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Abstract. In this paper, we propose a novel sensor-fusion-based method
to eliminate errors of MEMS IMUs, and reconstruct trajectory of quadro-
tor drones. MEMS IMUs are widely equipped in quadrotor drones and
other mobile devices. Unfortunately, they carry a lot of inherent errors,
which cause poor results in trajectory reconstruction. To solve this prob-
lem, an error model for accelormeter signals in MEMS IMUs is estab-
lished. In this model, the error is composed of a bias component and a
noise component. First, a low-pass filter with downsampling is applied
to reduce the noise component. Then, the bias component is detected
and eliminated dynamically with the assistance of other sensors. Finally,
the trajectory of the drone is reconstructed through integration of the
calibrated accelormeter data. We apply our trajectory reconstruction
method on Parrot AR.Drone 2.0 which employs a low-cost MEMS IMU.
The experimental results prove its effectiveness. This method can theo-
retically be applied to any other mobile devices which are equipped with
MEMS IMUs.

Keywords: MEMS IMUs · Sensor fusion · Inertial navigation ·
Trajectory reconstruction

1 Introduction

As one kind of mobile devices, the quadrotor drone has the characteristics of
wide application, small size, flexible movement, and so on. A large amount of
methods have been proposed for the application of comsumer-level drones these
years. Trajectory reconstruction is one of the most important basis for drone
applications.

The trajectory reconstruction has a wide application in computer graphics.
The self-location information can provide important camera parameters, which
could be applied in 3-D reconstruction [1] or image-based rendering. It also
can be applied in self-localization and map building [2]. Additionally, the drone
cinematography could utilize reconstructed trajectory as virtual rail [3].

Methods based on IMU (inertial measurement unit) is one of options for
trajectory reconstruction. The position can be calculated through the second-
order integration of accelerometer signals in IMU Data [4].
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However, due to the character of MEMS, significant errors occur in measured
IMU data, especially low-cost MEMS IMU. Those errors usually take the form
of noise and bias [5].

A number of methods have been proposed to reduce errors in MEMS signals
[6– 8]. For instance, Kalman Filter is a common estimation approach. Usually,
through Kalman Filter, IMU data is combined with computer vision, GPS or
other sensors, which can also reconstruct trajectory directly or indirectly. How-
ever, the reconstruction results through Kalman Filter depends on the error-
staute estimation, which is estimated in advance. Such methods may fail, if the
error statue is estimated incorrectly.

Take those limitations into consideration, we focus on the trajectory recon-
struction based on IMU. An effective method is proposed to reduce errors in
MEMS sensors in this paper.

We establish an error model, which consists of the types of MEMS errors,
i.e., the noise and the bias. Different from traditional methods that eliminate
bias just once at the static beginning, we process the two components separately
and dynamically without highly depending on the priori error-state estimation.
For the noise component, errors are treated as high-frequency signals, which
can be reduced by a low-pass filter with downsampling. For the bias componet,
errors occur in a form of data drifting. Thus, we adopt a sensor-fusion method
to detect and eliminate the bias. We first detect the event timestamps with the
help of multiple auxiliary sensors. The accelerometer data is then segmented into
sections according to those timestamps, and the bias is corrected in each section.
After that, the calibrated data is obtained.

The pipeline of our method is as follows: First, IMU sensor data is collected
and preprocessed, including coordinate transformation between body frame and
inertial frame. Then, errors, both noise and bias, are eliminated according to
the established error model. Finally, the trajectory is reconstructed through the
second-order integration of calibrated accelerometer data. The effectiveness of
our method is proved by experimental results.

The main contributions of this paper include:

1. A novel method aiming to estimate errors in MEMS is proposed in this
paper. Errors in different types are eliminated seperately and dynamically.
This method relies less on priori error estimation.

2. The sensor-fusion-based bias elimination algorithm in our paper is highly
adaptive. The type of combined sensors is not limited to what we applied in
this paper. In fact, it can be extended to any other sensors.

3. Our method works effectively even on low-cost MEMS IMU which produces
more instable errors, while most previous work relies on MEMS IMU with
higher precision.

4. In theory, our method can be applied not only to quadrotor drones but also
to other mobile devices, as long as they are equipped with MEMS IMU.
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2 Related Work

2.1 Trajectory Reconstruction Method Based on Sensors

Plenty of sensors, equipped on mobile devices, can be used in trajectory recon-
struction. There are lots of trajectory reconstruction methods based on sensors,
such as follows:

Fig. 1. Raw accelerometer signals of 3 axes (X, Y and Z) collected from a static device.
The significant noise and data drifting in the signal will lead to wrong results in tra-
jectory reconstruction [30]. (Color figure online)

GPS-Based Localization. The principle of localization method based on GPS
is that, a GPS receiver monitors several satellites and solves equations to deter-
mine where the receiver is in real time. Due to the low accuracy and limitations
of GPS, many methods are raised to improve accuracy, such as D-GPS [9], aided
navigation [10] and so on. However, GPS is not available around large obstacles
such as tall buildings and tunnels [11], and thus this kind of method will be
invalid in many cases.

Visual Odometry. Visual odometry is a method to determine the position and
orientation of a robot by analyzing the associated camera images [12]. It is a
localization method based on computer vision. Lots of methods adopt camera in
trajectory reconstruction. The method in [13] locates two surveillance cameras
and simultaneously reconstructs object’s 3D trajectories. Silvatti et al. utilizes
submerged video cameras in an underwater 3D motion capture system to recon-
struct 3D trajectory [14]. Nevertheless, computer vision methods are not effective
in textureless environment usually, such as wide snowfield or dark night.

Wireless-Based Localization. Wireless-based localization is mainly applied
in indoor situations. There are many wireless devices. The most widely-used
wireless devices are Wi-Fi and Bluetooth [15,16]. A most common wireless local-
ization technique is called “fingerprinting” for getting position information [17].
One can calculate its location according to the magnitude of received signals from
several base stations. The inconvenience of these wireless approaches is that they
require base stations set up in advance in the scene. Hence, the Wi-Fi/Bluetooth
signal is not always available for most common situations.
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Ultrasonic Sensor/LIDAR-Based Localization. The principles of localiza-
tion through LIDAR [18] and ultrasonic sensors [19] are similar. They measure
the distance to a certain target by calculating time between when emit a pulse
and when receive echoes. Nonetheless, LIDAR is so expensive that most mobile
devices are not equipped with it, while the measuring range of ultrasonic sensors
is too limited to cover most area [20].

Inertial Navigation. Inertial navigation is to get one’s location through IMU
(inertial measurement unit). IMU is a combination of 3-axis accelerometers and
3-axis gyroscopes. It can measure the specific force and angular velocity of an
object. According to the work of Titterton and Weston [21], trajectory can be
reconstructed through the second-order integration of the accelerometer signals.
The attitude information could be obtained through gyroscopes, which assists
the accelerometer signals to be transformed from the body frame to the inertial
frame [22].

Some work studies how to utilize the IMU signals to reconstruct trajectory
[4]. For example, writing trajectory based on IMU is reconstructed through a
pen tip direction estimation method in the work of Toyozumi et al. [23]. An error
compensation method and a multi-axis dynamic switch developed by Wang et
al. to minimize the cumulative errors caused by sensors [24].

Because of the merits of MEMS IMU, such as low-cost, light weight and
small size, most mobile devices are equipped with MEMS IMU. But the main
disadvantage of the MEMS IMU is its low accuracy on account of errors [25].

Taking into account the advantages and disadvantages, MEMS IMU sig-
nals are employed as a main source of data for reconstructing trajectory in our
work. IMUs depend less on the environment. IMU-based trajectory reconstruc-
tion methods are quite practicle for MEMS IMU is commonly equipped in mobile
devices. However, it is impossible to reconstruct trajectory by IMU alone due to
the errors carried in MEMS IMU. Therefore, we propose a sensor-fusion-based
method to eliminate errors in MEMS IMU signals.

2.2 Methods to Calibrate IMU Signals

Recent advances in MEMS (Micro-Electro-Mechanical Systems) technique bring
possibility of producing small and light inertial navigation systems. On the other
hand, the main problem of MEMS devices is its low accuracy. The error, as illus-
trated in Fig. 1, is indicated by bias and noise in their measurements as elaborated
in the work of Woodman [5]. During trajectory reconstruction, the accelerometer
signals are integrated twice, which makes the error grow even rapidly.

Many researchers study on reducing errors caused by IMU devices. A zero
velocity compensation (ZVC) mechanism to reduce the accumulative errors of
IMUs proposed by Yang et al. [6]. Pedley applies linear least squares optimization
to compute the recalibration parameters from the available measurements to
reduce errors [7].

Some other methods adopt Kalman Filter to combine IMU with computer
vision to improve accuracy. For instance, a VISINAV algorithm is presented
to enable planetary landing, which utilizes an extended Kalman filter (EKF)
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to reduce errors [26]. Additionally, a state space model is applied to estimate
the navigation states in an extended Kalman filter [8]. However, the error-state
vector, which is estimated in advance, has a direct impact on the result, that is,
large deviation of error-state estimation leads to poor results.

Most of the works mentioned before do not aim at low-cost MEMS devices
which carry much more errors, while low-cost MEMS devices are commonly used
because of convenience.

Consequently, we focus on the trajectory reconstruction from low-cost MEMS
IMU in this paper. A type of quadrotor drone is taken as an example of mobile
devices. During the course, different error models are designed for different types
of errors, so that diverse errors can be eliminated in targeted ways.

IMU 
Signals

Integrate
Gyroscope Signals Attitude

information

Body frame to 
inertial frameAccelerometer 

Signals

Correct for 
gravity Integrate Integrate Location

information

Initial
velocity

Initial
position

1 2 3

Fig. 2. The principle of trajectory reconstruction based on IMU. In the figure, 1.
Accelerometer data in inertial frame; 2. Velocity calculated from accelerometer data;
3. Location information calculated from velocity.
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Fig. 3. The pipeline of our method: (1) Data collection and preprocessing; (2) Error
elimination according to error model; (3) Integration and trajectory reconstruction.

3 IMU-Based Trajectory Reconstruction

Trajectory can be reconstructed from IMU signals shown in Fig. 2 in ideal sta-
tus. The measured accelerometer data is transferred from the body frame to
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the inertial frame according to the attitude estimation calculated by gyroscope
signals. The accelerometer data is then corrected for gravity. Next, velocity is
obtained from the integration of the accelerometer data. Finally, trajectory is
reconstructed from the integration of the velocity, that is, the second-order inte-
gration of the accelerometer data [5].

However, inevitable errors exist in MEMS IMU signals. That’s why the tra-
jectory reconstruction cannot be directly calculated in such ideal way.

Thus, we propose a trajectory reconstruction method for quadrotor drones
in this paper, which utilizes the measurement of IMU and other sensors. The
pipeline of our method is illustrated in Fig. 3. It consists of three phases:

1. Sensor data collection and preprocess;
2. Error elimination on the basis of our error model;
3. Trajectory reconstruction through integration of calibrated accelerometer

data.

First, sensor data, which mainly includes the accelerometer, gyroscope and
ultrasonic signals, is collected discretely from the target quadrotor drones. Tra-
jectory is reconstructed in the inertial frame while IMU data is collected in
the body frame [27], so a coordinate transformation is needed to perform in a
preprocessing phase.

We denotes the raw measured accelerometer data at time point t in the body
frame as a0(t) = (a0x(t), a0y(t), a0z(t))T , and its correspondence in the inertial
frame as ã(t) = (ãx(t), ãy(t), ãz(t))T . Thus, the coordinate transformation can
be formulated as

a0(t) = R(φ, θ,ϕ) · ã(t), (1)

where R(φ, θ,ϕ) is the rotation matrix from the inertial frame to the body frame
[28]; φ , θ and ϕ stand for the three Euler angles between the two frames.

Because the raw IMU signals contain a lot of errors due to the low accuracy
of MEMS, the most important step in our pipeline is to eliminate those errors
before the data is used for trajectory calculation.

As mentioned above, errors in MEMS are comprised of the noise and the
bias. Different from traditional methods which process the two parts together,
we divide the error model into a noise component ϵn(t) and a bias component
ϵb(t), and process them separately in the second step. So we design the error
model as,

ã(t) = α · a(t) + ϵn(t) + ϵb(t) − H · g, (2)

where a(t) is the calibrated accelerometer data, α is a scale factor between the
measured inertial data and the actual data, H = (0, 0, 1)T , and g stands for the
gravitational acceleration.

The two parts are processed separately in the next phase with accordance to
our error model. We first reduce the noise, then eliminate the bias. Thus, a set
of calibrated accelerometer data a(t) is obtained.

Finally, the calibrated accelerometer data is integrated over time to obtain
the 3D trajectory. Hence, the 3D position at time ti, noted as Si =
(Six, Siy, Siz)T , which is calculated as follows:
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Si = Vi ∗∆ti + Si−1 =
i∑

k=0

vk ∗∆tk =
i∑

k=0

(
k∑

j=0

a(tj)∆tj)∆tk, (3)

where a(ti) represents the ith signal of the calibrated accelerometer data, and
∆ti is the time interval between ti and ti−1. Vi stands for the velocity calculated
from a(t). Thence, {Si|i = 1, 2, ..., n} composes the reconstructed trajectory.

4 Reducing Noise

According to the previous analysis, the errors can be classified into two types,
noise and bias. As shown in Fig. 1, the measured accelerometer signals seriously
oscillate at a large amplitude around certain values (marked by red lines). This
serious vibration results in noise. On the other hand, even when the device
remains still while its signals are being collected, the red line keeps drifting from
its true value, and presents a step shaped line instead of a straight line. This
kind of data drifting is called bias.

1 2

)b()a( (c)

Fig. 4. Eliminating noise and bias errors in the accelerometer data. (a) Raw measured
accelerometer signals collected from a static devices; (b) After reducing noise; (c) After
eliminating bias [30].

Here, in this section, we focus on how to reduce noise, and the other type of
the errors will be discussed in the following section.

The noise in the MEMS IMU data could be regarded as a high frequency
signal superimposed on the real signal, while the real signal is in low frequency.
Therefore, valid data could be obtained by filtering out the noise through a
low-pass filter.

Since the measured data is in the discrete form, the low-pass filter can be
designed through FIR (finte impulse response filter) [29].

Hence, given the measured raw accelerometer signals {ã(ti)|i = 1, 2, ..., n} ,
the denoised accelerometer data {â′(ti)} is filtered out by

â′(ti) =
n∑

k=0

h(tk)ã(ti − tk), (4)

where h(.) is the impulse response function of the low-pass filter. The filter is
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presented in a convolution form in the time domain. Here we adopt Rectangular
as the low-pass window function. The parameters in Rectangular will be adjusted
to a proper value.

In order to achieve a better denoised result, a down sampling is applied to
the filtered data, which could reduce the amount of the following calculation as
well. Thus, the final denoised accelerometer data set {â(t)} is a subset of {â′(t)} ,
which is down sampled at a certain period δ. In our current implementation, we
adopt δ = 100 ms.

In fact, the high-frequency noise also exists in the signals of other sensors,
such as gyroscopes and ultrasonic sensors, and thus the data of these sensors
should also be denoised in the similar way. After denoising, the smoother result
will be used in the following bias elimination method.

5 Eliminating Bias

Figure 4(b) shows that, a relatively smooth curve of the accelerometer data is
obtained after filtering the noise. But the value is not correct yet for bias errors
still exist. It is represented as the data drifting. It is varying over time in low
frequency [5], as demonstrated by the change of the red lines in Fig. 1. In previous
works, the bias is removed only once before the whole movement, which ignores
the dynamical bias. Hence we are aiming to improve this by dynamical bias
elimination during the movement.

Through the observation of the details in the denoised accelerometer data,
we found that it is difficult to determine when the IMU produces a bias by
only analyzing the absolute value of accelerometer data. Therefore, the moment
when a bias happens should be found out, in order to eliminate bias correctly
and dynamically during the movement of the device.

Although bias may occur on all MEMS sensors aperiodically, it is less proba-
bly to occur on multiple sensors at the same time. Hence, a sensor-fusion-based
method is proposed to detect the moment when bias occurs.

The denoised accelerometer data can be segmented into a series of sections
along the timeline, according to these moments. In each section, we consider
the device maintaining the same motion status, which means the accelerometer
value should be a constant.

Here, we define each section on the timeline as an event, and the beginning
moment of each event is called an event timestamp.

We then take different strategies to eliminate bias errors according to different
event tags. This method, through segmentation on the timeline, will effectively
compensate for the accumulation of bias errors over time.

5.1 Event Detection

For the sake of event timestamps detection, we first inspect the derivative of the
accelerometer data over time, which indicates the vibration of the accelerometer
data. If the absolute derivative value is greater than a certain positive threshold
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Bias event
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Fig. 5. Determining the type of an event according to the status of multiple sensors
[30].

τ , it indicates the status of the IMU is being changed, i.e., an event is happening.
Hence, this particular moment is recorded as an event timestamp, the beginning
of a new event.

However, the initially detected events are not necessarily the bias events
that aimed to process. Maybe the event timestamp is when a real movement
happens. Sometimes, exception events will also occur. Because the possibility of
bias occurring simultaneously in multiple sensors is extremely low, we refer to the
status of multiple different sensors as an assistant, e.g. gyroscopes and ultrasonic
sensors. Therefore, different types of the events are discriminated through this
way.

By analyzing the data status from other sensors, initial events can be classi-
fied into the following four types, as illustrated in Fig.5:

Bias Event. Bias event is when the device produces bias errors. The accelerom-
eter data in this event needs to be corrected. If the variation of other sensors is
small at the event timestamp while the event still happen, the bias is considered
to happen. For instance, the accelerometer data has an intense change while
other sensors data remains stable, which indicates bias occurs to the accelerom-
eter sensor. Therefore, the event is marked as a bias event.

Movement Event. This type of event indicates that the device is in a move-
ment, that is, the device is moving in a certain direction. In this case, the change
of the accelerometer data is caused by a real movement, and other sensors data
should correspondingly show reasonable variations. For instance, the accelerom-
eter data has an intense change while other sensors data also has a coordinated
change in the correspond direction, which indicates the device is taking an action.
Therefore, the event is marked as a movement event.

Static Event. In this case, the mobile device is actually in a static status, i.e.,
its accelerometer data and speed should be zero. That can be deduced by Euler
angles (attitude angles: picth, roll, yaw) φ, θ and ϕ of the device. If the values
of the picth, roll and the change of yaw are all very near to zero, and the status
lasts a period time with the data of other sensors also has little variation, the
event is regarded as a static event. Additionally, the static event should last for
a little while.

zjl1992@pku.edu.cn
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Invalid Event. In some special cases, we may encounter invalid data occasion-
ally. For instance, when the value exceeds the measuring range, or the data is in
a violent shaking, those cases cannot present the real status. Therefore, if other
sensors exhibit an irregular status, e.g. the gyroscope data vibrates frequently
and severely in a very short period, the event is marked as an invalid event.

Here, bias event and movement event are regarded as regular types, while
static event and invalid event are considered as handful types, which happens
occasionally. Besides, we may design that some static events happen on purpose
in order to eliminate cumulative errors.

5.2 Processing Algorithm

The accelerometer data can be segmented into events after the detection of event
timestamps. Then, the accelorometer data is calibrated in each event, according
to the type of the event. Consequently, bias errors will all be eliminated. The
bias elimination algorithm is listed as Algorithm1.

Here, we denote the calibrated accelerometer value in the previous section as
PreAcc, and the bias value of current section as BiasV alue, both initialized as
zero.

If the event corresponds to a bias event, the motion status of the device is not
actually changing although a data drifting is occurring. Hence, we correct the
accelerometer data in this event to the calibrated data in the previous section
(Fig.6(b)). Meanwhile, the bias value, i.e., the difference between the measured
data and the calibrated data, is updated and recorded as BiasV alue. It will be
applied in the processing of the subsequent events.

If the event corresponds to a movement event, the variation of the accelerom-
eter data is caused by a real movement. Then, the calibrated accelerometer value
can be calculated as the median of the data in this event subtracting current
recorded BiasV alue (Fig.5(c)). After that, PreAcc is updated as the same value
for the calculation of the following events.

(a) Calibrated

(c) Calibrated

a1

a4

E1 E2 E3

(b) Calibrated(a) Calibrated

(c) Movement

a1

a2

a3

E1 E2 E3

(b) Bias

Fig. 6. An example of event processing [30]. Accelerometer data is calibrated by sec-
tions according to different event types.
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Algorithm 1 . Bias Elimination Algorithm.

Input:

1. Denoised accelerometer data {â(t)|t = 1, 2, ..., n};
2. Detected events {Ei|i = 1, 2, ...,m};

Output:

1. Calibrated accelerometer data {a(ti)|i = 1, 2, .., n};

Definition:

1. ti: the event timestamp of Ei.
2. median(.): a function returns the median value of a data set.
3. BiasV alue: the bias value of the accelerometer data, initialized as zero;
4. PreAcc: the calibrated accelerometer data of the prevoius event, initialized as zero;

Algorithm:

1: for i from 1 to m do
2: if Ei == static then
3: while t ∈ [ti, ti+1) do
4: a(t) = 0.0
5: end while
6: PreAcc = 0.0
7: BiasV alue = median(â(t), t ∈ [ti, ti+1))
8: else if Ei == invalid then
9: All parameters remain unchanged.
10: else if Ei == bias then
11: while t ∈ [ti, ti+1) do
12: a(t) = PreAcc
13: end while
14: curAcc = median(â(t), t ∈ [ti, ti+1))
15: BiasV alue = curAcc − PreAcc
16: else if Ei == movement then
17: curAcc = median(â(t), t ∈ [ti, ti+1))
18: while t ∈ [ti, ti+1) do
19: a(t) = curAcc − BiasV alue
20: end while
21: PreAcc = curAcc − BiasV alue
22: end if
23: end for

In the case of a static event, the device stays still and motionless. Hence, the
accelerometer data in this event should be reset to zero. PreAcc is also cleared
to zero, and the median of the accelerometer data in this event is recorded as
the BiasV alue.

Finally, for an invalid event, it can be view as the same as the previous
event because of the very short time. Thus, the process of this event follows the
previous event, and all parameters remain unchanged.
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Therefore, the output of the algorithm is the final calibrated accelerometer
data, which could be directly applied in trajectory reconstruction.

Table 1. Onboard sensors of AR. Drone 2.0 [30].

Sensors Specifications

3-axis accelerometers Bosch BMA 150,

Measuring range: ± 2g

2-axis gyroscopes Invensense IDG500,

Measuring rate: up to 500 deg/s

1-axis gyroscope Epson XV3700,

On vertical axis

Ultrasonic sensor Measuring rate: 25Hz

Vertical camera 64◦ diagonal lens,

Frame rate: 60 fps

Front camera 93◦ wide-angle diagonal lens,

Frame rate: 15 fps

6 Experiments

We have proposed trajectory reconstruction method for quadrotor drones so far.
The data from the accelerometer and other sensors on the device is utilized in the
reconstruction in a manner of sensor-fusion. In order to validate the effectiveness
of our method, we apply it to several quadrotor drones with the same type, which
are equipped with low-cost MEMS IMU and other sensors.

ultrasonic
sensors ultrasonic

sensors

obstacle(a)

(b)

Fig. 7. The ultrasonic measurement may deviate from the actual height during move-
ment or flying over obstacles [30]. (The red rectangels stand for the ultrasonic sensor
on the drone, and the red dotted lines indicate the ultrasonic measurements). (Color
figure online)
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6.1 Implementations

In our experiments, we adopt the Parrot AR. Drone 2.0 as the target quadro-
tor drones. AR. Drone 2.0 is a lightweight quadrotor. A Linux based real-time
operating system and multiple onboard sensors are equipped on it. The sensors
and their specifications are listed in Table 1.

Accelerometers provide the major data for the calculation of the trajectory
among all these sensors, while the others are used as auxiliary sensors in the bias
elimination method.

Fig. 8. Euler angles on quadrotor drones.

The gyroscope data is applied for attitude estimation, i.e., calculate the euler
angel: pitch, roll and yaw (shown in Fig.8). It can also be used for event times-
tamp detection on the X or Y axis, because the drone would tilt if there is a
movement on the X - Y plane, and that will result in a variation of the gyroscope
measurement.

There is an ultrasonic sensor on the bottom of the AR. Drone. It measures the
distance from the drone to the ground. The absolute derivative of the ultrasonic
data is utilized in event detection on the Z-axis. However, it is not directly
used as the trajectory on the Z-axis, because when the drone tilts during its
movements, the angle of the ultrasonic sensor would also change. Therefore, its
measurement can not reflect the actual height of the drone (Fig.7(a)). Besides,
when the drone flies over a series of obstacles, large variations may also occur in
its measurement (Fig.7(b)).

In addition, we perform our experiments indoor for the ultrasonic sensor has
a limited range. Indoor experiments can also simplify the flight condition, like
the absence of wind. On the other hand, indoor localization is more difficult for
there is no GPS signals indoors.

6.2 Experimental Environment

We apply our experiments indoors, where there is no GPS signals for refer-
ence. Moreover, indoor environments may avoid the influence of winds and other
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Fig. 9. Our experimental environment.

Fig. 10. Drone Control Technique.

affects. The experimental environment is shown in Fig.9left, where the floor is
relatively flat. Note that surfaces of obstacles in the environment are relatively
flat as well, so that the ultrasonic sensor can work effectively as an assist of
accelerometer data in Z-axis.

Flight Route Control
As shown in Fig. 10, the Parrot AR.Drone 2.0 communicates with PC through
Wi-Fi. We control the automatic flight route of the drone through its SDK1. A
joystick is also used to avoid emergencies, e.g., that the drone hits the wall or
breaks the window. The controlling commands of the joystick are sent to the
drone by means of PC.

Trjactory Groud-Truth Measurement
The ground-truth of our experiment is measured in a manual way. Several rulers
are fixed in the environment, as shown in Fig. 11. At the same time, a laser range
finder is applied to sample the distance between the drone and the ground or
between the drone and the staring position (shown in Fig.9(b)). Since the flight
route is determined by programming, we could approximate the movement of the

1 http://developer.parrot.com/products.html.
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drone, which makes our measurement easier. Besides, because the drone itself
may be influenced by the environment, such as the temperature and its battery
power, the drone cannot be controlled accurately. That’s why the drone routes
do not perfectly match the designed route.

Fig. 11. Measure the distance by a laser ranger.
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Fig. 12. The result of error elimination for the accelerometer data on three axes [30].
The first row is the raw accelerometer data collected from a quadrotor drone. The
second row shows the signal after denoising by a low-pass filter and down sampling.
The last row is the final calibrated output of accelerometer data after bias elimination.

6.3 Experimental Results

A large amount of experiments are performed in order to verify the effectiveness
of the proposed algorithm. Here are some experimental results demonstrated in
this section.
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Fig. 13. Trajectory reconstruction results on a single-axis (purple lines), comparing
with the ground truth (green lines). (Color figure online)

Results of Error Elimination. As shown in Fig. 12, the first row is the raw
accelerometer data. It seems to be totally out of order because of too much noise
and bias. Thus, it is impossible to reconstruct the trajectory through these raw
signals. In the second row, the signals are filtered out through a low-pass filter
with down sampling, which becomes smoother after denoising. But bias errors
still exist in there. In the last row, it is the final calibrated accelerometer data
after bias elimination. Hence, valid signals are finally extracted by our method
after redundant error signals are removed and the outliers filter away.

Trajectory Reconstruction for Single-Axis Movements. We first test our
trajectory reconstruction method in relatively simple direction. We allow the
drone to move in only one direction along X, Y, or Z axis. At the same time, we
keep it invariant in the other two directions. Therefore, the data and the motion
status is on only one axis through inspection. We assume the accelerometer data
on the other two axes are always zero. As shown in Fig. 13, the purple lines are
the reconstructed trajectories by our method, and the green lines are the ground
truth trajectory. Through the comparison, we can see that our result is close to
the actual movement. The errors of reconstruction are controlled within 10 cm
in each axis.

Algorithm Calibration. In order to obtain better results, the event detection
thresholds τ for the accelerometer or other sensors’ data, together with the
window size of low-pass filter, need to be adjusted to a proper value. In fact,
this parameters adjustment of algorithm can be adaptively accomplished in our
method. We first pick a small part of the data at the beginning of the flight, and

zjl1992@pku.edu.cn
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obtain the optimal thresholds interactively. Then, the rest of the trajectory can
be automatically reconstructed with these thresholds.

An example is given in Fig. 14, only the red part of the result is the one
after the algorithm calibration is accomplished interactively. The purple line is
the result when the parameters are fixed before. The final result is similar with
what we designed in advance, which shows the adaptability of our method.

Fig. 14. Algorithm calibration [30]. Optimal parameters are interactively searched for
using the first part of data (red line), and then the whole trajectory (purple line) can
be automatically reconstructed. (Color figure online)

Fig. 15. Trajectories reconstructed from Ar.drone. We design target trajectories as
the letters of “GRAPP”. And the results match the targets well. The first row is the
trajectory in X-Y plane. The second row is each corresponding one in three-dimensional
space [30].

Trajectory Reconstruction for Multiple-Axis Movements. After the suc-
cess of single-axis tests, we carry out more complicated experiments of recon-
structing trajectory on multiple axes. Drones fly along given routes with various
shapes. The drone is controlled by PC through Wi-Fi. The route is designed in
advance by a program so that it can fly at a relatively constant speed, and fly
straightly in the given directions.

Several groups of reconstruction results are given in Figs. 15, 16, 17and 18.
Target trajectories are designed as meaningful letters. We can see that, the
reconstructed routes are close to what we designed. After denoising and bias
elimination, the valid accelerometer data can be extracted from the raw signal.
The 3D trajectories of the drone can be correctly reconstructed. The recon-
structed trajectories (purple lines) coincide with the ground truth routes (green
lines).

zjl1992@pku.edu.cn
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Fig. 16. Multi-axis trajectory reconstruction results. In each group, the left three
columns show the raw and calibrated accelerometer data on X, Y and Z axis. The
last column illustrates the final 3D reconstructed trajectories of the drone (purple
line), comparing with the ground truth (green line). (Color figure online)

However, due to the instability of the controlling algorithm inside the drone,
the actual flying route of the drone may have a little slight offsets. The offsets are
too small to be detected due to the low accuracy of onboard sensors, hence they
would be ignored by our algorithm. It is the reason that reconstructed trajectory
is a little smoother and straighter than the actual trajectory.

zjl1992@pku.edu.cn
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Fig. 17. Reconstructed trajectory “PKU”, which is the abbreviation of our school. In
each group, the left three columns show the raw and calibrated accelerometer data on
X, Y and Z axis. The last column illustrates the final 3D reconstructed trajectories of
the drone (purple line), comparing with the ground truth (green line). (Color figure
online)

Fig. 18. Reconstructed trajectory “ICST”, which is the abbreviation of our institute.
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7 Conclusions

We present a novel method for trajectory reconstruction of quadrotor drones,
which suffers from unavoidable errors of low-cost MEMS IMUs. There are two
types of errors in MEMS IMUs: noise and bias. In our method, they are processed
separately, according to their different characteristics. A low-pass filter with
downsampling is applied to reduce the noise, and then a sensor-fusion-based
algorithm is applied to dynamically eliminate the bias. Therefore, the trajectory
is reconstructed based on the calibrated data.

In fact, this sensor-fusion-based bias elimination method can be extended
to employ various kinds of sensors, such as cameras, gradienters, magnetome-
ters, etc. That makes the method more practical. Theoretically, the trajectory
reconstruction method can also be applied to any mobile device as long as it is
equipped with IMUs.

In our current implementation, a rugged environment may cause failure in
reconstruction. That is because the ultrasonic senor, as one of auxiliary sen-
sors, would become invalid in such cases. In our future work, we will try to
enroll more auxiliary sensors to handle more complicated conditions, so that
our method may be applied to more scenarios. Besides, our method performs
better in reconstructing straight lines than in curves due to the low accuracy of
sensors. To solve this problem, we can approximate the curves with a set of line
segments.

On another aspect, the flight routes of the drone do not perfectly match what
we design, for the environment and battery power will influence the flying status
of drone. Thus, we will put emphasis on the route controlling module as well, in
order to make the drone fly more steadily.

Since the trajectory can provide important viewpoint information, our trajec-
tory reconstruction method can be applied in various applications, for instance,
automatic drone navigation, 3D reconstruction, map building and stereoscopic
video synthesizing.
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