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ABSTRACT
We present a novel structure-aware strategy for image expansion
which aims to complete an image from a small patch. Different from
image inpainting, the majority of the pixels are absent here. Hence,
there are higher requirements for global structure-aware prediction
to produce visually plausible results. Thus, treating the expansion
tasks as inpainting from the outside is ill-posed. Therefore, we
propose a learning-based method combining structure-aware and
visual attention strategies to make better prediction. Our architec-
ture consists of two stages. Since visual attention cannot be taken
full advantage of when the global structure is absent, we first use
the ImageNet-pre-trained VGG-19 to make the structure-aware pre-
diction on the pre-training stage. Then, we implement a non-local
attention layer on the coarsely-completed results on the refining
stage. Our network can well predict the global structures and se-
mantic details from small input image patches, and generate full
images with structural consistency. We apply our method on a
human face dataset, which containing rich semantic and structural
details. The results show its stability and effectiveness.
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1 INTRODUCTION
Image expansion can be thought as complete an image from the
outside while maintaining the semantic and structural coherency.
Traditional image expansion methods provide conceptually simple
thoughts of real image data manipulation such as database-driven
extrapolation[Wang et al. 2014] and panorama stitching[Brown and
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Figure 1: Image expansion. The outputs are generated from
small patches extracted from different spatial locations of
the same original image. Ourmethod can produce the expan-
sions with reasonable structure. The spatial location of the
reference patches are indicated with red boxes in the output
images.

Lowe 2007]. Recently, learning based algorithms such as image out-
painting[Sabini and Rusak 2018], Semantic Regeneration Network
(SRN)[Wang et al. 2019] and adversarial texture expansion[Zhou
et al. 2018] introduce the Generative Adversarial Networks (GANs)
to such tasks.

In recent research works, various classic image inpainting meth-
ods are applied in image expansion. Contextual attentionmethod[Yu
et al. 2018] opened up new frontiers in image inpainting utilizing
spatially distant contextual information. With such visual attention
mechanism, local convolutional operators are able to percept sim-
ilar features extracted from distant spatial locations. Afterwards,
several kinds of attention masks are introduced to obtain better
results.

It is relatively simple to generate coarse results with structural
coherency in inpainting tasks, since the small absent regions are
usually inside the middle of the images, with rich contextual and
structural information around them. For instance, vanilla GAN
with attention and local-global consistency[Iizuka et al. 2017] may
produce nice results.

To solve the problem of the structure information scarcity in
image expansion, we leverage perceptual features[Gatys et al. 2016;
Johnson et al. 2016] when constructing our regularization to pre-
dict coarse results with strong structure-aware features. Therefore,
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we are able to use the features borrowed by the global-attention
layer from the synthesized coarse results in spatially distant re-
gions. To stabilize the training procedure, our network architec-
ture utilize some recent training strategies and module designs,
such as coarse-to-fine architecture, Wasserstein GAN with gradi-
ent penalty (WGAN-GP)[Gulrajani et al. 2017] and Relative Spatial
Variant (RSV) masks[Wang et al. 2019].

Our contributions are summarized as follows.
• We present an end-to-end GAN architecture for image expan-
sion. To our knowledge, it is the first network that introduce
the attention mechanism to image expansion tasks.

• We provide a structure-aware regularization to maintain the
quality of the output results. The regularization term acts as
a dominant building block in our method.

2 PROPOSED METHOD
Our goal is to rebuild a structure-plausible image based only on a
small patch of the original image.

Due to the absence of most pixels, visual attention mechanism
cannot be directly implemented on the expansion tasks. To address
this, we firstly predict the structure of each image patch, then
introduce a visual attention module to enhance the output quality.

As overviewed in Fig. 2, our network architecture adopts a 2-
stage training strategy. The first stage, i.e. the pre-training stage,
aims to generate a structure-aware guidance for the following re-
fining stage. The first stage is an encoder-decoder convolutional
architecture with skip connections between the counterparts with
identical scales in both ends. Our motivation of a two-stage train-
ing strategy is to let the architecture predict the possible global
structure from a relatively small given patch. Different from recent
state-of-the-art[Wang et al. 2019], we directly use VGG features to
regularize the structural prediction instead of a Markov random
field (MRF). On the second stage, a refining network is appended
to the pre-training module and both are trained jointly to produce
final results. We introduce a global attention layer to the refining
stage inspired by non-local nets and visual self-attention[Wang
et al. 2018; Zhang et al. 2018].

2.1 Structure-Aware Regularization
Usually, implementing pixel-wise loss on RGB images lacks consid-
eration of the global structure. To assess the perceptual differences
between the synthesized results and the original images, we utilized
the feature maps extracted by pre-trained VGG-19 in our regular-
ization term.

Different layers of VGG-19 focus on different kinds of details
and patterns. Initial convolutional layers of VGG-19 are able to
reconstruct the images perfectly. However, the reconstruction qual-
ity decays as the processing flow going deeper in the network. In
deeper layers of the net, dilated pixel details are neglected while
the general structure information are preserved[Gatys et al. 2016].
Similarly, style features can also be extracted from the net. We
construct our regularization from different sublayers of the net.
To balance the effect among the structure-aware regularization,
the adversarial training and the detail regression, different coeffi-
cients of the regularization term are set in different stages of our
training procedure. Based on empirical knowledges, we calculate

L1 rather than Mean Square Error (MSE) differences between the
source and target feature maps to prevent the reconstructions from
yielding blurry results. The structure-aware regularization term is
formulated as in Eq. 1,

LGS =λcs ∥Vcs (f (x)) − Vcs (O)∥1 +

λs ∥Vs (f (x)) − Vs (O)∥1 ,
(1)

where Vcs is the content- / structure-representation layer of VGG-
19, andVs is the style-representation layer.

2.2 Global Attention Modeling
In the refining model, dilated convolution is adopted to expand
the receptive field, because the standard convolution is a local
operation whose receptive field depends only on the kernel size.
Visual attention mechanisms construct the dependencies among
spatially distant yet relevant pixels. Recent researches[Yu et al.
2018] introduce this mechanism to inpainting tasks where they are
only relatively small-sized absent regions. Here, we introduce a
global attention layer to accomplish image expansion tasks, even
though most pixels are absent. Inspired by non-local nets and visual
self-attention, our global-attention map can be formulated as:

MA = f (x) ⊗ S(xTwT
θ wϕx), (2)

where f (·),θ and ϕ indicate 1 × 1 convolution. The calculation is
demonstrated in Fig. 3. Here S is the softmax operation, and ⊗

indicates the matrix multiplication. To be specific, we utilize the
embedded Gaussian function[Wang et al. 2018] EG(·, ·) for the
softmax computation (Eq. 3).

EG(xi ,x j ) = exp(θ (xi )Tϕ(x j )). (3)

Hence, the global attention is formed as

S(θ (xi )
Tϕ(x j )) =

EG(xi ,x j )

ΣjEG(xi ,x j )
. (4)

The global attentionmechanism aims to utilize the feature patches
spatially distant from the local convolution operations. More gen-
eral structure details could be learnt by such an attention layer.
After calculating the attention map, the contribution score of each
pixel to the current local convolution will guide the synthesis of
the image.

2.3 Learning Objectives
We adopt the WGAN-GP[Gulrajani et al. 2017] as our basic archi-
tecture. The adversarial loss can be demonstrated as:

Ladv = − λDEx∼Px [logD(G(x))]+

λ▽Ex̂∼Px̂ [(∥▽x̂D(x̂) ⊙ M ∥2 − 1)2].
(5)

Here M is the mask to indicate the locations of the lost pixels.
The latter term of the loss function is the gradient penalty that
penalizing the ∥▽x̂D(x̂) ⊙ M ∥2 if it is near to 1 to stabilize the
model. Intuitively speaking, we want the distribution of G (x̂) as
close as possible to x , while D (G (x̂)) cannot overpass D (x) .

Considering both local and global consistency, and structure-
aware regularization, the final objective is formulated as:

L =λL ∥M ⊙ (x̂ − x)∥1 + λG ∥x̂ − x ∥1 +

λadvLadv + λGSLGS .
(6)
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Figure 2: Our network architecture. The training procedure is divided into two phrases, namely pre-training and refinement
training (full training). The objective functions are depicted in the figure.WeuseWGAN-GP for stabilizing the training process.
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3 EXPERIMENTS
3.1 Dataset and System Configuration
We implement ourmethod onCelebA-HQ[Karras et al. 2017] dataset.
For visual evaluation, we retrain the SRN[Wang et al. 2019] model
by running the open source codes on the same dataset. Due to the
limitation of GPU RAM, the training batch size is set to be 8 for
both models.

Moreover, we also apply our method on some landscape im-
age datasets, including landscape images dataset collected from
Places2[Zhou et al. 2017] and CycleGAN[Zhu et al. 2017].

Mentioned models are trained on an NVIDIA Titan X GPU with
12GB of RAM.

3.2 Training Procedure
3.2.1 Pre-training without attention. The main challenge in the
image expansion tasks is the lacking of the most of the structure
information. When only a minority of the pixels are missing, we
can make predictions for them based on empirical knowledges that
roughly infer the position and structure of missing parts. But, when
given only a small fraction of the image, making prediction of the
whole image would be much more difficult. A naïve solution is

to consider the image expansion task as inpainting outside the
boundaries. However, that would cause structural artifacts on the
second training stage.

Our pre-training stage aims to make the network learn the
structural-level prediction. Reasonable structure prediction works
as a global guidance in the second training stage.

For this purpose, we set the structure-aware regularization term
and increase its weight in our pre-training objective function. The
pre-training results of our model contain more structural clues in
comparison with those of SRN, which are demonstrated in Fig. 4.

3.2.2 Full training with attention layer. In our architecture, the
global attention layer is a redesigned version of the non-local block
and the self-attention layer, based on the coarse image reconstruc-
tions from the corresponding patches. The full training is similar
to the coarse-to-fine architectures while introducing the attention
mechanism into the image expansion tasks. The comparisons be-
tween the results from the retrained SRN and ours are demonstrated
in Fig. 4. Notice the parts of forehead, nose, jawline andmouth in the
images respectively, our method can produce structurally sound
results of different facial parts. More comparisons are shown in the
supplemental material.

3.2.3 Application in natural scene images expansion. The natural
scene images are more complex, and its expansion is even more
challenging because the distributions of the pixel intensity can be
so various among different images.

To solve this problem in the case of natural scenes, we fine-tune
our network by adding the generative loss term while giving up the
structure-aware regularization on the refining stage. The images are
expanded horizontally, which are shown in Fig. 5. Our method can
expand the natural scene images with either structural coherence
or realistic texture details.

4 CONCLUSIONS AND FUTUREWORK
In this work, we propose a systematic structure-aware image ex-
pansion framework with global attention. We explore the potential
global structure information to reconstruct better results in image
expansion tasks. The global attention is beneficial in both structure
prediction and receptive field expanding. Combining the structure-
aware regularization with global attention, our method achieves
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Figure 4: The comparisons between retrained SRN[Wang et al. 2019] and our method. Both networks are trained on the same
face dataset. Our pre-training results show more structural details and thus output more structurally sound predictions in
final expanded images. The spatial location of the reference patches are indicated with red boxes in the output images.

Input Output

Figure 5: Natural scene images expansion. Fine-tuning our
network can tackle different kinds of expansion tasks. (In-
put images courtesy of CycleGAN[Zhu et al. 2017].)

structurally sound results. In the future, we may expand the im-
ages on various kinds of challenging data such as natural scenes,
different animals or other objects. The synthesis quality of the high
frequency details such as human hair should also be improved in
the future work. Furthermore, to get photorealistic results with
plausible boundary details needs higher level of feature-perception
mechanism, which is a prospective field of research.
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