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Abstract

In this paper, we describe the use of threshold modulation to
remove the visual artifacts contained in the variable-coefficient
error-diffusion algorithm. To obtain a suitable parameter set for
the threshold modulation, a cost function used for the search of
optimal parameters is designed. An optimal diffusion parameter
set, as well as the corresponding threshold modulation strength
values, is thus obtained. Experiments over this new set of
parameters show that, compared with the original variable-
coefficient error-diffusion algorithm, threshold modulation can
remove visual anomalies more effectively. The result of the new
algorithm is an artifact-free halftoning in the full range of
intensities. Fourier analysis of the experimental results further
support this conclusion.
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1 Introduction

The error-diffusion algorithm is a very important method for
generating halftone images. The principle of this algorithm is to
compensate the quantization errors by distributing them on to the
neighboring pixels of the input image. The original error-diffusion
algorithm scans pixels of the input image in a top-down, left-to-
right order. During the scan, each pixel is quantized by a fixed
threshold value at the middle of the density range. After the
quantization, the quantization error is calculated and the error is
distributed by adding it to the neighboring un-processed pixels
using a set of fixed distribution coefficients (see Fig.2). Detailed
description and analysis of this algorithm can be found in [Knox
1999], [Ulichney 1987; 1988] and [Kang 1999]. This algorithm
has lead to many research efforts due to its simplicity and
effectiveness as well as its good halftoning quality. It has a wide
range of applications, not only in the areas of image printing and
display but also in other domains of computer graphics as
illustrated by the polygonal re-meshing of Alliez et al [Alliez et al.
2002]. The blue noise feature of this algorithm also suggests its
application in antialiasing of sampled images [Dippé and Wold
1985; Mitchell 1987].
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Among those who contributed to the analysis and improvement of
the algorithm, Ulichney introduced the “blue noise concept”
[Ulichney 1988], a powerful tool for the measurement of the
quality of the algorithm. The blue noise concept uses the power
spectrum of the Fourier transform' of a halftone image to measure
its quality. For a quality output of the error-diffusion algorithm,
the dots in the generated binary image are scattered both
randomly and evenly. This property, when reflected in the Fourier
transform of the binary image, is characterized by a symmetrical
frequency spectrum that lacks low frequencies. This defines the
so-called blue noise spectrum. If the power spectrum of a binary
image is calculated, it can then be compared with an “ideal blue
noise spectrum”. The closer the spectrum to the “ideal blue noise
spectrum” is, the better the quality of halftone image will be
[Ulichney 1988; Mitsa and Parker 1992].

Based on this concept, many efforts were made to improve the
output quality of the error-diffusion algorithm. Among these
efforts, some notable ones are Knox’s threshold modulation
[Knox 1993], Ulichney’s serpentine error diffusion [Ulichney
1987] and recently Ostromoukhov’s variable-coefficient error-
diffusion algorithm [Ostromoukhov 2001; Jodoin and
Ostromoukhov 2002]. In Knox’s work, an analysis model was
devised based on Ulichney’s theory to analyze the effect of the
threshold modulation. The serpentine method applies a back and
fourth parsing order to eliminate the “worms” in light tones.
Although improvements have been made by these methods,
problems still exist. Among those problems, artifacts and transient
effects are the most notable ones.

In 2001, Ostromoukhov presented a new improvement to the
error-diffusion algorithm [2001]. In this work, he employed a
variable-coefficient error-diffusion method to generate halftone
images. For each important density level (key level), an
optimization method is used to search for the optimal coefficients
and in this way a set of diffusion coefficients are obtained.
Ostromoukhov’s result improved the quality of the image
dramatically, especially in the light tone area of the image. But the
quality in the mid-tones can still be improved. Some artifacts still
exist and the frequency spectra of these generated halftone images
are also not ideal (Fig.3 (a) and (b)).

In this paper, we apply threshold modulation to the variable-
coefficient error-diffusion method [Ostromoukhov 2001]. We
modulate the threshold by adding a random perturbation into the
original fixed threshold value of Ostromoukhov’s algorithm. By
controlling the amplitude of random perturbation® for each density
level, better error-diffusion output is obtained. In the following

'In this paper, power spectrum of the Fourier transform is also
referred to as frequency spectrum

’In this paper, amplitude of random perturbation is also referred
to as modulation strength



sections, the effect of threshold modulation on Ostromoukhov’s
algorithm is examined. Then, a cost function, which is based on
the blue noise theory [Ulichney 1987; 1988], is designed for the
search of the best coefficients when the threshold modulation is
applied. The coefficients and modulation strengths obtained for
key density levels by optimal value search are presented. The
output results corresponding to these parameters are analyzed and
compared with those of Ostromoukhov’s algorithm and other
advanced techniques.

2 Threshold Modulation

Ostromoukhov’s variable coefficient method has dramatically
improved the output quality of the error-diffusion algorithm. His
work also suggested an optimization method for searching for the
best coefficients under a cost function. Using the coefficients
given in Ostromoukhov’s paper [2001], image qualities,
especially in light tones, are improved, but there still exist some
problems.

The problems that Ostromoukhov’s work [2001] does not solve
can be classified into two kinds. The first kind is “visible
artifacts”. “Visible artifacts” appear in the light-tones of the
output image as “worm effects” and “visually harmful alignment”
in mid-tones (See Fig.3 (a)). Ostromoukhov’s coefficient set
eliminates “worm effects” effectively, but it does not noticeably
improve “visually harmful alignment” around mid tones (see
Fig.3 (a) and (b)).

The second kind of the problems is “transient effects”. They
appear around drastic changes in the density of the input image.
When these changes occur, the structure of dot distribution in the
changing area appears non-stable. The non-stables structure
stretches out until it reaches the area that is far from the input
density discontinuity. Then the unstable structure disappears and
the image maintains a stable and uniform dot distribution (See
Fig.5(c)). Again, Ostromoukhov’s algorithm works for this effect
in the light tone area but does not work well in the mid-tone area.

If we investigate the Fourier frequency spectrum of an output
image containing “visible artifacts” or "transient effects", it can be
found that the spectrum takes a quite different shape from the
"ideal blue noise spectrum"(See Fig.3 (b) and (d)). This is the
reason why the “visible artifacts” and “transient effect” are so
objectionable to human eyes. Thus, to eliminate these visually
objectionable artifacts, the frequency spectrum must be forced to
be closer to the round shaped and symmetrical “ideal blue noise
spectrum”. To achieve this goal, it is straightforward to apply the
threshold modulation suggested by Ulichney [1987; 1988] and
analyzed by Knox [1993] directly to Ostromoukhov's variable-
coefficient algorithm. In our experiment, the threshold function is
calculated using a white noise random number generator, and the
equation of threshold function containing the threshold
modulation is as follows:

t(i) =128 + (rand(x, y) mod 128) - m(i) 1)
where rand(x,y) is the white noise random number generator’,
(x,y) is the position of the pixel in input image, i€ [0,255] is the
density level of the pixel of the input image, and m (i) [0.0,1.0] is
modulation strength. In our initial experiment, Ostromoukhov’s

3The random number generator can be implemented using the
program library supplied with any programming languages such
as ct+.
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algorithm and its coefficient set are used [2001]. The algorithm is
used unchanged except that the threshold is modulated using Eq.
(1) and the effect of the modulation is shown in Fig.3(c) and (d).

By comparing Fig.3 (c) with Fig.3 (a), which is the output image
generated using Ostromoukhov’s original variable-coefficient
algorithm [2001], significant improvement can be found in
Fig.3(c). In Fig.3 (a), horizontal anomalies can be seen clearly,
but in Fig.3(c), these horizontal anomalies are replaced by evenly
scattered “chess board” and “horizontal bar” patterns. These
patterns are visible, but they are much less objectionable than
those contained in Fig.3 (a).

The comparison shows that threshold modulation is an effective
way to reduce the visible anomalies. Despite this improvement,
the result is not yet perfect. First, anomalies are still visible, the
“vertical bar” pattern and ‘“chess board” patterns appear
alternatively with a relatively large area. Second, the frequency
spectrum of the generated image is not symmetrical, albeit it
appears closer to the “ideal blue noise frequency spectrum” than
the one shown in Fig.3 (b), possibly due to the large portion of the
“vertical bar” patterns contained in the resulted image.

To obtain a better distribution, the frequency spectrum of the
output image should have a symmetric shape, and this can be
achieved by the search for the most suitable coefficients of the
error-diffusion filter [Press et al. 1992; Ostromoukhov 2001]. In
the following sections, a corresponding cost function will be
described with its result presented and analyzed.

3 Searching for Optimal Coefficients

As described in the last section, the error-diffusion coefficients
obtained by Ostromoukhov are not optimal in the presence of the
threshold modulation. To search for the optimal coefficients, the
threshold modulation must be included in the standard error-
diffusion algorithm. As in Ostromoukhov’s work [2001], a
simplex method [Press et al.1992] is used for the search for
optimal diffusion coefficients. In this search, the threshold
modulation defined in Eq. (1) is applied to the error-diffusion
algorithm given in [Ostromoukhov 2001]. After the diffusion
coefficients are obtained by the search, the modulation strength
m(i) is fine-tuned manually and then finalized into our optimal
parameter set (Table 1 and 2) which can be used in the halftoning
process of the algorithm.

When performing the search for optimal parameters, the
optimization target is to obtain the symmetrical frequency
spectrum that is as close as possible to the “ideal frequency
spectrum”. The cost function of the search is the key to achieve
this target. In our work, the cost function is the sum of two parts
(Eq. (4)). The first part measures the symmetry of the spectrum.
The second part measures the similarity of the spectrum to the
“ideal frequency spectrum”.

In the first part, the concept of radially averaged power spectrum
as defined in [Ulichney 1988] is employed but in a segmented
way. That is, three segmented radially averaged power spectrum,
as defined in Eq. (2), are calculated for the three directions in the
frequency spectrum as illustrated in Fig.1. Then, the correlation
[Castleman 1996] of these three power spectrums is calculated.
This correlation is used as the first part of the cost function, which
is contributed by the symmetry of the target frequency spectrum.

The segmented radially averaged power spectrums are defined in
Eq. (2) as following:
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where P,, P,s, P,, are three segmented radially averaged power
spectrums corresponding to the three areas defined in Fig.1; Ny(f,),
Ny(f.), No(f,) denote the number of frequency samples in the
frequency spectrum along the annulus of radius » but falls in to
vertical, diagonal and horizontal segments respectively. P(f) is
the frequency spectrum estimate as defined in [Ulichney 1988].

Another part of our cost function concerns the similarity of the
target frequency spectrum to the “ideal frequency spectrum”,
which is calculated as the ratio between the area covered by the
radially averaged power spectrum curve P(f) [Ulichney 1988]
below the principal frequency and the total area covered by the
whole curve (See Eq.(3 ) and Fig.1). This low frequency ratio for
a halftone image with a density level of g is denoted as L(g) and
can be presented by Eq.(3):
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After the two parts of the cost function are obtained, the cost
function is calculated as a weighted sum of the two parts (Eq.(4)):

3)

Clg) = Corrd F*', i’ By") w+ L(g)-(1-w) 4)
where g is the density level of the halftone image being
considered, ry*’,F,s’, Py’ are the segmented radially averaged
power spectrums of the frequency spectrum of the halftone image
at density level g. w is the weight (0<w<1) and is decided
according to the convergence of our parameter search. Corre is
the correlation function of the three curves F,*’,F,¢’, Fys’ and
the larger its value is, the less similar the three curves are. Given
this definition, the target of the search is thus to find the
appropriate coefficients for a given density level so that they
minimize the cost function.

4 Results

Using the cost function defined in Eq. (4), a set of key parameters
can be found. The density levels of key parameters are chosen by
a visual inspection of the output of Ostromoukhov’s variable
coefficient algorithm, as illustrated in Fig.4 (a) and (c), which are
halftoned from two gray scale images. The densities of the two
images all range from 0 to 0.5.

In Fig.4 (a) and (c), certain density levels appear to not be good
enough. For instance, in Fig.4 (a), visual anomalies appear at level
127/255 and 79/255, transient effects exist at the edge of the
image at level 44/255. When deciding which density levels are
chosen as the key levels of our parameter set, we first add all
Ostromoukhov’s key levels into our set. Then, those levels that
are not ideal and do not exist in Ostromoukhov’s key parameter
set are added.
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Before performing the search for optimal parameters for a key
density level, the threshold modulation strength m(i) is set to its
max value (Eq. (1)), and then the search for the optimal diffusion
coefficients is performed. After the diffusion coefficients for that
density level are found (Table. 1) and the sample halftoning result
is obtained, the modulation strength m(i) is adjusted manually to
further reduce the low frequency component contained in the
frequency spectrum of the results while keeping the “blue noise”
property of the output image. The adjustment is done with
reference to the corresponding output image and its frequency
spectrum. By performing the same operations for each key level, a
diffusion coefficient set and a parameter set of m are obtained and
listed in Table 1 and Table 2 respectively. When using the
parameter set of Table 2, modulation strength m(i) that goes in—
between the two key values is decided, just like the in-between
diffusion coefficients, by a linear interpolation.

After the diffusion coefficients and threshold modulation strength
values were determined, a series of comparisons was made
between our algorithm and Ostromoukhov’s. Fig.4, 5, and 6 are
some of the results.

Among these results, significant improvement, especially with
respect to the “visible artifact” and “transient effect”, can be
found in Fig.4 (b) and (d) in the full range of the densities. In
Fig.5, besides the better visual appearance of the results of our
algorithm, better symmetries can be found in the frequency. The
similarity of the shape of the three segmented radially averaged
power spectra proves the effectiveness of the designing of our
cost function.

In Fig.6, 7 and 8, results of experiments on continuous-tone
images, as well as the comparison of our result with other
halftoning techniques, are illustrated. In these results, “visible
artifacts” can be found in the mid-tone area (e.g.: in the upper-
right portion of the images in Fig.7) in the output of most of other
error-diffusion algorithms but are removed from the result of ours.

5 Analysis and Conclusions

In this paper, threshold modulation using a white noise random
sequence is introduced into the variable-coefficient error diffusion.
According to the analysis made by Knox [1993], adding white
noise to the threshold of standard error-diffusion algorithm is
equivalent to first adding to the input image a noise that is high-
pass filtered from the same white noise used in the threshold
modulation, and then halftoning the modified image by a standard
error-diffusion where the threshold is constant. According to
Ulichney’s blue noise concept, the high-pass filtered white noise
is precisely the blue noise where harmful low frequency
components are reduced. So adding white noise to the threshold
may not cause grainy effect in the area where the threshold
modulation is applied. Notice the background of the flowers and
glass in the images of Fig.7, the original visible irregular vertical
patterns ((b), (c) and (f)) are replaced by the evenly distributed
fine patterns, where no trace of irregular dot clustering, a major
cause of granularity, can be found.

As analyzed above, threshold modulation is a kind of high
frequency perturbation to the error-diffusion result, and this
perturbation must not affect the ideal blue noise property of the
output, which means that the threshold modulation must be
applied in a controlled way. To achieve this goal, we introduced
the concept of modulation strength. By controlling the level of the



modulation strength, an optimal halftoning result, as illustrated in
our experiment result, can be achieved.

In the presence of the controlled threshold modulation as
described above, by searching for optimal values of the
coefficients using the cost function presented in this paper, a set
of the diffusion coefficients and threshold modulation strengths
with a nearly-optimal mid-tone performance is obtained (Table 1,
Table 2) *. The experimental results of this set of parameters show
that, while keeping the simplicity of the original algorithm, the
method described in this paper is effective for removing most
visual anomalies remaining in Ostromoukhov’s results. Compared
with another similar work about fone dependent error diffusion
[Li and Allebach 2002], our algorithm and optimization model are
simpler. We expect that the simplicity of our method may bring
about flexibility and efficiency in its implementation.

In our experiment, modulation strength is obtained manually
rather than in a combined “global” search. There are two reasons
for doing so. First, there are no guidelines for finding a good
initial estimate for the combined search for optimal values of
parameters and furthermore, adding one more parameter (m(i))
into the searching process will decrease the efficiency of the
search. These two factors may lead to the failure of the search.
Second, fine tuning a single parameter m (i) with the reference of
the power spectrum will not decrease the efficiency of the
experiment and the optimal value of m(i) can be easily obtained
with a single experiment. For these reasons, we believed that
manual adjustment in finding the modulation strength m(i) is a
feasible and effective way to perform our experiment. The results
of the experiment proved the validity of this method. A drawback
of manual adjustment is that the resulting modulation strength is
“nearly optimal” in theory. If an automatic search is preferred, we
suggest performing the diffusion coefficients search first, then
searching for the single parameter of modulation strength
automatically.
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Table2: Key levels of threshold modulation and the modulation
strengths (obtained when w=1.0):

Key Level Modulation strength
0 0.00
44 0.34
64 0.50
85 1.00
95 0.17
102 0.50
107 0.70
112 0.79
127 1.00




Vertical segment Diagonal segment

Table 1: Key levels and their diffusion coefficients (obtained
when w=1.0), the notation is defined by Ostromoukhov’s paper
[Ostromoukhov 2001], namely: 4,,, 4, 4,, are for the input
levels 7 in the range [0,127], d,,=4,,(1)/M(i); d_;,=A_;,(i)/M(i); %

dy,=A4y,()/M(i), D()={d,(i).d ,(i).dy,(1)}=D(255-i) and ‘ 2% Horizontal segment
M(()=A,,()+A () +Ay, (i)
Key Level | 4,, A, Ay
0 13 0 5
1 1300249 0 499250
2 214114 287 99357 Figure 1: Three segments in the frequency
3 351854 0 199965 spectrum are selected along vertical, diagonal and
4 801100 0 490999 horizontal direction respectively for the three
10 704075 207466 303694 curves of segmented radially averaged power
spectrums along these directions.
22 46613 31917 21469
32 47482 30617 21900
44 43024 42131 14826
64 36411 43219 20369 C(x,y)_>(+/L > Threshold — > B(xy)
72 38477 53843 7678 +
77 40503 51547 7948 >
85 35865 34108 30026 “Error”
95 34117 36899 28983 e(x.y)
Error filter
102 35464 35049 29485
107 16477 18810 14712
112 33360 37954 28685 1. * |7 * d,o(C(x,y))
127 35269 36066 28664 16 37571 d(Cxy)) | dio(C(xy))
Floyd-Steinberg filter Ostromoukhov filter [2001]

Figure 2: Error diffusion with different error filters

(a) (b) ) (d)
Figure 3: Effects of threshold modulation on error diffusion. (a) Halftone image obtained using Ostromoukhov’s method [2001];
(b) Frequency spectrum of (a); (¢) Halftone image obtained using Ostromoukhov’s coefficients but with threshold modulation
(m=1.0); (d) Frequency spectrum of (c). Density of both halftone images is 127/255 or 0.5.
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Figure 4: A ramp comparison between our result and Ostromoukhov's Result [2001]
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(a) Ostromoukhov’s result,  (b) Our result, density: 127/255  (¢) Ostromoukhov's result, (d) Our  result,
density: 127/255 density: 44/255 density: 44/255

Figure 5: Comparison of the halftoning results of uniform patches with two difterent densities. Top: halftoning result. Middle:
frequency spectrum of the result. Bottom: segmented radially averaged power spectrum (red: horizontal, green: diagonal, blue:
vertical)

Figure 6: A comparison using continuous tone image. (a) Using Ostromoukhov’s parameter; (b): Using our parameter
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Figure 7: Continues tone image comparison using different halftoning technologies:

(a) Void-and-cluster [Ulichney 1993] (Courtesy of Robert Ulichney); (b) Shiau-Fan E-D [Shiau and
Fan 1996] (Courtesy of Zhigang Fan) (c¢) Roadmap halftoning [MARCU 2000](Courtesy of Gabriel
Marcu); (d) Dual-metric DBS [Kim and Allebach 2002] (Courtesy of Jan Allebach); (e¢) TDED [Li
and Allebach 2002] (Courtesy of Jan Allebach); (f) Variable Coefficient E-D [Ostromoukhov 2001];
(g) Our algorithm

(e

o
A
e

e S

(a) Shiau-Fan E-D [Shiau and Fan 1996 1 (Courtesv of Zhigang Fan)

(¢) Roadman halftoning TMARCU 20001(Courtesv of Gabriel Marcu) .
(d) Our algorithm

Figure 8: Ramp comparisons with other advanced E-D algorithm
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