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Figure 1: Examples of results obtained using our sketch based shape modeling approach.

Abstract

This paper proposes a novel method to automatically generate the
realistic 3D model for a 2D free-hand sketch drawn by a user.
Specifically, the proposed method first retrieves 3D shapes based
on the sketch, and then implements a deformation procedure to
make the most similar model retrieved more consistent with the
provided sketch. In the retrieval stage, a locality preserving view
selection scheme is adopted to generate views that are well-suited
to create sketch images for the 3D object. Our method predicates
the sketch views accurately while significantly reduces the amount
of rendering views. In the deformation stage, retrieved models are
modified according to the input sketches. Since free-hand sketches
always contain various kinds of drawing errors such as stroke jit-
tering and asymmetry, extracting plausible deforming information
from sketches while discarding undesirable drawing errors is diffi-
cult. To address these issues, we obtain the plausible deformation
for the corresponding sketch by exploring a shape manifold trained
on a collection of similar 3D models. Experimental results show
that the proposed method can generate 3D shapes that correspond
quite well with 2D sketches.
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1 Introduction

With the rapid growth of large repositories of 3D models, effec-
tive ways of exploring and modeling 3D shapes are desired. As an
intuitive way of searching and creating complex 3D shapes, sketch-
based modeling has been studied for many years and a number of
interactive tools have been designed for free-hand sketch design-
ing [Yang et al. 2005; Lee and Funkhouser 2008; Xie et al. 2013;
Fan et al. 2013]. Generally, existing approaches can be classified
into the following two categories: 1) Methods that directly refer
3D geometric information from a well-drawn sketch; 2) Methods
which retrieve the shape within a dataset that holds the best visual
similarity with the provided sketch.

Geometry inferring from sketch. Directly inferring geometric in-
formation by exploring the sketch is an intuitive approach [Xu et al.
2014]. As a non-data driven method, this family of modeling meth-
ods often require realistic sketches that contain perspective and pro-
jective geometric information. For instance, [Mitani et al. 2002]
used three vanishing points to find the projection center. Further-
more, they are often designed as progressively refined algorithms
which are computationally expensive.

Sketch-based shape retrieval. Sketch based shape retrieval has
been widely studied since the release of Princeton Shape Bench-
mark [Shilane et al. 2004]. Many efforts have been made to get
more effective shape descriptors for sketches. In 2012, [Eitz et al.
2012] proposed a comprehensive framework for sketch based 3D
shape retrieval that gives the state-of-the-art results. However, re-
trieval based methods typically require a large collection of shapes,
while in many real applications usually none of models in the
database is identical as the provided sketch.

To solve the problems mentioned above, in this paper, we present a
framework that integrates the retrieval method with a sketch based
deformation step to make the modeling results more consistent with
the input sketch. The deformation step adopted in our approach has
two advantages: 1) The shape manifold produces large numbers of
variants by exploring a small collection of similar shapes (Figure 4).
2) The deformation step compensates the incorrect retrieval results
to some extent.



Figure 2: Pipeline of our sketch-based modeling approach.

More specifically, our approach consists of two major procedures:
sketch based shape retrieval and deformation via manifold regular-
ization. In the first step, we use the Histogram of Gradients (HOG)
to describe 2D sketches and then perform sketch based shape re-
trieval. In the second step, we extract meaningful and plausible
deformation information by exploring a nonlinear manifold trained
on a collection of similar shapes using a non-linear dimensional-
ity reduction technique GPLVM [Lawrence 2004]. The proposed
method can be divided into off-line processing and on-line process-
ing as shown in Figure 2. To sum up, the main contributions of
this paper are threefold: 1) A novel sketch modeling framework is
designed that integrates both shape retrieval and deformation; 2)
A locality preserving view selection method is proposed; 3) Plau-
sible deformation is extracted from sketch by employing manifold
regularization.

2 Sketch based shape retrieval with locality
preserving view selection

Contrasting to most of existing camera view sampling methods,
our locality preserving view selection scheme employs an analyt-
ical method which preserves the locality details without sampling
uniformly on the view direction sphere. Specifically, our method
uses a particular dimensionality reduction method: locality preserv-
ing projections(LPP) [Niyogi 2004] which is more robust than ap-
proaches using conventional covariance analysis. LPP is suitable
for view selection due to its linearity and locality preserving abil-
ity. As demonstrated in [Secord et al. 2011], surface visibility is
considered to be the most influential metric when selecting a good
viewing direction. Typically, we favor views that maximally reveal
3D shape information [Xu et al. 2014]. This implies the rationality
of our view selection method. Moreover, the proposed method has
a closed-form solution without invoking optimization in contrast to
other machine learning based view selection schemes.

Given a set of discrete points X in mesh M, X =
{x1,x2, . . . ,xN},xi ∈ M, M is a nonlinear manifold embed-
ded in R3. We aim to find the optimized projection directions that
best preserve the details. The projection matrix is given by collect-
ing the first two largest eigenvalues and corresponding eigenvectors
obtained by solving the generalized eigenvector problem

XLXTa = λXDXTa ,

where W is the weighted adjacency matrix and D is a diagonal
matrix whose entries are column sums of W , Dii =

∑
jWji. L =

D−W is the Laplacian matrix. Given the two projection direction
vectors a1 and a2, the projection matrix is given by A = [a1 a2].
The projected point in R2 is denoted as yi, i = 1, 2, . . . , N. The
explicit projecting transform is computed as

yi = ATxi.

Instead of using vertices on the triangle mesh directly, we sample
points uniformly within each triangle to avoid views that preserve
too much information for high curvature regions while ignore flat
regions. Given the locality preserving directions a1 and a2, the
camera view direction is obtained by the cross product of these two
vectors

v = a1 × a2 . (1)

The camera coordinates system is thus determined by the three ba-
sis vectors zc = v,yc = zc × u,xc = yc × zc, where u repre-
sents the up vector.

To improve the freedom of the possible drawing views, we add a δ-
view interval to the calculated locality preserving view. In spherical
coordinate system, that is: θ = θ1 + δθ and φ = φ1 + δφ, where
1 is a column vector with all its entries being one. δθ and δφ are
incremental (or decremental) vectors indicating an interval of θ and
φ in δ-view as illustrated in Figure 3. After rendering the selected
views, we extracts HOG feature vectors from these view images.
Note that after retrieval with a query sketch, both the most similar
shape and its estimated view are obtained.

3 Sketch based deformation via manifold
regularization

3.1 Shape collections co-alignment

Methods that jointly optimize the maps among the shapes in a
collection are considered to perform much better than approaches
which directly implement matching on pairs of shapes [Huang and
Guibas 2013]. Here we use a part-based template learning method
[Kim et al. 2013] to co-align a collection of similar shapes. This
algorithm starts with an initial template model and then jointly opti-
mizes for part segmentation. Finally, 3D shapes can be well aligned
in canonical domain. We use this as input and simply use ICP algo-
rithm to obtain point-to-point correspondence.
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(a) uniformly sampled
views

(b) locality preserving
views with δ-views

(c) view slicing

Figure 3: Locality preserving views and uniformly sampled views.
(a) uniformly sampled 400 rendering views. (b) locality preserving
view(green dot) + δ-views(red dots), 12 in total. (c) view slicing,
marked in yellow dots.

3.2 Manifold regularization

To extract plausible deformation while discarding undesirable
drawing errors, we adopt a manifold regularization method inspired
by the success of recent work on font generation [Campbell and
Kautz 2014]. After co-alignment, we are able to train a genera-
tive shape manifold by considering each shape as a vector in high-
dimensional space. The trained manifold offers smooth interpola-
tions between similar shapes and hence provides a valid constraint.
Let Ω represent the pixels that have nonzero values in the rendered
image ofM in a given view and ∂Ω be the boundary of Ω by in-
voking edge detecting operator in Ω. The so-called view-slicing
q ⊂ M consists of vertices that contribute to the pixels in ∂Ω
(marked as yellow dots in Figure 3c).

The first step of deformation is to align the sketch S with ∂Ω. Here
we employ a shape context descriptor for the correspondence re-
covery [Belongie et al. 2000]. Let D be the deformation vectors,
namely, Di = Si − ∂Ωi. This procedure is illustrated in Figure
2. We apply these deformation vectors to the view slicing, that is,
qi ← qi +Di.

Given the shape manifold trained through GPLVM, we aim to find
a position xp in the low dimensional space, whose corresponding
vector p in high dimensional space favors the plausible shape de-
formation described by D. Therefore, we exploit the shape mani-
fold and aim to find a point x∗ that minimizes the following energy
function

E = λ1E1 + λ2E2 + λ3E3 + λ4E4, (2)

where λ1, λ2, λ3, λ4 denote the corresponding regularization pa-
rameters. Terms in this function are discussed explicitly as follows.

The Euclidean distance term. Given the above definition, we are
now able to give the first Euclidean distance term formulated as

E1 =

m∑
i=1

‖qi − pi‖
2 = ‖q − pS‖2F , (3)

where ‖ · ‖F denotes the frobenius norm. S ∈ {0, 1}n×m is a
binary selective matrix with exact one entry being one within each
column, i.e. ST1 = 1. Sij = 1 means that the ith point in p is
selected as the jth point. Thus multiplying S is equivalent to apply
the view slicing operation to the point set p.

The local tangent vector term. To describe the contour, we in-
troduce the second energy term named local tangent vector. We
perform covariance analysis within a small neighborhood of each
point qi in q. Note that view slicing points of a mesh do not nec-
essarily lie in a plane. Therefore, in this step we project q to the

Figure 4: A vase manifold generated by four samples (marked in
red square). The dimensionality is reduced to 2 for visualization.
From top to bottom, the vase body becomes wider. From left to
right, the bulge position becomes lower. This manifold produces a
large number of variants by exploring a small collection of similar
shapes.

estimated view plane beforehand. For simplicity, we will still use q
to denote the projected q. The second term is defined as

E2 =

m∑
i=1

f(µqi ,µ
p
i ) , (4)

where µ represents the local tangent vector. For a given point
xi ∈ q and its neighborhood N (xi), UΣVT denotes the singular
value decomposition (SVD) of N (xi), where Σ = diag(σ1, σ2)
and U = [µ ν] are the two basis vectors in this local coordinate
system. The function f evaluates the weighted cosine angular dis-
tance between two angles

f(v1,v2) = (1− |vT1 v2|)e−ε·
σ1
σ2 .

The difference of Fourier shape descriptors. After projecting pS
and q into the view plane, we calculate the third term as

E3 = ‖Fp − Fq‖2 , (5)

where Fp and Fq are Fourier coefficients extracted from point sets
pS and q, respectively.

The minimum distance regularization. As observed in Figure 4,
the point that is too far away from training samples may result in
undesired variants such as excessive stretch and distortion. There-
fore, we add a minimum distance term to prevent the optimized
point going too far away from training samples in the manifold

E4 = min
i
‖xp − xi‖2, ∀i = 1, 2, . . . , N. (6)

4 Results

The proposed method is evaluated in the shape COSEG dataset1

with 6 selected small subsets: candelabra, goblet, chair, lamp, gui-
tar and fourlegs. Table 1 shows detailed configurations of each
subset and the specific implementation time. Our final results are
shown in Figure 5 from which we can see that important features
such as symmetry and high-frequency details are well preserved.

For edge detection, we use sobel operator with a threshold chosen
as 0.01. When rendering, we produce another image for record-
ing the view slicing indices. Each pixel is assigned with an integer
which denotes the indexing number of triangles that contribute to
the pixel’s brightness. The regularization parameters are chosen

1http://web.siat.ac.cn/˜yunhai/ssl/ssd.htm
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Figure 5: Examples of sketch modeling results obtained by a normal retrieval system and our approach. The proposed method is evaluated
in 6 datasets: candelabra, goblets, chairs, lamps, guitars and fourlegs.

datasets # shapes #views alignment(s) total(s)
Goblets 12 11 35.13 46.88

Candelabra 20 11 34.85 48.23
Chairs 20 54 76.50 95.94
Lamps 20 15 52.93 110.75
Guitars 44 33 39.72 55.76
Fourleg 20 55 38.80 64.89

Table 1: Details of datasets and the computational time of the pro-
posed method. The context-based sketch alignment is the most time-
consuming step.

as λ1 = 2, λ2 = 0.01, λ3 = 0.01, λ4 = 0.01. For δ-view, we
use different intervals for each subset due to the different geomet-
ric features of each dataset. For instance, goblets and candelabra
are quite symmetric across the mean axis, so we stretch the inter-
val of φ while shrink the interval of θ. Note that this is conducted
for a further reduction of the amount of rendering images. We also
observe that a large σ in GPLVM can lead to a more tremendous
deformation among training samples. Therefore, we adopt σ = 1
in average to get smoother shape morphing. For the HOG feature,
we utilize a window of 64 × 64 as sketches contain a majority of
margins. It should also be point out that here the optimized solu-
tion of Equation 2 is found by searching for sampled points on the
manifold.

5 Conclusion

This paper presented a sketch based modeling framework that inte-
grates both shape retrieval and sketch based deformation. On con-
trast with other existing methods, projection realistic drawings are
not required for our algorithm and a further consistency with the
provided sketch is achieved by implementing a deformation step us-
ing manifold regularization. This paper also proposed an analytical
view selection method by preserving the local details in shapes. Ex-
perimental results demonstrated the effectiveness of our method in
sketch based shape modeling. One major limitation of the proposed
method is that the shape manifold should be built on the dataset con-
sisting of 3D models with similar shapes. We are planning to solve
this problem in the future.
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