontal and vertical line segments, respectively) by designing

heuristic rules for each type of stroke. In our system, we choose to

discard the extracted stroke trajectories of the 20% of the human-

Fig. 8. Describing the handwriting style. Black and green trajectories

denote handwriting and reference characters, respectively. Blue and red

points are stroke centers of r ef and hand . Pentacles denote character

centers.

written characters whose correctness values are smaller than other

80%. This is due to the observation from our experiments that

stroke extraction results are correct for more than 90% characters

in the above-mentioned test set consisting of 639 characters.

3.5 Overall Style Learning

In our system, the overall handwriting style is represented as the

difference between trajectories of the reference character (re f) and

handwritten character (hand). We decompose the Chinese char-

acter into a lower-level concept and structure, namely the stroke

shape (SS) and stroke layout (SL) (see Figure 8). Hence, the overall

handwriting style can be decomposed into the stroke shape style

(SSS) and stroke layout style (SLS), which are represented by the

differences of stroke shapes and stroke layouts (DSS and DSL), re-

spectively, between re f and hand .

To calculate the DSS and DSL, we first sample the same number

(NP) of points Pi j (k) = (xi j (k),yi j (k)),k = 1, 2, . . . ,NP on the tra-

jectory of each stroke for all reference and handwritten characters.

Thus, strokes can be represented as points along stroke trajecto-

ries (for simplicity, unless otherwise specified, in this section, we

directly use “stroke” to denote the “stroke trajectory”), e.g., Si j =

(Pi j (1), Pi j (2), . . . , Pi j (NP)). While, characters are represented as

vectors of strokes Ci = (Si1, Si2, . . . , SiNS i
), where NS i denotes

the number of strokes in a character Ci . Then, the stroke center

SC and character center CC can be easily computed. To better de-

scribe the shape of a stroke, we calculate the normalized stroke

shape, which consists of relative positions of points on the stroke

to the stroke’s center of mass. Similarly, the normalized stroke lay-

out can be obtained by calculating the relative positions of stroke

centers to the character center. Thus, the normalized SS and SL

for each stroke can be computed by SSi j = Si j − SCi j and SLi j =

SCi j −CCi , respectively. As mentioned above, the stroke shape

style and stroke layout style are represented by DSS and DSL,

which can be calculated as DSSi j = SShand
i j − SSr ef

i j and DSLi j =

SLhand
i j − SLr ef

i j , where SShand
i j , SLhand

i j denote the normalized SS,

SL for the stroke j of the handwritten character; and SS
r ef
i j , SL

r ef
i j

represent the normalized SS, SL of the corresponding reference.

3.5.1 Data Structures and Neural Networks. Figure 9 depicts an

overview of how to learn and reconstruct the user’s overall hand-

writing style using our method, which consists of the following

ACM Transactions on Graphics, Vol. 38, No. 1, Article 6. Publication date: December 2018.

6:10 • Z. Lian et al.

Fig. 9. Illustration of overall style learning and handwriting synthesis in

our system.

Table 2. Classification of Data Structures

Point-wise Stroke-wise Character-wise

Non-sequential N Y Y

Sequential Y Y N

two procedures: style learning and handwriting synthesis. In the

style learning procedure, neural networks are utilized to capture

overall handwriting style. The stroke shape of re f serves as in-

put for learning stroke shape style, and the difference of stroke

shapes between re f and hand serves as output. Similarly, when

learning stroke layout style, the input is the stroke layout of re f
and the output is the difference of stroke layouts between re f and

hand . Here, different data structures with various neural networks

are employed and compared to learn stroke shape style, which is

harder than the task of learning stroke layout style. The input and

output data are built according to different data structures and neu-

ral networks chosen for our system.

Data structures for stroke shape style learning can be classified

into sequential and non-sequential by time dependence, or point-

wise, stroke-wise, and character-wise by granularity. The classifi-

cation of data structures we use is shown in Table 2, in which Y

means suitable and N means unsuitable.

For point-wise data structures, the input and output are

SS
r ef
i j (k) and DSSi j (k) (i.e., each point), respectively. Non-

recurrent neural networks (non-RNNs) are not suitable for this

data structure, because it is hard to capture handwriting style from

a single point. In recurrent neural networks (RNNs), we can treat

points in each stroke as a sequence or points in each character as

a sequence. For stroke-wise data structures, the input and output

are SS
r ef
i j and DSSi j (i.e., each stroke), respectively. Both RNNs

and non-RNNs are suitable to find the difference (style) of strokes

between re f and hand . In RNNs, strokes in a character form

a sequence. Although RNNs can find time dependence among

strokes in a character, the limited number of training samples in

our system restricts this ability of RNNs. For character-wise data

structures, the input and output are SS
r ef
i and DSSi (i.e., each

character), respectively. Only non-RNNs are suitable for this data

Fig. 10. Demonstration of how to recover handwriting details. Learned

writing trajectories in the middle of glyphs are colored in red.

structure. In this case, the number of samples is much smaller

than that in stroke-wise data structures.

We choose to learn overall handwriting style by the following

three types of neural networks (NNs): Feed-forward neural net-

work (FFNN) (Rumelhart et al. 1986), Elman recurrent neural net-

work (Elman RNN) (Elman 1990), and Long Short-Time Memory

(LSTM) network (Hochreiter and Schmidhuber 1997). FFNN is a

non-RNN network while Elman RNN and LSTM are RNNs, which

are able to capture time dependence. As we know, Elman RNN only

has a short memory, but LSTM, a well-designed RNN, performs

well in learning long-time dependence.

3.5.2 Learning Procedure. As shown in Figure 9, our learning

procedure consists of three steps. First, suitable data structures and

corresponding neural networks are selected based on the above-

mentioned analyses. Then, we use the selected data structure to

build the training data (including input and output data). After-

wards, we train the neural networks with prepared data to learn

the stroke shape style and stroke layout style, respectively. Mean-

while, a validation set is used to automatically tune parameters

during the training process. Finally, we obtain the trained neural

networks, which can be used to synthesize handwritings in the

generation procedure.

3.6 Recovering Handwriting Details

After capturing the user’s overall handwriting style, writing trajec-

tories of all characters can be generated. Then, the simplest way of

creating synthesized glyphs is to render the trajectories with the

average stroke width of human-written characters (see Figure 14

for some rendering examples).

However, as shown in Figure 10, the stroke width of each point

on a writing trajectory may change greatly according to different

handwriting behaviors, especially in the start and end regions of

a stroke. Moreover, the connectivity of two sequential strokes is

also an important feature of the user’s handwriting style. To cap-

ture the handwriting details on the contour of a stroke, we divide

the stroke into three regions, i.e., start, end, and middle regions.

Locations of the start and end points are adjusted by ensuring that

the largest distance between the start/end point and points on the

stroke contour is equal to the twice of average stroke width ws .

Then, as shown in the left part of Figure 10, relative positions of

points on a stroke’s contour around the stroke trajectory’s start

point are obtained by emitting a number (e.g., 11) of rays evenly

distributed in the half region opposed to the writing direction. If

ACM Transactions on Graphics, Vol. 38, No. 1, Article 6. Publication date: December 2018.

EasyFont: A Style Learning-Based System to Easily Build Your Large-Scale Handwriting Fonts • 6:11

any of these rays encounter the trajectories of other strokes be-

fore reaching the stroke’s contour, we mark it as an invalid start

region. Handwriting details at the end region can be captured in

the same manner and the shape of the middle region is described

by the stroke width values of a number (e.g., 10) of evenly-sampled

points on the trajectory. As mentioned above, all strokes have been

classified into 339 categories, so we can calculate the average val-

ues of the above-mentioned detail information for all valid regions

in each type of stroke and use it to recover details on the contour

when rendering the trajectory of a stroke that belongs to the same

category.

To describe the connecting property for each pair of sequential

strokes, we calculate a 339 × 339 matrix Mc in which the element

mc
i j denotes the probability of drawing trajectory between the end

point of stroke i and the start point of stroke j. As shown in the

right part of Figure 10, it is easy to judge whether two sequential

strokes in a character have been written as a connected compo-

nent or not by using our automatically-extracted stroke trajecto-

ries with key points. Then, the value of mc
i j is obtained by com-

puting the ratio of the number of connected pairs of strokes (i.e.,

stroke i and j) to the total number of this type of stroke pairs. When

generating synthesis results, if the value ofmc
i j is larger than a ran-

dom number Pc (Pc ∈ [0, 1]), a natural and smooth line with proper

width values will be created to connect the end point of stroke i
with the start point of stroke j.

3.7 Handwriting Synthesis and Font Generation

As shown in Figure 9, during the generation procedure (i.e., the

handwriting synthesis procedure), reference data (i.e., SS
r ef
i j and

SL
r ef
i j) are input into the trained NNs to estimate DSSi j and DSLi j .

Then, we obtain SShand
i j , SLhand

i j by applying DSSi j and DSLi j to

SS
r ef
i j and SL

r ef
i j , respectively, i.e., SShand

i j = DSSi j + SS
r ef
i j and

SLhand
i j = DSLi j + SL

r ef
i j . By setting the character centerCCi , po-

sitions of stroke centers and sampled points on strokes can be lo-

cated using the calculated SShand
i j and SLhand

i j .

After obtaining the synthesized writing trajectories for all char-

acters that have not been written by the user, several beautifica-

tion processes are implemented in our system for better visual

effects. First, distortions of synthesis results can be reduced by

smoothing generated trajectories slightly. Also, rendering trajec-

tories properly using the above-mentioned technique to recover

writing details could make synthesis results look more similar to

real handwritings of the user. One of the most important merits

of our method is that with the trained network arbitrarily large

numbers of Chinese characters in the learned handwriting style

can be generated automatically once the required reference data

are provided. Finally, a Truetype font library in the user’s personal

handwriting style can be built by vectorizing and packaging both

images of human-written samples and machine-generated hand-

writings for all other characters.

4 EXPERIMENTS

We carry out two groups of experiments in this section. The first

group of experiments is mainly designed to investigate effects of

different configurations and show performance comparison for the

proposed overall style learning method that plays a key role in our

system. The other group of experiments including Turing tests is

conducted to demonstrate the effectiveness and superiority of our

font generation system in real applications. Unless otherwise spec-

ified, settings of our experiments are chosen as follows: Charac-

ters in the “Kaiti” font library are adopted as reference data for

style learning, because most Chinese people start to learn writing

from imitating glyphs in the “Kaiti” style. The stroke layout style

is learned by FFNN. The algorithms are implemented in Matlab on

a PC with a 3.5GHz Intel i7-5930K CPU and 32.0GB RAM.

4.1 Font Generation without Handwriting Details

In the first group of experiments, we compare learning per-

formance for methods with different configurations of data

structures and neural networks. Mean square error (MSE) and

correlation coefficient (R) are calculated to quantitatively evaluate

the performance. To achieve accurate comparison and quantitative

analyses, we manually specify the trajectory of each stroke for all

characters written by two users (i.e., User 1 and 2) on an iPad with

a fixed stroke width and adopt them as the ground truth in our

experiments. The dataset is publicly available on our website so

that other researchers can use it as benchmark database for hand-

writing synthesis. Here, the input character set consisting of 639

different Chinese characters (see more details in Section 3.1 and

Table 1), which are able to cover all types of strokes and com-

ponents of commonly used Chinese characters, is chosen in this

group of experiments. These 639 characters are randomly divided

into the training set, validation set and test set with partition

ratios 4/6, 1/6, and 1/6, respectively.

4.1.1 Data Structures and Neural Networks. For stroke layout

style learning, FFNN with five units in the hidden layer is adopted.

We use SL
r ef
i j as input each time, and the output is the differ-

ence of SLi j between the reference and handwritten characters,

i.e., DSLi j . First, FFNN is trained on the training set to learn SLS.

Then, the trained FFNN and the new input data are utilized to gen-

erate SLhand
i j for new characters. We observe that during the learn-

ing procedure convergence occurs after about 8,000 iterations, and

the R value evaluated on the test set is about 0.965, which means

high similarity between the machine-generated data and ground

truth data.

Next, we test NNs with different data structures to learn the

stroke shape style, namely, Stroke-wise Learning with FFNN

(SWL-FFNN), Stroke-wise Learning with Elman RNN (SWL-

ERNN), Stroke-wise Learning with LSTM (SWL-LSTM), Point-

wise Learning with LSTM in Per-stroke Sequence (PWL-LSTM-

PSS), Point-wise Learning with LSTM in Per-character Sequence

(PWL-LSTM-PCS), and Character-wise Learning with FFNN

(CWL-FFNN).

Here, only one hidden layer is utilized in all NNs; that means

the network structure is I ∗ H ∗O , where I , H , and O denote the

numbers of units in the input, hidden, and output layers, respec-

tively. Table 3 lists the unit numbers in each NN, which are se-

lected experimentally. We have tried using more layers and units in

each NN, but the performance could not be improved. One possible

ACM Transactions on Graphics, Vol. 38, No. 1, Article 6. Publication date: December 2018.

6:12 • Z. Lian et al.

Table 3. MSE and R Values of Our Methods with Different

Configurations Evaluated on the Test Set

Fig. 11. Plots of MSE values evaluated on the training set and validation set of different methods for stroke shape style learning.

explanation is that, for small-scale data, shallow networks are of-

ten more suitable than deep networks.

It can be observed from Table 3 that methods with stroke-

wise configurations perform better than those with point-wise

and character-wise configurations. Therefore, stroke-wise config-

urations are more suitable for style learning when the number

of training samples is small. Also, methods with different stroke-

wise configurations perform similarly, which indicates that, for

this small-sample learning task, recurrent neural networks (ERNN

and LSTM) do not have obvious superiority against feed-forward

neural networks (FFNN).

As we can see from Figure 11, which shows the performance

of different methods, it takes a long time for the training error and

validation error of FFNN to decrease until convergence. Therefore,

we apply a trick by automatically adjusting the learning rate on

time based on the tendency of errors. In this manner, the break of

gradients due to large learning rate can be settled down soon. On

the contrary, training errors of Elman RNN and LSTM continue

to decrease quickly, and then overfitting occurs after hundreds of

iterations in both Elman RNN and LSTM. Although it takes fewer

iterations to reach the best condition for Elman RNN and LSTM,

the time expenditure of each iteration is high because it cannot be

computed in parallel.

Glyphs generated by different methods without smoothing are

shown in Figure 12. We find that stroke-wise learning methods

perform better than the others. It is interesting that stroke-wise

learning approaches with different NNs achieve approximately

similar visual effects. This indicates that data structures have a

great impact on learning effect and our methods can learn per-

sonal handwriting style sufficiently from limited samples. More

shakes appear in SWL-LSTM and SWL-ERNN, compared with

SWL-FFNN, mainly because the limited number of samples are un-

able to stabilize more weights in LSTM and Elman RNN. Generally,

SWL-FFNN achieves the best visual effect among these methods

and thus is adopted to learn stroke shape style in other experi-

ments.

4.1.2 Size of Input Character Set. We randomly choose differ-

ent numbers of training samples from the above-mentioned 639

characters in which other samples are used as the testing data.

Then, our methods trained on various numbers of samples are

evaluated 10 times for each training sample size to calculate the

mean values of MSE and R. It can be seen from Figure 13 that with

only 270 samples our method can already achieve good enough

performance with MSE = 0.207 and R = 0.849.

4.1.3 Comparison with a Concatenation Method. To validate

the superiority of our system, we compare the proposed method

with a concatenation method called Character Radical Compo-

sition Model (CRCM) presented in Zhou et al. (2011). Figure 14

shows the comparison of synthesis results obtained using CRCM

and our approach, respectively. For the CRCM approach, we man-

ually adjust the character segmentation results to ensure that all

ACM Transactions on Graphics, Vol. 38, No. 1, Article 6. Publication date: December 2018.

EasyFont: A Style Learning-Based System to Easily Build Your Large-Scale Handwriting Fonts • 6:13

Fig. 12. Comparison of synthesis results for “User 1” using our methods

with different configurations. C1, C2, and C3 denote different characters.

Fig. 13. Plots of MSE and R values evaluated on the same test set with

different training sample sizes.

Fig. 14. Comparison of synthesis results for two users. The first line shows

human-written characters. The second and third lines show synthesis re-

sults of our method and CRCM, respectively.

radicals are extracted correctly. It takes CRCM about 13 1
3 hours

to generate a GB2312 font library that contains 6,763 simplified

Chinese characters. But the font library generated by CRCM can-

not be used directly without manual modifications. As we can

see, there exist many obvious defects in the synthesis results of

CRCM, such as the unseemliness of radical sizes and radical lay-

outs. On the contrary, it only takes about 2 1
6 hours for our method

to learn handwriting style and build the font library. In fact, due

to the inevitable existence of incorrect radical extraction results,

CRCM cannot be implemented automatically without manual in-

terference, but our system can. Moreover, the synthesis results of

our method are more visually pleasing (see Figure 14).

4.2 Font Generation for Real Applications

In the second group of experiments, we would like to examine

the performance of our system in practical use. More specifically,

the system tested here utilizes “FFNN” to learn stroke layout style

and “SWL-FFNN” to learn stroke shape style. The OptSet (see

Table 1) that consists of 775 characters is chosen as the input char-

acter set. Also, the proposed text segmentation scheme, stroke ex-

traction, and detail recovering algorithms are all implemented to

make sure that the system can be run fully automatically after re-

ceiving handwritten text photos uploaded by the user and the syn-

thesis results can be indistinguishable from original handwritings.

Although the MinSet (see Table 1) with only 266 characters can

also be adopted as the input character set, and in fact, considerably

good results (see Figure 2) are already obtained by using the Min-

Set, we still recommend utilizing the OptSet to guarantee better

and more stable performance in real applications where strange,

very cursive, and even incorrect handwritings might also be input

to our system. As a matter of fact, on average it takes only about

20–30 minutes for an educated Chinese person to correctly write

out all characters in the OptSet on papers. According to user inves-

tigations, the time and work load are acceptable for them mainly

due to the fact that most of those 775 characters are easy to be writ-

ten and commonly-seen in our daily lives. Until now, several hun-

dreds of users have uploaded their handwritings, which include

those 775 characters, to our website. Among them, we choose the

handwriting data provided by three users (i.e., User 3, 4, and 5) that

have quite different handwriting styles (see Figure 16) as the input

data of our system in this group of experiments.

4.2.1 Rendering Results. With the three users’ personal hand-

writing fonts generated by our system, we use them to render two

poems and a paragraph in a famous piece of prose. As we can see

from Figure 15, in which two poems are rendered using the three

font libraries, the quality of machine-generated glyphs, underlined

in the figure, is considerably high. Furthermore, both overall hand-

writing styles and handwriting details of our synthesis results look

quite similar to the original handwritings. Figure 16 shows ren-

dering results of a paragraph using four fonts including a font li-

brary only consisting of 775 characters written by “User 3” and the

three users’ complete font libraries generated by our system. As we

know, if the selected font library does not include some characters

in the text to be rendered, typically the word processor we use will

apply a default font style (for example, “Songti”) to render those

characters. One such kind of example is shown in Figure 16(a), the

mixture of two different font styles in one paragraph markedly

reduces the readability of rendering results. On the contrary, texts

rendered using the three font libraries generated by our system not

only have high readability but also look quite similar to real hand-

written texts in corresponding personal styles. Results presented

here together with other more experimental results we obtained

demonstrate clearly that the large-scale handwriting font libraries

automatically generated by our system can be directly used in real

applications.

4.2.2 Comparison with Deep Learning Based Methods. In this

section, we first compare the performance of our approach with

two deep learning based end-to-end font synthesizing meth-

ACM Transactions on Graphics, Vol. 38, No. 1, Article 6. Publication date: December 2018.

6:14 • Z. Lian et al.

Fig. 15. Rendering results of two famous Chinese poems using three hand-

writing font libraries generated by our system. Characters underlined are

synthesized handwritings while others are written by corresponding users.

ods (i.e., “Rewrite” (Tian 2016) and “pix2pix” (Isola et al. 2017)).

We directly utilize the source code provided by the authors to

implement the two existing approaches. More specifically, the Opt-

Set consisting of 775 Chinese characters is selected as the train-

ing data and the standard “Kaiti” font style is chosen as the input

reference for all methods compared here. Namely, during the of-

fline training period, 775 character images in the standard “Kaiti”

style are imported as the input of Neural Networks and the corre-

sponding character images in a user’s handwriting style are con-

sidered to be the ideal target output. Online, all other characters

that are not included in the OptSet will be sequentially input into

the trained networks to generate synthesized character images in

the user’s handwriting style.

Figure 17 shows some examples of synthesized results obtained

by using our method and the above-mentioned two approaches,

respectively. As we can see, “Rewrite” can only synthesize some

coarse character shapes for User 4 and fails to generate any

reasonable results for the other two users. The method “pix2pix”

performs much better than “Rewrite” mainly due to the intro-

duction of adversarial networks that can markedly improve the

synthesizing performance of generative networks. However, as we

can see from Figure 17, although the details of shapes synthesized

by “pix2pix” possess the similar style as the input character

images written by corresponding users, most of these synthesized

characters are unreadable. On the contrary, synthesis results

obtained using our method not only precisely inherit the users’

overall and detailed handwriting styles but also clearly represent

the correct meanings of corresponding characters. As we know,

most of the existing deep learning based approaches including

the two methods compared here adopt a so-called end-to-end

learning architecture, which relies heavily on the interpreting

capability of networks for the training data. The end-to-end

architecture has been proved to work perfectly well for global

or coarse data interpreting tasks (e.g., classification, detection,

segmentation), but is still not able to automatically and pre-

cisely interpret high-level and detailed knowledge contained in

the training images with elegant and complicated structures.

Thus, without the correct interpretation of training character

images, there is no way for these end-to-end methods to generate

high-quality synthesized handwritings with correct meanings,

especially for complex characters.

Although above-mentioned experiments validate the effective-

ness and superiority of our system when handling glyphs written

by ordinary people, the EasyFont system that only adopts the ref-

erence data in the standard “Kaiti” style is still not able to generate

satisfactory results for handwritten/designed glyphs with either

complicated shapes of outlines or very cursive writing trajectories

(see Figure 18). Thereby, during offline processing, another 57 rep-

resentative GB2312 Chinese fonts are chosen to be used to build the

font skeleton manifold. Namely, we need to manually specify the

writing trajectory of each stroke for all 6,763 Chinese characters

in 85 selected font libraries in various styles. Online, one of these

fonts that has the most similar style as the input character images

will be chosen as the reference font to replace the “Kaiti” font used

in the original system. The style similarity is measured by the sum

of shape similarities of corresponding glyph pairs calculated via

the same method described in Section 3.4.

To examine the effectiveness of our EasyFont system with refer-

ence data in multiple font styles, we conduct experiments on five

Chinese font libraries in quite different styles (see Figure 18) and

compare our system (EasyFont) with other existing approaches,

which can be classified into two categories: Nearest-Neighbor

(NN) retrieval based methods (i.e., NN-Fonts and NN-Manifold)

and CNN based end-to-end methods (i.e., Rewrite, pix2pix, and

zi2zi). NN-Fonts and NN-Manifold are methods whose synthesis

results are nearest neighbors retrieved from a given database with

the above-mentioned 85 fonts and our font skeleton manifold, re-

spectively. “zi2zi” (Tian 2017) that specifically aims to transfer a

glyph image in one font style to another is actually a GAN model

modified from “pix2pix.” From Figure 18, we can see that Nearest-

Neighbor retrieval based methods work poorly due to their high

dependency on training data while those CNN based end-to-end

methods often synthesize incorrect glyphs especially for charac-

ters with complicated shapes due to the reason mentioned above.

It can also be observed that the proposed EasyFont system with ref-

erence data in multiple font styles is not only suitable for synthe-

sizing handwriting fonts for ordinary people, but also can generate

high-quality synthesis results for fonts in artistic styles designed

by professionals. However, there still exist some limitations in our

system. As we can see from the last row in Figure 18 (please zoom

in for better inspection), tiny artifacts still appear in synthesized

glyphs for fonts (e.g., “FZQKBYSJW”) designed by professionals

and some randomly-appeared writing details still cannot be pre-

cisely imitated for personal handwriting fonts with cursive styles

(e.g., “FZZJ-HJYBXCJW” and “FZZJ-ZSXKJT”).

ACM Transactions on Graphics, Vol. 38, No. 1, Article 6. Publication date: December 2018.

EasyFont: A Style Learning-Based System to Easily Build Your Large-Scale Handwriting Fonts • 6:15

Fig. 16. Rendering results of a paragraph using four different font libraries. If the font library used does not contain some characters in the paragraph, a

default font style (e.g., “Songti”) of the word processor we use will be adopted to render those characters (see Figure 16(a)).

Fig. 17. Comparison of synthesis handwritings generated using our method and two other deep learning based end-to-end approaches (i.e., Rewrite (Tian

2016) and pix2pix (Isola et al. 2017)).

4.2.3 Turing Tests. Finally, in order to quantitatively measure

the similarity of styles between human-written characters and

synthesized handwritings generated by our system, Turing tests

are conducted in this section. Specifically, we built a website that

shows a random test paper (see Figure 19 (b)–(d) for some exam-

ples of test papers and Figure 19(a) for the corresponding answer

paper) for each participant, on which 100 machine-generated char-

acters and 100 human-written characters in a user’s personal style

are randomly chosen and placed. Meanwhile, 50 randomly-chosen

characters written by the user are also displayed to the participant

as reference. Each participant is asked to pick out as many char-

acters as possible, which they think are imitated by computers,

with sufficient time. Obviously, if the writing style of a machine-

generated character is different compared to the original handwrit-

ing, it will be quite easy for educated Chinese people to find it.

Meanwhile, a machine-generated glyph is hard to be picked out

from the test paper if it not only looks like a human-written charac-

ter but is also similar to the character written by the same person.

Therefore, the Turing tests we conduct here can illustrate whether

synthesis results possess the required personal handwriting style

or not.

We invited 97 educated Chinese people with different ages (from

16–51) and occupations (e.g., students, teachers, company employ-

ees) to participate in our Turing tests via the internet. The aver-

age accuracy of distinguishing machine-generated characters from

original ones is 52.17%, which is close to the accuracy of random

guessing (50%), and the 95% confidence interval of the accuracy

values is [52.17% − 1.74%, 52.17% + 1.74%]. Results of our Turing

tests verify that synthesized handwritings generated by our sys-

tem are hard to be distinguished from the corresponding user’s

original handwritings. This is because, as shown in Figure 19, not

only the overall style but also many important details of the users’

handwritings can be imitated well by the proposed method.

5 DISCUSSION

Randomness exists in every character written by a person; there

are even also some people who do not have a stable handwriting

style. Basically, the handwriting style captured by many machine

ACM Transactions on Graphics, Vol. 38, No. 1, Article 6. Publication date: December 2018.

6:16 • Z. Lian et al.

Fig. 18. Comparison of synthesis results generated using our method (EasyFont), NN-Fonts (nearest-neighbor retrieval on a given database with 85 fonts),

NN-Manifold (nearest-neighbor retrieval on our font skeleton manifold), and other three deep learning based end-to-end approaches (i.e., Rewrite (Tian

2016), pix2pix (Isola et al. 2017) and zi2zi (Tian 2017)).

Fig. 19. Examples of a region of test papers in three handwriting styles and their corresponding answer paper (a) utilized in Turing tests. Characters in

colored blocks are generated by our system and others are human-written characters.

learning methods, such as our approach, is the user’s average

style (i.e., a kind of statistical handwriting style). It has been

reported (Zitnick 2013) that the average of multiple instances

of the same handwriting shape typically looks better than most

of the individual instances. Therefore, synthesized characters

generated by our method are intrinsically well-suited to build

font libraries that require more in readability of rendering results

and stability of writing styles. However, texts consisting of

pure machine-generated characters lack random variations and

typically look too uniform compared to real handwritten texts. We

solve this problem by combining small amounts of human-written

characters with synthesized handwritings for large numbers of

other characters to generate the complete font library. Since the

average rate of coverage for all characters written by a user is

about 50% in normal articles, in this manner, human-written and

machine-generated characters will be evenly distributed in an

article rendered using the font library generated by our system.

That makes the rendering result similar to a real handwritten

text.

In our system, the overall handwriting style of a user can be

quantified as a set of values measuring the difference between

the user’s handwritings and corresponding characters in the ref-

erence style (e.g., “Kaiti”). By default, the weight of personal hand-

writing style is selected as w = 1 so that synthesized glyphs (e.g.,

the character within the red square in Figure 20) could have the

same style as characters written by the user. Intuitively, we can

adjust the style weighting values (w ≥ 0) to get various synthesis

results (see Figure 20). This enables an interesting application in

ACM Transactions on Graphics, Vol. 38, No. 1, Article 6. Publication date: December 2018.

EasyFont: A Style Learning-Based System to Easily Build Your Large-Scale Handwriting Fonts • 6:17

Fig. 20. Synthesized results of a character obtained using our system with

different style weighting values for “User 4.”

Fig. 21. Synthesized results of some Korean characters in the three users’

handwriting styles.

that, after learning a user’s handwriting style, our system is able

to provide the user with a series of handwriting font products

in smoothly changing styles corresponding to different weight-

ing values. Obviously, the larger style weighting values that the

user selects, the stronger personal handwriting styles the synthe-

sis results will have. Thus, selecting smaller weighting values could

make the style of synthesized handwritings become more similar

to the standard “Kaiti” style. People who have ugly handwriting

styles might appreciate this function, since they can use it to beau-

tify their handwritings so that personal font libraries that are more

visually pleasing can be obtained.

It should be pointed out that although our current method is al-

ready able to recover important writing details and handle strange

and cursive handwritings, synthesis results generated by our sys-

tem for very cursive handwriting styles are still not as cursive

as the original ones since what the method has learned is the

user’s average handwriting style. If required, some existing tech-

niques (Lin and Wan 2007) can be easily applied to make those

synthesized characters more cursive and thus become more simi-

lar as the original ones.

Last but not the least, as mentioned before, our method can

be easily extended to many other writing systems. For example,

Figure 21 shows some samples of synthesized Korean characters

in the three users’ handwriting styles obtained by directly using

the learned models mentioned in Section 4.2. We believe that the

proposed methodology is not only suitable for the generation of

Chinese handwriting fonts, but can also be utilized to easily build

large-scale handwriting font libraries in other languages.

6 CONCLUSION

This article presented a novel system that is able to learn the

handwriting style from a small number of input samples writ-

ten by an ordinary person and generate the personal handwrit-

ing font library, which can have arbitrarily large numbers of Chi-

nese characters, for the user. Experimental results demonstrated

that our system can be used to automatically generate high-

quality handwriting font libraries, which include huge amounts

of machine-generated characters that are indistinguishable from

original handwritings. In the future, we are planing to further

improve the synthesis performance by integrating powerful deep

learning approaches with professional domain knowledge on cal-

ligraphy.

ACKNOWLEDGMENTS

We would like to especially thank Prof. Paul L. Rosin from Cardiff

University, UK for valuable discussions and helping us improve the

presentation quality of this article.

REFERENCES
M. Arjovsky, S. Chintala, and L. Bottou. 2017. Wasserstein GAN. arXiv preprint

arXiv:1701.07875 (2017).
S. Baluja. 2016. Learning typographic style. CoRR abs/1603.04000 (2016). http://arxiv.

org/abs/1603.04000.
W. Baxter and N. Govindaraju. 2010. Simple data-driven modeling of brushes. In Proc.

ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games. 135–142.
E. Bernhardsson. 2016. Analyzing 50k fonts using deep neural networks. Re-

trieved from https://erikbern.com/2016/01/21/analyzing-50k-fonts-using-deep-
neural-networks/.

N. D. F. Campbell and J. Kautz. 2014. Learning a manifold of fonts. ACM Transactions
on Graphics 33, 4 (2014), 91.

X. Chen, Z. Lian, Y. Tang, and J. Xiao. 2017. An automatic stroke extraction method
using manifold learning. In Proc. Eurographics 2017 Short Paper.

Já. Dolinsky and H. Takagi. 2009. Analysis and modeling of naturalness in handwrit-
ten characters. IEEE Transactions on Neural Networks 20, 10 (2009), 1540–1553.

J. Dong, M. Xu, and Y. Pan. 2008. Statistic model-based simulation on calligraphy
creation. Chinese Journal of Computers 31, 7 (2008), 1276–1282 (In Chinese).

J. L. Elman. 1990. Finding structure in time. Cognitive Science 14, 2 (1990), 179–211.
J. Fan. 1990a. Intelligent Chinese character design and an experimental system ICCDS.

JCIP 4, 3 (1990), 1–11 (In Chinese).
J. Fan. 1990b. A method of computerizing the calligraphical rules basing on CC struc-

ture code. JCIP 4, 4 (1990), 43–52 (In Chinese).
FontCreator. 2017. High logic. Retrieved from http://www.high-logic.com/.
FontLab. 2017. Fontlab. Retrieved from http://www.fontlab.com/.
Founder. 2017. Founder group. Retrieved from http://www.foundertype.com/.
L. A. Gatys, A. S. Ecker, M. Bethge, S. Hertzmann, and E. Shechtman. 2017. Controlling

perceptual factors in neural style transfer. In Proc. CVPR 2017.
I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A.

Courville, and Y. Bengio. 2014. Generative adversarial networks. In Proc. NIPS
2014.

T. S. F. Haines, M. Aodha, and G. J. Brostow. 2016. My text in your handwriting. ACM
Transactions on Graphics (TOG) 35, 3 (2016), 26.

K. He, X. Zhang, S. Ren, and J. Sun. 2016. Deep residual learning for image recognition.
In Proc. CVPR 2016. 770–778.

G. E. Hinton and R. R. Salakhutdinov. 2006. Reducing the dimensionality of data with
neural networks. Science 313, 5786 (2006), 504–507.

S. Hochreiter and J. Schmidhuber. 1997. Long short-term memory. Neural Computa-
tion 9, 8 (1997), 1735–1780.

P. Isola, J. Y. Zhu, T. Zhou, and A. A. Efros. 2017. Image-to-image translation with
conditional adversarial nets. In Proc. CVPR 2017.

B. K. Jang and R. T. Chin. 1990. Analysis of thinning algorithms using mathematical
morphology. IEEE Transactions on Pattern Analysis and Machine Intelligence 12, 6
(1990), 541–551.

L. Jin and X. Gao. 2004. Study of several handwritten Chinese character directional
feature extraction approaches. Application Research of Computers 21, 11 (2004),
38–40.

H. Khosravi and E. Kabir. 2010. Farsi font recognition based on Sobel–Roberts fea-
tures. Pattern Recognition Letters 31, 1 (2010), 75–82.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. 2012. ImageNet classification with deep
convolutional neural networks. In Advances in Neural Information Processing Sys-
tems 25. 1097–1105.

P. K. Lai, D. Y. Yeung, and M. C. Pong. 1996. A heuristic search approach to Chinese
glyph generation using hierarchical character composition. Computer Processing
of Oriental Languages 10, 3 (1996), 307–323.

B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum. 2015. Human-level concept learn-
ing through probabilistic program induction. Science 350, 6266 (2015), 1332–1338.

N. Lawrence. 2005. Probabilistic non-linear principal component analysis with Gauss-
ian process latent variable models. Journal of Machine Learning Research 6, Nov
(2005), 1783–1816.

W. Li, Y. Song, and C. Zhou. 2014. Computationally evaluating and synthesizing Chi-
nese calligraphy. Neurocomputing 135, 5 (2014), 299–305.

Z. Lian and J. Xiao. 2012. Automatic shape morphing for Chinese characters. In Proc.
SIGGRAPH Asia 2012 TB. 2.

ACM Transactions on Graphics, Vol. 38, No. 1, Article 6. Publication date: December 2018.

http://arxiv.org/abs/1603.04000
http://arxiv.org/abs/1603.04000
https://erikbern.com/2016/01/21/analyzing-50k-fonts-using-deep-penalty -@M neural-networks/
https://erikbern.com/2016/01/21/analyzing-50k-fonts-using-deep-penalty -@M neural-networks/
http://www.high-logic.com/
http://www.fontlab.com/
http://www.foundertype.com/

6:18 • Z. Lian et al.

Z. Lian, B. Zhao, and J. Xiao. 2016. Automatic generation of large-scale handwriting
fonts via style learning. In Proc. SIGGRAPH Asia 2016 TB. 12.

J. Lin, C. Wang, C. Ting, and R. Chang. 2014. Font generation of personal handwritten
Chinese characters. In Proc. IGIP 2014.

Z. Lin and L. Wan. 2007. Style-preserving English handwriting synthesis. Pattern
Recognition 40, 7 (2007), 2097–2109.

J. Long, E. Shelhamer, and T. Darrell. 2015. Fully convolutional networks for semantic
segmentation. In Proc. CVPR 2015. 3431–3440.

J. Lu, C. Barnes, S. DiVerdi, and A. Finkelstein. 2013. RealBrush: Painting with exam-
ples of physical media. In Proc. ACM SIGGRAPH 2013.

J. Lu, C. Barnes, C. Wan, P. Asente, R. Mech, and A. Finkelstein. 2014. DecoBrush:
Drawing structured decorative patterns by example. In Proc. ACM SIGGRAPH
2014.

J. Lu, F. Yu, A. Finkelstein, and S. DiVerdi. 2012. HelpingHand: Example-based stroke
stylization. In Proc. ACM SIGGRAPH 2012.

A. Myronenko and X. Song. 2010. Point set registration: Coherent point drift. IEEE
Transactions on Pattern Analysis and Machine Intelligence 32, 12 (2010), 2262–2275.

W. Pan, Z. Lian, R. Sun, Y. Tang, and J. Xiao. 2014. FlexiFont: A flexible system to
generate personal font libraries. In Proc. DocEng 2014. 17–20.

H. Q. Phan, H. Fu, and A. B. Chan. 2015. FlexyFont: Learning transferring rules for
flexible typeface synthesis. Computer Graphics Forum 34, 7 (2015), 245–256.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. 1986. Learning representations by
back-propagating errors. Nature 323, 6088 (1986), 533–536.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A.
Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. 2015. ImageNet large scale visual
recognition challenge. International Journal of Computer Vision 115, 3 (2015), 211–
252.

D. Silver, A. Huang, and C. J. Maddison. 2016. Mastering the game of Go with deep
neural networks and tree search. Nature 529, 7587 (2016), 484–489.

K. Simonyan and A. Zisserman. 2014. Very deep convolutional networks for large-
scale image recognition. CoRR abs/1409.1556 (2014).

A. A. Soltani, H. Huang, J. Wu, T. Kulkarni, and J. Tenenbaum. 2017. Synthesizing 3D
shapes via modeling multi-view depth maps and silhouettes with deep generative
networks. In Proc. CVPR 2017.

S. Strassmann. 1986. Hairy brushes. In Proc. ACM SIGGRAPH 1986, Vol. 20. 225–232.
Z. Sun, L. Jin, Z. Xie, Z. Feng, and S. Zhang. 2016. Convolutional multi-directional

recurrent network for offline handwritten text recognition. In 2016 15th Interna-
tional Conference on Frontiers in Handwriting Recognition (ICFHR). 240–245.

R. Suveeranont and T. Igarashi. 2010. Example-based automatic font generation. In
Proc. Smart Graphics. 127–138.

Y. Tian. 2016. ReWrite. Retrieved from https://github.com/kaonashi-tyc/Rewrite/.
Y. Tian. 2017. ReWrite. Retrieved from https://github.com/kaonashi-tyc/zi2zi/.
Y. Wang, H. Wang, C. Pan, and L. Fang. 2008. Style preserving Chinese character

synthesis based on hierarchical representation of character. In Proc. ICASSP 2008.
1097–1100.

Z. Wang and Y. Pang. 1991. A computer calligraphy system CCCS. Journal of Computer
Aided Design and Computer Graphics 3, 1 (1991), 35–40 (In Chinese).

S. T. Wong, H. Leung, and H. H. S. Ip. 2008. Model-based analysis of Chinese calligra-
phy images. Computer Vision and Image Understanding 109, 1 (2008), 69–85.

W. Xia and L. Jin. 2009. A Kai style calligraphic beautification method for handwriting
chinese character. In Proc. ICDAR 2009. 798–802.

S. Xu, H. Jiang, T. Jin, F. Lau, and Y. Pan. 2008. Automatic facsimile of Chinese calli-
graphic writings. In Computer Graphics Forum, Vol. 27. 1879–1886.

S. Xu, H. Jiang, F. C. M. Lau, and Y. Pan. 2007. An intelligent system for Chinese
calligraphy. In Proc. The National Conference on Artificial Intelligence, Vol. 22. 1578.

S. Xu, T. Jin, H. Jiang, and F. C. M. Lau. 2009. Automatic generation of personal chinese
handwriting by capturing the characteristics of personal handwriting. In Proc.
IAAI 2009.

S. Xu, F. Lau, F. Tang, and Y. Pan. 2003. Advanced design for a realistic virtual brush.
In Computer Graphics Forum, Vol. 22. 533–542.

S. Xu, F. C. M. Lau, W. K. Cheung, and Y. Pan. 2005. Automatic generation of artistic
Chinese calligraphy. IEEE Intelligent Systems 20, 3 (2005), 32–39.

T. Yi, Z. Lian, Y. Tang, and J. Xiao. 2014. A data-driven personalized digital ink for
Chinese characters. In Proc. MultiMedia Modeling 2014. 254–265.

K. Yu, J. Wu, and Y. Zhuang. 2009. Style-consistency calligraphy synthesis system in
digital library. In Proc. the 9th ACM/IEEE-CS Joint Conference on Digital Libraries.
145–152.

Z. Zhang, C. Zhang, W. Shen, C. Yao, W. Liu, and X. Bai. 2016. Multi-oriented text
detection with fully convolutional networks. In Proc. CVPR 2016. 4159–4167.

B. Zhou, W. Wang, and Z. Chen. 2011. Easy generation of personal chinese handwrit-
ten fonts. In Proc. ICME 2011. 1–6.

C. L. Zitnick. 2013. Handwriting beautification using token means. In Proc. ACM SIG-
GRAPH 2013.

Received June 2017; revised September 2018; accepted September 2018

ACM Transactions on Graphics, Vol. 38, No. 1, Article 6. Publication date: December 2018.

https://github.com/kaonashi-tyc/Rewrite/
https://github.com/kaonashi-tyc/zi2zi/

