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Gradient Domain Salience-preserving Color-to-gray Conversion
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Figure 1: Salience-preserving color-to-gray conversion. Left: original. Middle: our result (β = 1, γ =∞, α = 0). Right: L in CIELAB.

Abstract

In this paper an algorithm for gradient domain color-to-gray con-
version is described. By enhancing the luminance gradient with the
chromatic difference in CIELAB space, a gradient field is created
to construct the resulting gray-scale image using a Poisson equation
solver. In our algorithm, we develop a modulated luminance gra-
dient enhancement to produce artifact-free and salience-preserving
grayscale images. A gradient sign control function is defined for
isoluminance color images to keep the correct color ordering.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image Gen-
eration — Display algorithms; I.4.10 [Image Processing and Com-
puter Vision]: Image Representation—Multidimensional

Keywords: color removal, gradient domain, image processing,
color difference

1 Introduction

Color-to-grayscale conversion for digital color images is an impor-
tant issue in computer graphics. It is widely used in black-and-
white printing, video and animation, etc. Although some algorithm-
s have been successfully used in industry, there are still many prob-
lems to solve, such as color discriminability for isoluminant colors.

Algorithms for color-to-gray conversion can be classified into
three categories: 1) Linear combination of original color channels,
typically, the Y component of CIEXYZ system [Ohta and Robert-
son 2005]. This kind of algorithms are widely used in industry,
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but lack the discriminability of isoluminance colors. 2) Global op-
timization algorithms for the conversion [Gooch et al. 2005; Kim
et al. 2009] try to solve the problem of category 1, but some of them
are very time-consuming. 3) Local feature enhancement algorithm-
s [Neumann et al. 2007; Smith et al. 2008] also aim at improving
their performance, but still suffer from the low execution efficiency
and the gray-scale distortion.

For an ideal color-to-gray conversion algorithm, several require-
ments should be satisfied. First, the resulting grayscale image must
be coincide with the luminance vision of human eyes, which is
typically defined by the L component of CIELAB 1 color model
[Wyszecki and Stiles 1982]. Second, for an isoluminance color im-
age, all the colors in the image must be discriminable in the result-
ing grayscale image. Third, no artifacts should be introduced into
the resulting grayscale image. For an image generated by a Poisson
Equation Solver (PES) , these artifacts usually appears in the form
of “halo effect”, which must be reduced to be invisible by human
eyes [Fattal et al. 2002].

In this paper, we present a new category 3 algorithm which solves
the color-to-gray conversion problem in the gradient domain. In
gradient domain image processing, the gradient can be treated as a
partial derivative of the original image. When this partial derivative
is solved by a PDE solver such as PES, the original image can be re-
constructed. By modifying data in the gradient domain, a different
image can be obtained for certain purpose. In [Fattal et al. 2002],
this strategy is used to convert a HDR image into a LDR one. Sim-
ilar applications can also be found in [Pérez et al. 2003; McCann
and Pollard 2008].

In our algorithm, we generate a gradient field that is used to re-
construct the grayscale image from the color image. The gradient
at each pixel is a measurement of the color differences between its
neighbors. The color difference is calculated base on the CIELAB
model [Ohta and Robertson 2005] which is a reflection of the color
vision of human eyes, hence the converted grayscale image will be
a best approximation of the original color image.

By enhancing the luminance difference with a modulated chro-
matic difference component in CIELAB space, the salience of the

1For simplicity, in this paper, CIELAB refers to CIE 1976 (L∗a∗b∗)-
Space, and variables a and b are used to stand for a∗ and b∗ respectively.



original color image caused by color vision can be well preserved in
the resulting grayscale image (Fig. 1). By modulating the amount
of the chromatic difference component, the grayscale distortion can
be minimized and become imperceptible to human eyes. Addition-
ally, a sign function sign(·) for the color difference is also defined
to keep correct color ordering for isoluminance color images.

2 CIELAB-based Gradient Field for Color-to-
gray Conversion

2.1 Gradient domain image processing

In gradient domain, a grayscale image I is a discretization of a con-
tinuous 2D function I(x, y) defined in R2, and can be represented
by the gradient∇I of the original I(x, y):

∇I = (Ix, Iy) = ( ∂I
∂x
, ∂I
∂y

). (1)

Given the discrete form of this partial differential equation in I2

domain 2 , a PDE solver such as Poisson equation solver (PES)
[Fattal et al. 2002; Press et al. 1992] can be used to reconstruct the
original image I as illustrated in Fig. 2. For the problem of color-
to-gray conversion, if I is the luminance component L of CIELAB
presentation of a color image C, then from the gradient field ∇I
we can reconstruct the luminance of C (Fig. 3(d)).

Figure 2: Gradient domain image processing.

2.2 The measurement of color difference

CIELAB is a uniform color space, where the Euclidean distance of
two points measures the perceptive feeling of color difference in
human eyes for the two colors they represent [Ohta and Robertson
2005; Steven K. Shevell 2003]. Given the differences ∆L, ∆a, ∆b
of the two colors along each coordinate axis, the color difference
∆E is defined by:

∆E =
√

(∆L)2 + (∆a)2 + (∆b)2. (2)

That means if we use only L component to reconstruct grayscale
image, the resulting image will not coincide with the color differ-
ence that human eyes perceive [Gooch et al. 2005]. Hence, it is
straightforward to use Eq.(2) in constructing the gradient field. Ex-
periments show that more color difference can be successfully pre-
served in this way (Fig. 1). However, perceptible grayscale distor-
tion may occur at the same time, especially where strong or noisy
color differences exists (Fig. 3(b)). In order to remove these arti-
facts, we add a modulation function A(·) to Eq.(2), whose details
will be given in Section 3. Then, the modulated color difference is
formulated as:

∆E =

√
(∆L)2 +

(
A
(√

(∆a)2 + (∆b)2
))2

, (3)

2.3 Color-difference-based color-to-gray conversion

Based on the idea of chromatic color difference, we propose a new
color-to-gray conversion framework (Fig. 4). The input color image

2The discrete form of Eq.(1): Ix = I(x + ∆x, y) − I(x, y), Iy =
I(x, y + ∆y)− I(x, y)), where (x, y) ∈ I2, ∆x = ∆y = 1.

(a) (b) (c) (d)

Figure 3: Removing artifacts by adding chromatic color difference
to the luminance difference. (a): Original color image. (b): Chro-
matic difference without modification (β = 1, γ =∞, α = 0). (c):
Modulated chromatic difference (β = 1, γ = 1
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, α = 0). (d): No

chromatic difference added(β = 0, α = 0).

Figure 4: Color-to-gray conversion based on color difference.

C is represented in L(x, y), a(x, y), b(x, y) channels of CIELAB
model. Its gradient field ∇̃C is composed of a luminance gradient
∇L and a chromatic gradient ∇̃C(a, b). The former is calculated
as in Eq.(1), and the latter is obtained by:

∇̃C(a, b) = (Cx, Cy) , (4)

Cx =
√

(a(x+ ∆x, y)− a(x, y))2 + (b(x+ ∆x, y)− b(x, y))2,

Cy =
√

(a(x, y + ∆y)− a(x, y))2 + (b(x, y + ∆y)− b(x, y))2.
(5)

Then, ∇̃C can be calculated from ∇L and ∇̃C(a, b) using
Eq.(6), before it is fed into the PES to reconstruct the grayscale
image G:

∇̃C =(
sign (Lx, a(x+ ∆x, y), a(x, y), b(x+ ∆x, y), b(x, y)) ·√
L2
x +A2(Cx),

sign(Ly, a(x, y + ∆y), a(x, y), b(x, y + ∆y), b(x, y)) ·√
L2
y +A2(Cy)

)
.

(6)
Here, A(·) is the modulation function for color differences Cx and
Cy , used to remove grayscale distortions caused by PES. Function
sign(·) defines the sign of the gradient. It is used to determine the
color ordering for isoluminance color images (Section 4).

3 Artifact removal

When creating new images with PES, a common problem is the ex-
istence of artifacts. In color-to-grayscale conversion, the artifacts
lead to the grayscale distortion as shown in Fig. 3(b). There are
many works aim to solve this problem, e.g. [Fattal et al. 2002] em-
ploys a multi-scale schema and [Neumann et al. 2007] removes the
inconsistency of the gradient field. In our method, we employ a
single-scale method and selectively attenuate the gradient enhance-
ment to remove the artifacts. Experiments show that this scheme is
fast and efficient (Fig. 3(c)).



(a) Original (b) L in CIELAB (c) θ = 0◦ (d) θ = 45◦

(e) θ = 90◦ (f) θ = 135◦ (g) θ = 180◦ (h) θ = 225◦

Figure 5: Different θ for a color blindness testing chart in (a)
[Wikipedia 2010]. For all results, α = 1, β = 1, γ =∞ is used.

The attenuation of gradient enhancement takes the form of a
modulation function A(·) as mentioned in Section 2.2, which is
defined as:

A(x) = x
(
β
(

1−
(

x

cxmax

)γ))
= x ·A0(x), (7)

where, x ∈ [0, xmax], c ∈ [1,∞), β ∈ [0,∞) and γ ∈ (0,∞).
The function works only on chromatic differenceCx andCy , there-
fore the enhancement to the luminance difference is always valid
for any β 6= 0. Function A(·) scales down the input signal x by
a scaling function A0(x). Larger value of γ will preserve more
high chromatic differences, while smaller γ will attenuate the high
chromatic difference and preserve low chromatic differences. The
constant c is used to ensure that the largest chromatic difference will
not be completely scaled down. In our implementation, we choose
c = 2.0.

4 Color Ordering for Isoluminance Image

In a converted grayscale image, colors with different luminance are
easier to discriminate, while for isoluminance colors, it is necessary
to determine their ordering to preserve the difference. We achieve
this goal by defining a sign function for the gradient field ∇̃C.

∇̃C is constructed from the modulated color difference (Eq.(4)),
hence it is not a signed value by itself. If there is luminance dif-
ference between a pixel and its neighbor, the sign of the gradient
at that pixel can be reasonably defined as the sign of the luminance
difference. But that do not work for a pixel that has equal lumi-
nance with its neighbors. Instead, we employ a similar schema as
in [Gooch et al. 2005]. By competing the luminance difference ∆L

with the chromatic difference ~∆C , our sign function is defined as:

sign(∆L, a2, a1, b2, b1) = sign(∆L+ α · (~vθ · ~∆C)), (8)

where, (L1, a1, b1), (L2, a2, b2) are CIELAB coordinates of two
colors, ∆L = L2−L1, ~vθ = (cos θ, sin θ), ~∆C = (a2− a1, b2−
b1). α ∈ [0, 1] defines the strength of the chromatic difference af-
fecting the sign of the gradient , and θ ∈ [0, 2π) defines a direction
in a-b plane of CIELAB space.

Fig. 5 shows the effect of our sign function. In the original im-
age (Fig. 5(a)), the chromatic color differences between neighbor-
ing pixels are larger then their luminance difference, hence the sign
function helps to reveal the color-blindness testing patterns in the
converted grayscale images.

(a) Original. (b) Our result. (c) L in CIELAB

(d) Original. (e) Our result. (f) L in CIELAB

Figure 6: Salience-preserving color-to-gray. Parameters: (b):
β = 1, γ = 1
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, α = 1, θ = 0◦; (e): β = 1, γ = 1

21
, α = 0.

5 Experimental Results

We implemented our gradient domain color-to-gray conversion
method using a PES given in [Press et al. 1992]. As the PES has a
linear time complexity [Fattal et al. 2002], our method has a steady
execution speed of around 2 seconds per mega pixel (1024× 1024
pixels in RGB) on a computer with Intel Core Dou CPU 2.2GHz
and 2GB memory.

Experiments show that our method is insensitive to the size of the
input image, because image down-sizing does not largely influence
the dynamic range of the chrominance value. Taking advantage
of this feature, we can quickly find optimal parameters for an in-
put image by performing the algorithm on a low-resolution version.
Then, applying the parameters on the original image, the same op-
timal result can be achieved. Currently, the optimal parameters are
found interactively. We first turn on the chrominance enhancement
by setting β = 1, α = 1 and γ =∞. Then different values of θ are
tested to obtain a best color discrimination. If grayscale distortion
appears after the optimal θ is chosen, the value of γ or α will be
decreased until the distortion become invisible.

In our implementation, input RGB image is first converted to
CIEXYZ and then to CIELAB. The RGB color is in PAL-RGB
standard and reference white is D65 [Ohta and Robertson 2005;
Pascale 2008]. After the L channel for the grayscale image is re-
constructed by PES, it is converted back into RGB color and the
dynamic range is scaled to [0, 255]. Before this conversion, the
chrominance value of all the pixels are set as that of D65.

Our method shows a satisfying salience-preserving ability. As
demonstrated in Fig. 1 and Fig. 6, many details, e.g. the fishes in
6(a) and the painting details in 6(d), can be seen more clearly in
our results while they are not identifiable if converted using only
L channel of CIELAB model . Hence, our results preserve more
details and thus appear visually closer to the original color images.

Fig. 7 shows the color discriminability of our algorithm. Im-
ages in the middle column are our results and the right are obtained
by using L channel in CIELAB model. Fig. 7(g) is a computer-
designed isolumminance image where L = 50. Our algorithm
shows perfect color discriminability and ordering for both continu-
ous color (7(d) and 7(g)) and discrete color (7(a)). The comparison
with previous works in Fig. 8 and the supplemental materials also
exhibit these advantages of our algorithm.



(a) Original. (b) Our result. (c) L in CIELAB

(d) Original. (e) Our result. (f) L in CIELAB

(g) Original. (h) Our result. (i) L in CIELAB

Figure 7: Color discriminability of the algorithm. Parameters: (b):
β = 1, γ = 1

21
, α = 1, θ = 80◦. (e): β = 1, γ = ∞, α = 1,

θ = 270◦. (h):β = 1, γ = 1
66

, α = 1, θ = 315◦.

Original Ours [Kim et al. 2009] [Gooch et al. 2005] [Neumann et al. 2007]

(1) (2) (3) (4)
β 1 0.9 1 1
γ 1

72
1
11

1
21

1
13

α 1 0.1 1 1
θ 15◦ 105◦ 0◦ 225◦

Figure 8: Comparison of our method with others. Source and refer-
ence images are from [Kim et al. 2009]. Parameters for our result
are shown in the table above, where columns labeled (1) through
(4) correspond to the images from top to bottom.

6 Conclusion

In this paper we explored the gradient domain color-to-gray con-
version. By controlling the strength of chromatic enhancement to

the luminance, we are able to obtain a salience-preserving grayscale
image with no visible grayscale distortion. It is based on an obser-
vation that grayscale distortion is mainly caused by strong chromat-
ic differences, and Eq.(7) aims to attenuate these strong gradient.
Experiments have proven the validity of the observation.

Although our method support interactively choosing of the op-
timal parameters during the conversion, automatically deciding of
the parameters is still a problem to explore. We believe that our
4-parameter (β, γ, α and θ) model is suitable for an optimizing
process if a suitable target function is defined.
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