
Computational Design and Fabrication of Hanging Structures
Supplemental Material

Boyu Song
Peking University

boyusong@pku.edu.cn

Jie Feng
Peking University

feng_jie@pku.edu.cn

Bingfeng Zhou
Peking University
cczbf@pku.edu.cn

1 VARIABLE DEFINITIONS
In this section we list all variables and their definitions in the paper
(Table.1). These symbols are generic in both the description of our
method and the pesudocode below (Alg.1).

Symbol Definition

N number of rods

mi mass of rod i

li length of rod i
®M the N-dimensional mass vector of all rods
®L the N-dimensional length vector of all rods

θi the angles of the rod i relative to the horizontal
plane

®Θ the N-dimensional angle vector of all rods

ϕi,i+1 the angle between rod i and rod i + 1

u number of geometry parameters
®G the geometry parameter vector of all rods

pT i the ith junction of target shape T

pSi the ith junction of simulation shape S

γj particle j in PSO algorithm

γkj the position of particle γj in the kth iteration,
which is a configuration vector

Γkj a angle vector, i.e. the simulation result of a
configuration Pkj

D̃ the Euclidean distance between two curve
®Dk
j the weighted sum of the deviation vector, i.e. the

directed distance between the junction points

γkl j the local best position of particle j in the kth
iteration

γkд the global best position of whole swarm in the
kth iteration

γkbj the better position for particle j in the kth itera-
tion

γkw j the worse position for particle j in the kth itera-
tion

Table 1: Variable definitions

2 THE IMPROVED PSO ALGORITHM
Given a user-specified shape ®Θ, our configuration optimization
algorithm will find an optimal configuration (®M, ®G) to form the
target shape.

We solve this non-linear problem by a improved-particle swarm
optimization(PSO) algorithm. Compared with the original PSO al-
gorithm, we apply two more guide points called the better solution
point and the worse solution point, while keeping the two original
points, i.e. the local best point and the global best point. Alg.1 shows
the pseudocode of our algorithm.

Here function simulateShape() is the shape simulation algorithm
given in Chapter4.1 in the paper.

Function selectionPrinciple() serve to provide the better and worse
position for current particle according to deviation directions ®D.
In Fig.1, yellow arrow indicates the deviation direction bwtween
target shape(green) and the current simulation shape(red), which
is applied as the error descriptor in our work. The direction vector
is the sum of all blue vectors.

The selection principles have been described in the paper, but
for getting a clearer understanding of the principles, we list several
typical cases in the form of diagrams(Fig.2 and Fig.3).

Figure 1: Deviation direction.

Figure 2: A typical worse condition. Here, the target shape
is shown in orange. The shape in red is a worse shape than
current one (blue).

Figure 3: Two better conditions. Here, the shapes in green
are better shape than current one (blue).

3 ALGORITHM PERFORMANCE
Table2 demonstrate the performance of our improved PSO algo-
rithm in some typical cases. We can see that the calculation cost is
directly related to the complexity of target structures. The polygon
configuration optimization cost more time before converging than
Semi-circle and triangle. This is because the optimal solution is
almost located on the boundary of search-space, so the particles
can hardly know the information of the optimal solution. But over
all, the time-consuming of our method is acceptable.

Target
shape

Number of
rods

Iteration
number

Consuming-
time(s)

Semi-circle
8 7 6.217

12 17 37.251

20 21 143.171

Triangle
8 8 8.145

12 14 28.805

20 16 90.704

Polygon
8 16 38.585

12 26 96.581

20 29 246.799
Table 2: Configuration Optimization Performance

Algorithm 1 Configuration optimization

Input: The vector of angles ®Θ;
Output: The vector of mass ®M ; The vector of geometry constrains
®G.

1: // initilization
2: k ← 1
3: D̃дb ←DBL_MAX
4: for each particle γi i ∈ [1,m] do
5: Initialize particle’s position γi = (M0

i ,G
0
i) randomly

6: Initialize particle’s local best position γ 0l i = γ
0
i randomly

7: Γ0i ← simulateShape(γ 0i)

8: D̃0
i ← D̃(T , Γ0i)

9: if D̃0
i < D̃д then

10: Update global best position γд ← γ 0i
11: end if
12: Initialize particle’s velocity V 0

i randomly
13: ®D0

i ←
®D(T , Γ0i)

14: end for
15: for each particle γi i ∈ [1,m] do
16: [γ 0bi ,γ

0
wi] ← selectionPrinciple(®D0)

17: end for
18: // iteration
19: while k < max-Iteration-Number or D̃(T , Γдb) > ϵ do
20: // Update velocity and location of particles
21: for each particle γi i ∈ [1,m] do
22: V k

i ← V k−1
i + rand()(γk−1l i − γk−1i)

23: V k
i ← V k

i + rand()(γ
k−1
д − γk−1i)

24: V k
i ← V k

i + rand()(γ
k−1
bi − γ

k−1
i)

25: V k
i ← V k

i + rand()(γ
k−1
wi − γ

k−1
i)

26: Pki ← γk−1i +V k
i

27: end for
28: // update fitness variables
29: for each particle γi i ∈ [1,m] do
30: Γki ← simulateShape(γki)

31: D̃k
i ← D̃(T , Γki)

32: ®Dk
i ←

®D(T , Γki)
33: end for
34: for each particle γi i ∈ [1,m] do
35: if D̃(T , Γki) < D̃(T , Γk−1l i) then
36: Update local best position γkli ← γki
37: end if
38: if D̃(T , Γki) < D̃(T , Γдb) then
39: Update global best position γдb ← γki
40: end if
41: end for
42: for each particle γi i ∈ [1,m] do
43: [γ 0bi ,γ

0
wi] ← selectionPrinciple(®Dk)

44: end for
45: k ← k + 1
46: end while

2

	1 Variable definitions
	2 the improved PSO algorithm
	3 Algorithm Performance

