

Automatic View Finding for Drone Photography based on Image Aesthetic Evaluation

Xiaoliang Xiong, **Jie Feng***, Bingfeng Zhou Institute of Computer Science and Technology, Peking University

Remote

controllers

- Aerial photography
- Surveillance
- Intelligent tracking

Drone photography

- What is a *good* photo?
 - Visually pleasant
 - Image aesthetics

+ Motivation

- Automatic view finding
 - Image aesthetic evaluation
 - Widely accepted guidelines
 - Autonomous flight of drones
 - Drone navigation according to the aesthetic score
 - Finding the optimal view

- Obstacle avoidance / Autonomous navigation
 - Using active sensors
 [Benet et al., 2002; Bachrach et al., 2011]
 - Laser range finders / sonar / infrared detectors
 - Not suitable for unstructured environments
 - Vision-based methods
 [Soundararaj et al., 2009; Bills et al., 2011; Lenz et al., 2012]
 - Color image / depth image
 - Prior knowledge needed
 - Complex 3D reconstruction

Obstacle classification and avoidance [Lenz et al., 2012]

- Automatic photography
 - Autonomous Robot Photographing [Byers et al., 2003; Kim et al., 2010]
 - Subject detection: human voice / skin color
 - Remote path planning / motion control
 - No general rules for photography

[Byers et al., 2003]

[Kim et al., 2010]

- Automatic photography
 - Autonomous Robot Photographing [Byers et al., 2003; Kim et al., 2010]
 - Subject detection: human voice / skin color
 - Remote path planning / motion control
 - No general rules for photography
 - Semi-automatic photography
 [Fu et al., 2013]
 - Data-driven pose suggestion
 - A large collection of reference poses
 - Subject makes refinement to match the selected pose

[Fu et al., 2013]

- Image quality assessment
 - High level semantic features [Ke et al. 2006; Luo and Tang 2008]
 - Image composition rules [Krages, 2005; Yao et al., 2012]
- Image composition optimization
 - Image cropping / warping / resizing
 - Post-processing / Image distortion

Image Cropping [Liu et al., 2010; Ni et al., 2013] Image Warping [Jin et al., 2012] +

Automatic View Finding based on Image Aesthetic Evaluation

+ Method Overview

Flight Control

Subject Detection

- Photographic subject
 - Automatic detection
 - Human Portraits: face & body
 - Face detection based on Haar features [Viola and Jones, 2004]
- Image features
 - Prominent lines for aesthetic evaluation
 - Line segment detection based on Hough transform [Duda and Hart, 1972]

Image Aesthetic Evaluation

- Image composition guidelines
 - General guidelines for photographers
 - Quantization of the guidelines [Liu et al., 2010]

$$E_{RT} = \lambda_{point} \frac{1}{\sum_{i} M(S_i)} \sum_{i} M(S_i) e^{-\frac{D^2(S_i)}{2\sigma_1}} + \lambda_{line} \frac{1}{\sum_{i} I(L_i)} \sum_{i} I(L_i) e^{-\frac{D^2(L_i)}{2\sigma_2}}$$

Visual balance — —

Proper region size —

$$E_{VB} = e^{-\frac{D^2(S_w,C)}{2\sigma_3}}$$

$$E_{RS} = \sum_{i} \max_{j=1,2,3} e^{-\frac{(r(S_i) - r_j)^2}{2\tau_j}}$$

Image Aesthetic Evaluation

Image aesthetic score

$$E = \frac{w_1 E_{RT} + w_2 E_{VB} + w_3 E_{RS}}{w_1 + w_2 + w_3}$$

- Automatic online aesthetic evaluation
- Guidance for searching the optimal view
 - Maximum of aesthetic score E

Visual balance

Proper region size

+ Optimal View Searching

The four flying status of drone

• Movement x_i , $i \in \{t, r, y, p\}$

Optimal View Searching

- Image aesthetic score
 - An implicit function of drone flying status
- Target function for automatic view finding

 $\max E = f(x_t, x_r, x_y, x_p)$

- Optimization
 - Multi-dimensional solution space
 - Downhill simplex method [Press et al., 1992]
 - Heuristically searching for the optimal view

+ Optimal View Searching

Implementation

- Parrot AR. Drone 2.0
 - Camera resolution: 1280x720
 - Sonar height sensor
 - Onboard computer

- Host PC
 - Common laptop
 - 2.10GHz Pentium dual core
 - 1GB RAM
 - Linux OS of Ubuntu 14.04

- Target-locating test
 - Placing the target in the center of the image

Single-subject PhotographingIndoor environment

optimal

Single-subject PhotographingOutdoor environment

Single-subject PhotographingOutdoor environment

Multi-subject PhotographingIndoor environment

Multi-subject Photographing

Outdoor environment

Multi-subject PhotographingMore subjects...

+ Summary

- Automatic view finding for drone photography
 - Image aesthetic evaluation
 - Satisfying basic composition guidelines
 - Heuristic search for the optimal view
 - Autonomous navigation of drone
- Future work
 - More stable and intelligent subject detection
 - More rules and clues
 - Different types of photographic subjects

Automatic View Finding for Drone Photography based on Image Aesthetic Evaluation

Xiaoliang Xiong, Jie Feng*, Bingfeng Zhou Institute of Computer Science and Technology, Peking University email: feng_jie@pku.edu.cn