
Graphics Hardware (2006)
M. Olano, P. Slusallek (Editors)

Efficient Video Decoding on GPUs by Point Based Rendering

Bo Han and Bingfeng Zhou

National Engineering Research Center for New Technologies in Electronic Publishing
Institute of Computer Science and Technology

Peking University, Beijing, P.R.China

Abstract

To accelerate computation intensive video decoding tasks, we present a novel framework to offload most decod-

ing operations to current GPUs. Our method is based on rendering graphics points and suitable for block-based

video standards. By representing video blocks as graphics points, we achieve great flexibility and high paral-

lelism to utilize the GPU’s pipelined stream processing architecture. The computational resources within texture

units and blending units are also exploited to facilitate computations. We propose a high performance imple-

mentation of IDCT on GPUs, which efficiently excludes most zero-value coefficients to save the bandwidth and

the computations. Compared with the existing quad-based representation, our point based implementation of MC

greatly reduces data transfer and redundancy. We have demonstrated the efficiency of our proposed framework by

a MPEG-2 decoder. Our results indicate a significant improvement over prior CPU and GPU solutions.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Graphics hardware

1. Introduction

Digital video applications have become an essential compo-
nent of our daily lives, ranging form high-definition televi-
sions to multimedia mobile devices. For most users, efficient
video decoding is their most concern. But advanced video
compression techniques adopted in current video standards
make the decoding process one of the most computational
demanding tasks. The popular high definition (HD) videos
and the new video standards propose challenges to current
CPUs for both intensive computations and huge volumes of
data. Therefore, a means should be found to offload some
decoding tasks from CPUs to other sub-systems.

Graphics cards have been used to assist video decoding
over the last decade. First, video overlay was introduced to
handle expensive color space conversion. Then, dedicated
decoding hardware emerged on PCs and has been widely
adopted on today’s commodity graphics chips due to the well
defined DirectX Video Acceleration(DXVA) specification.
Unfortunately, most of them are built on hard-wired circuits
only for certain specific video standards (most for MPEG-2
playback). Recently, graphics vendors have began to inte-
grate programmable video-processing engines in their prod-
ucts, such as nVidia’s PureVideo and ATI’s Avivo. The en-
gines are built on underlying SIMD vector processors(VPs)

designed specifically for video algorithms. However, they
cost additional transistors and are independent from the tra-
ditional 3D graphics hardware. Until now these VPs still lack
a high level programming interface to release the computa-
tional power.

Driven by interactive 3D graphics applications, commod-
ity graphics hardware has evolved into a powerful and flex-
ible graphics processor , known as GPUs. Their perfor-
mance and functionalities have made GPUs attractive as co-
processors for various general-purpose computation prob-
lems [OLG∗05]. Architecturally, GPUs are highly parallel
streaming processors optimized for vector operations, which
is similar to some media processors [ORK∗02] [JL05]. Due
to this facts, it should be possible to map the video coding
algorithms on GPUs, and we expect such a solution can have
several advantages. First, the well established graphics APIs
and high level shader languages can provide a convenient
programming interface. Therefore, the implementation can
be independent of underlying hardware and platforms. Sec-
ondly, the higher performance growth rate over Moore’s law
and increasingly enhanced functionalities make GPUs more
promising. Thirdly, a unified multimedia processing subsys-
tem, capable of handling different types multimedia con-
tents, could be implemented on GPUs, which can achieve

c© The Eurographics Association 2006.



B.Han & B.Zhou / Efficient Video Decoding on GPUs by Point Based Rendering

higher utilization of hardware resources and is specially at-
tractive for mobile devices.

Since GPUs are specially designed for graphics opera-
tions, it is hard to directly map the complex and branchy
video decoding algorithms onto the graphics pipeline. To-
day’s video standards share a similar block/macroblock
structure. Each block has its own parameters and character-
istics, which makes the computation not efficient in a sin-
gle quad-texture used by traditional GPGPU applications.
Recently some researchers have began to exploit GPUs to
implement partial video/image decoding process [SGL∗05]
[FSLC05] [HL05]. They adopt the texture-based GPGPU
model and demonstrate the feasibilities, but the insignificant
performance speedup makes them not attractive enough in a
practical real-time decoder.

The main contributions of this paper are concluded as fol-
lows. First, we propose a novel GPU-accelerated video de-
coding framework based on rendering graphics points. By
mapping video blocks to points, we transform decoding op-
erations into highly parallel graphics tasks. Our point-based
block representation greatly reduces the data transfer and re-
dundancy. Secondly, we present a high performance IDCT
implementation of the straightforward basis-image combi-
nation approach on GPUs, which excludes most zero co-
efficients and fully utilizes the graphics pipeline for higher
efficiency. It is specially suitable for decoding highly com-
pressed videos and images. Thirdly, our study demonstrate
the GPU’s great potential capabilities to perform video cod-
ing algorithms. Some discussions about modifications on
GPUs are given and expected to improve the performance
for generic media processing.

The rest of the paper is organized as follows. Section
2 gives a brief survey on related works. Section 3 high-
lights some characteristics of a typical block-based video de-
coder to facilitate understanding of our implementation. We
present details of our point-based decoding methods in sec-
tion 4 and evaluate our methods on aspects of performance
and visual quality in section 5. Section 6 and 7 gives the dis-
cussion and concludes the paper.

2. Related Works

In this section we give a brief overview of previous works
on using GPUs for video coding/processing and highlight
several related point based applications.

In the area of video processing, GPUs have been widely
used to render or post process video pictures such as fil-
tering, composition, visual effects, and color space con-
version(CSC) [App05] [DNVRH∗05] . Moreover, Ben et
al. [CCLW05] gave the comparison and analysis of FPGAs
and GPUs in their use for video processing, which indi-
cates GPUs can offer a viable solution but fall down on ap-
plications with high memory accesses, such as 2D convo-
lution in a big size. For the low level video coding algo-

rithms, Shen et al. [SGL∗05] first put forward to use generic
GPUs to accelerate video decoding. By using small quads to
represent video blocks, they move the whole motion com-
pensation feedback loop and the CSC to the GPU, thus
leading to a considerable performance speedup. Kelly and
Kokaram [KK04] proposed to use texture bilinear filtering
units on the GPU for fast image interpolation and combined
it with motion estimation. Then, two DCT/IDCT methods
on GPUs [FSLC05] [Nvi05] were proposed; they are based
on direct matrix multiplication and the JPEG ANN fast al-
gorithms respectively. The performance of the former one is
higher due to its regular memory accesses. Both two meth-
ods can achieve comparable performance to the optimized
CPU implementation. However, in practice the expensive
floating point texture updating and unpacking can greatly
hamper the overall performance, which has been addressed
in the recent study of [HL05]. In that paper, Hirvonen and
Leppänen implemented a GPU-based H.263 decoder based
on similar techniques with the previous works. They demon-
strated that current GPUs are capable of handling all the pro-
cessing stages of H.263 video decoder except serial variable
length decoding. However, their work mainly focuses on the
feasibility and concerns a little about the performance.

In terms of graphics points, due to the simplicity and su-
perior flexibility, point sets have became increasingly attrac-
tive as an alternative surface representation as well as for
processing of complex 3D models [KB04]. Our work in this
paper is mainly inspired by its advantages shown in large
particle systems [KKKW05] [KSW04]. In addition, Krüger
et al. [KW03] also introduce a special case of using points
to perform linear algebra operations on sparse random ma-
trices. They use sets of vertices to render the matrix values at
the correct position, which exploits the sparseness and saves
a significant amount of GPU memory and operations.

3. Characteristics of Decoding Modules

In this section we give an overview of a typical block-based
video decoder and analyze its characteristics to facilitate un-
derstanding of our implementation on the GPU.

Today’s major video standards incorporate block-based
transform coding and motion compensation techniques to
exploit both the spatial and the temporal redundancy of a
video sequence. The macroblock, corresponding to a 16×
16-pixel region of a frame, is typically the basic unit for mo-
tion compensation. It is usually organized with four 8× 8
luminance sample blocks and two chrominance blocks used
for transform coding which is typically the discrete cosine
transform (DCT). A block diagram of a standard video de-
coder is shown in Figure 1.

Each decoding module has its own characteristics. In gen-
eral, variable length decoding (VLD) is a sequential bit-wise
process and is the only functional module where GPUs can
not offer any advantage. The following inverse zigzag scan

c© The Eurographics Association 2006.



B.Han & B.Zhou / Efficient Video Decoding on GPUs by Point Based Rendering

MC
Frame

Buffers+

Display

GPUCPU
bit stream

reference frames

IZS IDCTIQVLD CSC

motion

vectors

Figure 1: The architecture of a typical decoder for block

based video standards. The CSC module is moved to GPUs

because nearly all graphics hardware have built-in support

for YCrCb-RGB conversion.

(IZS), inverse DCT (IDCT) and inverse quantization (IQ)
target on each transformed block; the parallelism among
each block and its elements makes these operations feasi-
ble to implement on GPUs. Moreover, due to the excellent
decorrelation and energy compaction properties of DCT and
the lossy quantization, the block often has only a few non-
zero DCT coefficients in the low frequency zone. Motion
compensation (MC) is a macroblock level operation that re-
trieves the prediction blocks from the reference pictures ac-
cording to motion vectors and adds the residual signal on the
prediction to form the final result. It is essentially series of
memory read-write operations along with some arithmetic
computations for interpolation, combination and saturation,
which fits well with the GPU’s texture fetch scheme and the
fragment processing model. Finally, color space conversion
(CSC) is just a per-pixel vector-matrix multiplication. In the
following, we will give more details on IDCT and MC.

IDCT is typically computation intensive. The action of the
2D IDCT can be described in terms of transform matrices:
x = T T XT . where X is a matrix of DCT coefficients, T is
the DCT transform matrix and T T is its transpose. Many
fast algorithms have been extensively studied. Most of them
adopt the row-column decomposition and utilize the sym-
metry property of transform matrix T. In this way 2D IDCT
shares the same architecture with DCT and is performed in
two 1D IDCT passes, which is also adopted by two prior
GPU implementations [FSLC05] [Nvi05]. In this study we
highlight the basis image linear combination method. Due
to the fact that the DCT coefficient specifies the contribu-
tion of the particular basis image, the 2D image block can be
reconstructed by combining all basis images with their cor-
responding DCT coefficients. The process is described as:

x = T
T

XT =
N

∑
u=0

N

∑
v=0

X(u,v)[T (u)T
T (v)] (1)

where X(u,v) is the coefficient matrix entry in uth row and
the vth column. Its corresponding basis image is the outer
product of the column vector T (u)T and the row vector T (v).
The process is inherently parallel on each DCT coefficient

and can directly omit zero values to utilize the sparseness
property of DCT matrix X , which is quite suitable for the
GPU’s stream processing architecture. In addition, all the ba-
sis images can be pre-calculated and easily be represented as
a combined texture, as shown in Figure 3.

Motion compensation aims to exploit the temporal corre-
lation between neighboring frames. The best match blocks
in the reference frames is simply indicated by a motion vec-
tor. For higher coding efficiency, some techniques have been
developed for better prediction at the cost of higher com-
putational complexity, such as bidirectional prediction and
sub-pixel precision prediction. The sub-pixel precision is
achieved by interpolation, thus the filtering hardware of tex-
ture units on GPUs can be utilized for acceleration.

4. Point Based Video Decoding on GPU

In this section we first analyze the efficiency of our point
based representation for video blocks. Then, we present our
decoding framework and give the implementation of each
decoding module. For the sake of simplicity the implemen-
tations are illustrated by a MPEG-2 decoder with OpenGL,
but the general ideas also apply to other video standards.

4.1. Mapping Video Blocks to Graphics Points

Graphics points offer an efficient representation for a video
block. A point primitive is only a single vertex along with
associated attributes such as position, size and texture coor-
dinates. On the other hand, each video macroblock possesses
its own position, motion vectors, prediction types, etc; each
of its transformed blocks has only a few nonzero values due
to the sparseness property of quantized DCT coefficients.
Since the point primitive can have more than ten 4D-vector
attributes on current GPUs, it is practical to store the block-
wise parameters and DCT coefficients into the attributes of a
point. In addition, a point primitive with size n is rasterized
to a n×n fragment block. The size can be globally specified
by graphics APIs or dynamically manipulated within vertex
programs, which fits well with various video block size. Fur-
thermore, as points are naturally a set of vertices, the vertex
processors can be easily utilized to preprocess the block in-
formation within the attributes of points. Moreover, after the
rasterization we can exactly access each fragment covered
by a point primitive with a fragment program by means of
the texture coordinates generated by the point sprite exten-
sion and the window position semantics(WPOS). In this way,
the powerful fragment processors can be utilized for per-
pixel texture fetching and arithmetic computations. There-
fore, we can fully utilize the graphics pipeline to achieve the
block-level parallel decoding.

The GPU’s nature of high parallelism requires that it’s
feeding elements are highly regular and well batched. In con-
trast, various video blocks with different types, parameters
and coding modes always lead to quite different operations.

c© The Eurographics Association 2006.



B.Han & B.Zhou / Efficient Video Decoding on GPUs by Point Based Rendering

MC

Display

bit stream

VLD

CSC

VAs

VAs

IQ IDCT

Y

U

YUV

Basis

images

Tex

V

GPU
CPU

IDCT Buffer

(RGBAF16)

MC Buffers

(RGB8)

Coefficient

points

MB points

VAs :vertex arrays

Figure 2: Our point based decoding architecture. The graph

also illustrates different texture layouts and formats for

IDCT and MC buffers.

Considering relatively expensive branch penalty on current
GPUs, we move the flow-control decision up to the CPU and
classify points into different vertex arrays in advance.

4.2. Overview of Proposed Architecture

In our implementations, there are two general categories of
points: coefficient points for IDCT and macroblock(MB)
points for MC. For MB points, motion vectors are the main
attributes. This point set can be further subdivided according
to frame/field prediction and intra/inter mode for better per-
formance. For coefficient points, the main challenge comes
from the irregular distribution of DCT coefficients within a
video block. To create vertex arrays, we need apply a regular
pattern to generate points. Notice that, after VLD, the DCT
coefficients of a block are arranged into a 1D array following
the zigzag scan order that provides a more compact repre-
sentation. We simply group every four coefficients into a 4D
vector through the array and assign each vector to a point.
For the sparseness property and the compact representation,
in general only 1–3 points are generated for each block. The
solution is not optimal but practical, later in IDCT we further
benefit from the SIMD vector operations.

Our point-based method has several advantages over the
existing quad-based and the texture-based representation.

• Transfer cost for coefficient uploading is greatly reduced
by culling most zero values.

• The data redundancy in four vertices of the quad-based
representation is avoided and the cost is reduced to 1/4.

• The block-level representation is much more flexible.
Non-coded blocks can be directly excluded.

• The vertex array can directly support integer data types
without clipping, such as short used in video codecs. No
needs for explicit data type or data range conversion on
the CPU or GPU compared with the texture.

• Both the vertex and fragment processors can be utilized to
balance the graphics pipeline for better performance.

Our proposed decoding architecture is depicted as Figure
2. We move most workloads to the GPU and left only the
variable length decoding and the point arranging to the CPU.
The decoding procedure has four steps. First, we generate
points for video blocks and classified them into the corre-
sponding vertex arrays. Then, we draw the coefficient points
to complete the inverse quantization and inverse DCT. After
that, the marcorblock points are rendered to finish motion
compensation. Finally, an additional pass is used to display
the MC off-screen buffer with color space conversion.

We use short integer data type for vertex arrays and 16-
bit floating-point (half ) for IDCT computations. The half
representation has the range of contiguous counting num-
bers [-2048,2048], which fits well with the precision of the
DCT coefficient. However, because the decimal parts are in-
troduced for sub-pixel prediction, the precision of half be-
comes insufficient for sampling high definition video frames.
So we use 32-bit floating-point for texture coordinates.

We use frame buffer objects (FBOs) and rectangle tex-
tures to implement our off-screen buffers. Although single
channel fp16 texture is enough for our IDCT buffer, in prac-
tice we choose RGBA16F format to enable 16-bit blending
of our GPU. To facilitate motion compensation and reduce
the internal bandwidth requirement, the reference frames are
stored in 8-bit RGB texture format, as shown in Figure 2.

4.3. Inverse Quantization

The inverse quantization (IQ) is essentially a multiplication
of the quantizer step size. The basic IQ operation is:

Xiq(u,v) = qp×QM(u,v)×Xq(u,v) (2)

where QM(u,v) is the quantization matrix entry. The quan-
tization parameter qp is a block-wise variable scale factor.

In our framework the IQ is actually the vertex processing
stage of the IDCT implementation. The related parameters
and information are prepared by the CPU and stored in the
attributes of points; the quantization matrix is loaded into
the const memory by uniform parameters. The Equation 2
is efficiently performed by vector multiplications. To reduce
transfer costs, we can pack the associated parameters into
compact bits and later use a vertex program to decompress.
All these additional operations on the vertex processors will
not cause any performance penalty because of the graph-
ics pipeline. However, the mismatch control in MPEG2/4,
which is aimed to minimize the error accumulation due to
IDCT mismatch between the decoder and encoder, is not
supported because it is not a point-independent operation
that requires the sum of all the coefficients.

4.4. Point Based IDCT

Our IDCT on GPUs are based on the fact that the 2-D image
data is given by the linear combination of basis images with

c© The Eurographics Association 2006.



B.Han & B.Zhou / Efficient Video Decoding on GPUs by Point Based Rendering

Figure 3: Schematic illustration of our point-based IDCT.

By rasterization IDCT is transformed to per-fragment vector

operations. Basis images are packed in a fp16 RGBA texture.

their respective DCT coefficients, as described in Equation
1. The process includes two steps: the scalar-matrix multipli-
cation and the matrix linear combination. In our implemen-
tation, we transform multiplications into per-fragment op-
erations through rasterization and combine the results from
separate points by blending. Figure 3 gives an overview of
the procedure.

The basis images are pre-arranged into a single texture.
Considering the precision and performance, we choose RG-
BAF16 format for our basis-image texture, as shown in the
right of Figure 2. The basis images are arranged according to
our point-generation pattern. Four basis images correspond-
ing to a certain 4D coefficient vector are packed into a 8×8
RGBA texture block.

The procedure is described in details as follows.

1. A vertex program locates the coordinates of a corre-
sponding basis-image texture block according to the co-
efficient vector’s information.

2. The fragments that cover a block inherit the point’s at-
tributes by rasterization. In this way, we transform scalar-
matrix multiplications into per-fragment operations.

3. The local coordinates within the block are generated by
the point sprite extension. Combining with the location of
the texture block, we can exactly access the correspond-
ing basis-image texel for each fragment.

4. A fragment program fetches the texels and performs a
vector dot product to efficiently accomplish the multipli-
cations and the combination for four individual coeffi-
cients.

5. By enabling blending and setting to add function, the re-
sults from the separate points of one video block are ac-
cumulated in the IDCT off-screen buffer.

Compared with the texture-based methods, our point-
based IDCT has several advantages. First, only a one-pass
rendering is needed to perform both IQ and IDCT. Mean-
while, the inverse scan is completely removed. Secondly,
most zero coefficients have been culled to save computations
and much less texture fetching and arithmetic operations in

fragment programs are required. Thirdly, the visual quality
and computational complexity can be controlled by render-
ing only a part of coefficient points. Finally, the output IDCT
off-screen buffer can be directly used by the following mo-
tion compensation. No needs for extra unpacking operations.

4.5. Point Based Motion Compensation

Motion compensation is implemented by rendering marcor-
block points. Motion vectors (MVs) are pre-processed in
a vertex program according to their precisions. Then, each
fragment within the macroblock inherits the MVs by raster-
ization. In a fragment program, we offset the window po-
sition coordinates (WPOS) with MVs to sample the refer-
ence pictures in the MC buffers and fetch the residual data
in the IDCT buffer. The combined results are saturated to an
off-screen buffer for further processing. Compared with the
quad-based method, our point-based MC greatly reduces the
number of vertices and easily utilizes the vertex processors.

If the bilinear interpolation is adopted for the sub-pixel
MC, such as MPEG2, we can further exploit the texture bi-
linear filtering hardware to facilitate the processing. Since
the decimal parts of the texture coordinates directly decide
how to interpolate four neighboring pixels, we use a ver-
tex program to generate the proper decimal parts for MVs
according to their precisions. When the fragment program
fetches the texels, the texture unit automatically performs the
interpolation, which greatly simplifies the fragment program
by removing the branches and the complex flow-control.
However, when handling the interlaced frame structure, we
have to explicitly fetch the texels in the vertical direction
and perform the interpolation in the fragment program. The
parities of WPOS are used to choose the corresponding field-
prediction MVs.

5. Evaluation and Analysis

To verify the effectiveness of our proposed method, we im-
plement a MPEG-2 video decoder as a practical example.
We compare the decoder’s performance against other CPU-
based and GPU-based solutions. All the experiments were
run on a 2.8G Pentium 4 with an Nvidia Geforce 6800
GT. Our programs are implemented with OpenGL and Cg
1.4. The competitive CPU decoder is based on Sklmpeg4
[Skl05], which have been highly optimized with the CPU
SIMD assembly codes.

5.1. Decoding Performance

Five different implementations are presented to evaluate the
performance.

• CPU-Only. All the work is done on the CPU including the
color space conversion (CSC).

• CPU-noCSC. The CSC is moved to the GPU, which is
common in the practical decoders.

c© The Eurographics Association 2006.



B.Han & B.Zhou / Efficient Video Decoding on GPUs by Point Based Rendering

0

50

100

150

200

250

300

lor shuttle australia 007 clip crawford

F
ra

m
e
 R

a
te

 (
in

 f
p

s
)

CPU-Only

CPU-noCSC

GPU-Texture

GPU-Vertex

GPU-Point

Figure 4: Comparison of decoding performance. Our pro-

posed solution significantly outperform the others.

• GPU-Texture. We implement the IDCT using direct ma-
trix multiplications which is similar to the SMMCM
method proposed in [FSLC05]. The DCT coefficients are
transformed from short to half on the CPU and stored as
a RGBA fp16 texture. The IQ is done on the CPU and the
MC is our point-based method.

• GPU-Vertex. Very similar to the GPU-Texture, but we use
vertices to represent sparse coefficients and render them
at the correct position in the source buffer of the texture-
based IDCT. The idea comes from handling the sparse
random matrices as described in [KW03]. We apply it
to sparse DCT coefficients to investigate how the trans-
fer cost impact the overall performance.

• GPU-Point. It is our proposed method. Only the VLD is
done by the CPU.

To get additional efficiency, we use pixel buffer objects
(PBOs) to update textures and utilize early Z-culling [MS04]
to skip non-coded video blocks for the texture-based IDCT.
The early Z-culling is implemented through a block-coding-
indicator texture. Before IDCT, we use a fragment pro-
gram to sample the texture and modify the Z-buffer through
DEPTH semantics.

Clip Resolution
Bit-Rate Frame
(Mbps) Structure

lor 720×480@29.97 4.6 vbr progressive
shuttle 1280×720@59.94 15.5 vbr progressive

australia 1440×1088@25.00 12.3 cbr interlaced
007 1920×1080@29.97 10.9 vbr progressive

crawford 1920×1080@29.97 30.0 cbr interlaced

Table 1: Characteristics of five different test clips.

We choose five different MPEG-2 video clips to evaluate
the performance, as shown in Table 1.The clip lor (Lord of
the Ring) and 007 (Die another day) are commercial DVD
and HD movie clips respectively. The others are captured

0

2

4

6

8

10

12

14

16

18

VLD&Others IDCT MC CSC&Disp

T
im

e
 c

o
s
t 

(m
s
)

CPU-Only

CPU-noCSC

GPU-Texture

GPU-Vertex

GPU-Point

Figure 5: Time costs of main decoding modules . Measured

on the clip australia. The IDCT and the CSC&Disp take into

account the data transfer costs for the GPU-based and CPU-

based solutions respectively.

from HDTV or taken with HD cameras, which are aviable
through links of the clip list in [VHD05].

Our proposed point-based method significantly outper-
forms the prior optimized CPU and GPU based implementa-
tions, as shown in Figure 4. Most frame rates exceed 120fps,
including the 1080p clip. Our results indicate a factor of
1.7-2.4 performance speedup over the second-fastest GPU-
Vertex. The performance of the clips strongly depends on the
bit-rate; the interlaced frame structure also leads to perfor-
mance penalties due to more texel fetching and arithmetic
operations. Therefore, crawford has the lowest frame rate.
The speedup for lor is not obvious, which can be explained
by its high frame-rate and low resolutions. The former in-
creases the costs for state switching in OpenGL and Cg; the
latter results in smaller working data set which is more suit-
able for the CPU’s architecture.

To understand the various performances of our five im-
plementations, we analyze the time costs of decoding mod-
ules. The execution time on the GPU is measured by putting
glFinish at the end of the rendering. We take the clip aus-

tralia as an example and give the statistics in Figure 5. Be-
cause the CPU and GPU are pipelined to work in parallel, the
final frame rate is actually determined by the most time con-
suming stage. For three GPU-based implementations Figure
5 indicates that the GPU related operations cause the bottle-
neck. Therefore, the performance improvement of the GPU-
Vertex over the GPU-Texture is determined only by their
IDCT costs, which explains why the speedup is not signifi-
cant. In terms of MC, our results demonstrate the efficiency
of our point-based method and indicate a factor of 1.8–3.1
performance improvement over the CPU. In the terms of
IDCT , we observe our method offers great advantages over
the other GPU and CPU implementations. It is nearly 1.5
times faster than the CPU SSE2 IDCT and 3–5 times faster
than the texture-based GPU-IDCT.

c© The Eurographics Association 2006.



B.Han & B.Zhou / Efficient Video Decoding on GPUs by Point Based Rendering

Solution
Transfer time (ms) IDCT time (ms)

I P B I P B
G-Texture 7.06 7.13 7.18 9.98 8.87 7.06
G-Vertex 4.76 3.12 1.64 10.06 9.12 7.42
G-Point 0 0 0 6.51 4.20 2.26
CPU-SSE2 0 0 0 7.12 5.97 3.52

Table 2: Comparison of time costs (australia) according to

frame types. Our point-based IDCT incorporates the data

transfer and IQ, so here we set the transfer cost to zero.

We highlight more details of IDCT in our implementa-
tions, see Table 2. Compared with the texture-based coef-
ficient uploading, our point-based representation is flexible
enough to exclude zero values. In addition, the less IDCT
time costs of P and B frames from the texture-based IDCT
indicate our early Z-culling is effective to skip the non-coded
blocks. But their performance is still much lower than the
optimized rival on the CPU. For our point-based IDCT, al-
though it incorporates the IQ and data transfer, it is still much
faster than the CPU . We also observe the time cost is directly
proportional to the point number, which agrees well with the
prior theoretical analysis.

Our method is fragment processing bound, which was
identified by our overclock experiments on the GPU. A
higher core frequency from 350M to 400M leads to a frame
rate speedup form 124 to 133 for the clip australia, while a
higher memory frequency takes neglectable effect. This of-
fers our method an additional advantage because compared
with the memory bandwidth, the fragment processing power
is much easilier improved by more fragment processors and
higher frequency.

5.2. Visual Quality

Visual quality is another important issue to evaluate a de-
coder. To objectively measure the visual quality, we en-
coded three representative MPEG test sequence and adopted
PSNR(Y component) to compare the decoded frames from
our GPU-Point and the CPU decoders. Each sequence, com-
posed of 300 CIF(352 × 288) frames, is encoded by the
MPEG-2 reference software (TM5) with a GOP size 15 at
the bit rate of 2.0 Mbps. Their PSNR results are nearly iden-
tical , here we give the average differences in Table 3 accord-
ing to different frame types.

The results show very slight quality degradation from our
point-based solution. This may be explained by the follow-
ing three aspects: the lack of mismatch control in the IQ,
the low precision of half for IDCT computations and the
rounding issues of the bilinear filtering of the texture unit.
As we notice that the inter frames (P and B) have a lit-
tle higher degradations than the intra frames (I), we infer
that the rounding control for sub-pixel interpolations in mo-
tion compensation could be the main factor to impact the

Sequence
Average PSNR Degradation (db)

PSNR (db) I P B
stefan 31.722 0.006 0.008 0.021

mobilecal 31.134 0.003 0.010 0.030
foreman 37.245 -0.011 0.027 0.055

Table 3: Quality degradation of our GPU-Point decoder

compared with the CPU decoder. All the degradation re-

sults are less than 0.06 db and indicate our method is nearly

degradation free.

visual quality. In addition, no drift-error accumulation was
observed for the GOP structure with 15 frames.

6. Discussion

In this section, we discuss limitations of our proposed
method and address some issues of GPUs for generic me-
dia/video processing.

Our method for video decoding has several limitations.
First, our IDCT implementation requires fp16 blending to
ensure the precision and high pixel fill-rate to ensure the per-
formance, which challenges most of today’s low-end GPUs.
But with the popularity of HDR and the fast evolution of
hardware we believe it can be solved in the near future. Sec-
ondly, the point primitive constrains its shape to be a square,
which would cause troubles when handling some non-square
motion compensation(such as 16x8, 8x4). One possible so-
lution is to split the rectangular region into two adjacent
squares. Thirdly, advanced non-bilinear sub-pixel interpola-
tions can not directly benefit from the current texture units,
In that case explicit texture fetching and preprocessing are
required. Finally, the deblocking filter and the intra predic-
tion in some advanced video standards are not concerned
in this study. High correlations of blocks in those operations
make it a big challenge to implement them efficiently on cur-
rent graphics hardware.

Based on the performance of our GPU decoder and lots of
previous GPGPU applications, such as image and signal pro-
cessing [OLG∗05], we can expect that the GPU can evolve
into a promising and powerful platform for a broad class of
media processing applications. Most of them fit well with
the stream processing model, but some applications feature
frequent memory accesses and data reuse, such as motion
estimation and high order filtering. However, according to
previous works [FSH04] [CCLW05], applications on GPUs
with high memory accesses always suffer in efficiency due to
the relatively low bandwidth connection between arithmetic
units and local memories. Including wider and closer caches
or register level blocking has been proposed to overcome
this issue [FSH04]. In addition, considering that texture units
on current GPUs have considerable computational resources
to perform bilinear, trilinear or anisotropic filtering and ad-
vanced filter kernels can often dissected into groups of bilin-

c© The Eurographics Association 2006.



B.Han & B.Zhou / Efficient Video Decoding on GPUs by Point Based Rendering

ear footprints, it would be possible to enhance texture units
to more flexible configurable or programmable units, which
could work in parallel with arithmetic units and directly im-
prove the performance of filtering related operations. Some
GPGPU operations, such as sum and reduction, would also
benefit from it.

7. Conclusions and Future Work

In this paper, we have presented a novel point-based frame-
work for efficient video decoding on GPUs. We analyzed the
characteristics of decoding process and proposed the point-
based representation for video blocks, which fits well with
the GPU’s stream processing model. Furthermore, our new
IDCT implementation efficiently removes most zero-value
coefficients to save the bandwidth and computation. It fully
takes advantage of the graphics pipeline and leads to much
less memory accesses and arithmetic operations. Moreover,
Our motion compensation reduces data redundancy and uti-
lize texture units to facilitate sub-pixel interpolations. We
have demonstrated the efficiency of our proposed framework
by a MPEG-2 GPU decoder. Our results indicate a signifi-
cant improvement over prior CPU and GPU solutions.

There are many avenues for future work. We will evalu-
ate point generation patterns to improve our IDCT perfor-
mance and investigate new capabilities of GPUs for video
coding operations. We also expect to apply our method to
more video standards and even the future HDR video. Fur-
thermore, we plan to utilize GPUs to accelerate complex and
expensive motion estimation in the video encoding process.

References

[App05] Apple core image&video libary, 2005. http://

www.apple.com/macosx/features/coreimage.

[CCLW05] COPE B., CHEUNG P. Y. K., LUK W., WITT

S.: Have gpus made fpgas redundant in the field of
video processing? In Proceedings of the 2005 IEEE Inter-

national Conference on Field-Programmable Technology

(2005), pp. 111–118.

[DNVRH∗05] DE NEVE W., VAN RIJSSELBERGEN D.,
HOLLEMEERSCH C., DE COCK J., NOTEBAERT S.,
VAN DE WALLE R.: Gpu-assisted decoding of video sam-
ples represented in the ycocg-r color space. In Proceed-

ings of the 13th ACM International Conference on Multi-

media (Singapore, 11 2005), pp. 447–450.

[FSH04] FATAHALIAN K., SUGERMAN J., HANRAHAN

P.: Understanding the efficiency of gpu algorithms for
matrix-matrix multiplication. In Proceedings of the ACM

SIGGRAPH/Eurographics conference on Graphics hard-

ware (2004), pp. 133–137.

[FSLC05] FANG B., SHEN G., LI S., CHEN H.: Tech-
niques for efficeitne dct/idct implementation on generic
gpu. In Proceedings of IEEE International Symposium on

Circuits and Systems (2005), pp. 1126–1129.

[HL05] HIRVONEN A., LEPPÄNEN T.: H.263 video de-
coding on programmable graphics hardware. In Process-

ing of IEEE International Symoposium on Signal Process-

ing and Information Technology (2005), pp. 902–907.

[JL05] J. LEE N. VIJAYKRISHNAN M. J. I.: High-
performance array processor for video decoding. In Pro-

ceedings of the VLSI Design Conference (January 2005).

[KB04] KOBBELT L., BOTSCH M.: A survey of point-
based techniques in computer graphics. Computers &

Graphics 28, 6 (December 2004), 801–814.

[KK04] KELLY F., KOKARAM A.: Fast image interpola-
tion for motion estimation using graphics hardware. In
Proceedings of the IS&T/SPIE Electronic Imaging. (May
2004), pp. 184–194.

[KKKW05] KRÜGER J., KIPFER P., KONDRATIEVA P.,
WESTERMANN R.: A particle system for interactive visu-
alization of 3d flows. IEEE Transactions on Visualization

and Computer Graphics 11, 6 (Nov/Dec 2005), 744–756.

[KSW04] KIPFER P., SEGAL M., WESTERMANN R.:
Uberflow: a gpu-based particle engine. In HWWS ’04:

Proceedings of the ACM SIGGRAPH/Eurographics con-

ference on Graphics hardware (New York, NY, USA,
2004), ACM Press, pp. 115–122.

[KW03] KRÜGER J., WESTERMANN R.: Linear alge-
bra operators for gpu implementation of numerical al-
gorithms. ACM Transactions on Graphics 22, 3 (2003),
908–916.

[MS04] MITCHELL J. L., SANDER P. V.: Applications
of explicit early-z culling. Real-Time Shading Course,

SIGGRAPH (2004).

[Nvi05] Nvidia SDK code samples: discrete cosine trans-
form, 2005. http://developer.nvidia.com/object/
sdk_home.html.

[OLG∗05] OWENS J. D., LUEBKE D., GOVINDARAJU

N., HARRIS M., KRĹŹGER J., LEFOHN A. E., PUR-
CELL T. J.: A survey of general-purpose computation on
graphics hardware. In Eurographics 2005, State of the Art

Reports (Aug. 2005), pp. 21–51.

[ORK∗02] OWENS J. D., RIXNER S., KAPASI U. J.,
MATTSON P., TOWLES B., SEREBRIN B., DALLY W. J.:
Media processing applications on the imagine stream pro-
cessor. In Proceedings of the IEEE International Confer-

ence on Computer Design (Sept. 2002), pp. 295–302.

[SGL∗05] SHEN G., GAO G., LI S., SHUM H.-Y.,
ZHANG Y.-Q.: Accelerate video decoding with generic
gpu. IEEE Transactions on Circuits and Systems for Video

Technology 15 (May 2005), 685–693.

[Skl05] Skal’s MPEG4 codec, 2005. http://skal.

planet-d.net/coding/sklmp4.html.

[VHD05] High def forum: The offical hd video clip
list, 2005. http:http://www.highdefforum.com/

showthread.php?t=6537.

c© The Eurographics Association 2006.

http://www.apple.com/macosx/features/coreimage
http://developer.nvidia.com/object/sdk_home.html
http://skal.planet-d.net/coding/sklmp4.html
http:http://www.highdefforum.com/showthread.php?t=6537

