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a b s t r a c t

Recently, multiple kernel learning (MKL) has gained increasing attention due to its empirical superiority

over traditional single kernel based methods. However, most of state-of-the-art MKL methods are

‘‘uniform’’ in the sense that the relative weights of kernels keep fixed among all data.

Here we propose a ‘‘non-uniform’’ MKL method with a data-dependent gating mechanism, i.e.,

tune the weight for each cluster under the graph embedding (GE) framework. The idea of exploiting

cluster structures is based on the observation that data from the same cluster tend to perform

consistently, which thus increases the resistance to noises and results in more reliable estimate.

Moreover, it is computationally simple to handle out-of-sample data, whose implicit RKHS representa-

tions are modulated by the posterior to each cluster.

Quantitative studies between the proposed method and some representative MKL methods are

conducted on both synthetic and widely used public data sets. The experimental results well validate its

superiorities.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

For real-world classification tasks, the input data are typically
not linearly separable due to the highly complex data structure or
noises. Kernel-based algorithms [1] such as support vector
machine (SVM) retain linear separability by mapping original data
into a high-dimensional Hilbert space H via a mapping function
fð�Þ. An attractive property of kernelized algorithms is that we need
only the so-called Gram matrix G¼ ½Kðxi,xjÞ� rather than explicit
mapping functions, whereKðxi,xjÞ corresponds to the inner product
of fðxiÞ and fðxjÞ in H.

Recent studies erose much interest in multiple kernel learning
(MKL), i.e., utilizing multiple heterogeneous kernels simulta-
neously. For classification or regression tasks with multi-channel
or multi-kernel inputs, a uniform weighting scheme may obtain
good performance, however, it may be far from saying ‘‘optimal’’. In
contrast, MKL provides an elegant solution for parameter selection.
Taking SVM as an example, traditional cross-validation approach is
straightforward yet computationally expensive. While from an
MKL standpoint, valid parameter values correspond to distinct
kernels, whose optimal combination can be determined in a round.
Performances in terms of accuracy or regression residual obtained
ll rights reserved.
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by cross validation and MKL are comparable, yet the latter is much
more efficient.

A commonly used kernel combination strategy in MKL is the
linear additive one, i.e.,

Gði,jÞ ¼
XM
p ¼ 1

ypGpði,jÞ, ypZ0, 8p,
XM
p ¼ 1

yp ¼ 1, ð1Þ

where M is the number of kernels. For binary classification, given a
coefficient vector aARN (N is the number of training data) and
labels {yi}, i¼1yN, each datum is transformed as below for further
investigation, i.e.,

F ðxiÞ ¼
XN

j ¼ 1

Gði,jÞyjaj ¼
XN

j ¼ 1

yjaj

XM
p ¼ 1

ypGpði,jÞ: ð2Þ

The seminal work in [2] done by Lanckriet et al. pioneered the
works of linearly combining heterogenous kernels, where the MKL
problem was formulated as a semi-definite program (SDP) and was
later reformulated by Bach et al. in [3] as a QCQP (quadratically
constrained quadratic programming) problem. In [4], the MKL
problem was formulated with max-margin criterion as a semi-
infinite linear program (SILP), which was finally efficiently solved
based on a standard SVM implementation. Later, an MKL method
with LDA-style loss functions was investigated by Ye et al. in [5],
where SDP based formulation was proposed. After that, Ye et al. [6]
further relaxed the SDP form into a QCQP form for acceleration,
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however, it is not general and cannot handle regression problems,
which was further solved in [7].

All the above-mentioned MKL methods are ‘‘uniform’’, namely
the weight assigned to each kernel is spatially constant all over an
implicit Hilbert space. Such a treatment ignores the possible
disparity of data structure in different spatial areas, which moti-
vates our work about ‘‘non-uniform’’ MKL here.

Several works following this idea exist. For example, in [8,9], the
authors demonstrated that assigning spatially varying weights to
samples within the same kernel-induced space may enhance
classification accuracy. For the consideration of feasibility, these
methods usually made strong assumptions to control kernel
weights’ spatial variation, e.g., the log-linear form in [9]. In the
work of group-sensitive MKL (GS-MKL) [10], similar idea as in this
paper was experimented on the image classification task. Image
data sets such as Caltech-101 or VOC 2007 are clustered into groups
in each different category by a pre-processing step. For parameter
estimation, they employ an alternating optimization scheme
between kernel weights and supporting vectors. This work was
strongly motivated by the locality property demonstrated in
numerous computer vision data sets, where assigning the images
from different sub-class or group is supposed to result in better
discriminating ability. However, this method is known to suffer
from low convergence speed and parameter-sensitivity. To over-
come these aforementioned limitations, here we propose a novel
non-uniform MKL method by directly exploiting data locality,
rather than imposing ad hoc assumptions.

The rest of this paper is organized as follows: the motivation is
explained in Section 2. The overview of the proposed algorithm can
be found in Section 3 and its two key optimizing stages are
described in Sections 4 and 5 respectively. Finally, extensive
evaluations on several datasets are provided in Section 7.
2. Motivation

In Fig. 1, we plot the evolution line of various MKL algorithms.
Most existing MKL methods assume that RKHS-related kernel
weights remain constant for all data (i.e., space-level), while
algorithms like LocalizedMKL [9] seek kernel weights that are
data-dependent and locally smooth (i.e., sample-level). Although
sample-level non-uniform methods give the largest flexibility, in
practice typically relaxations are introduced to enhance tractabil-
ity. An example is the LocalizedMKL algorithm, where the linear
gating model spatially varies sample’s weights along specific
direction in the feature space.

However, existing methods suffer from non-linear heteroge-
neous structures lying in the data. Fig. 2 shows such a toy data set
for binary classification, which is named 4-XmasStar. The data
consist of four regularly arranged components, each of which
contains two star-like shapes (ChrismasStar) generated from either
the positive class or negative class, as shown in Fig. 2(a). Obviously
the data points can be naturally grouped into four clusters based on
mixture-of-Gaussian model, as seen in Fig. 2(b). Particularly, the
averaged distances between two adjacent stars in each of the four
Sample Level

(each sample is assigned 
distinct weights, e.g. 

Localized MKL)

Cluster

(uniform ov
e.g. the p

method in 

Non-uniform

Fig. 1. Illustration for the evoluti
cluster significantly varies (i.e., 0.2, 0.8, 1.4, and 2.0, respectively. All
the stars have a standard variation of 0.3 along the radial direction).
In the context of MKL, assume the adopted kernels are five Gaussian
kernels Ksðxi,xjÞ ¼ expð�Jxi�xjJ

2=s2Þwiths equal to 0.01, 0.1, 1, 10,
and 100, respectively. Intuitively, the clusters with high inter-star
gap prefer larger s, and the kernel weights are supposed to be
gradually changed from cluster-1 to cluster-4 in Fig. 2(b).
Fig. 2(c) shows the failure of LocalizedMKL using five linear gating
functions, where the yellow-color isolines correspond to the
decision boundaries, and each unique polygonal region shaped
by the pink lines is dominated by a specific kernel. Intuitively, the
estimation from LocalizedMKL is not in accord with the expecta-
tions (for example, cluster-2 and cluster-3 are supposed to both
have larger weights on the kernel with s¼ 0:1 yet cannot be
achieved by linear gating functions. See Section 7.1 for a better
solution), which sketches the difficulties for existing sample-level
MKL methods to distinguish these kinds of heterogeneous
structures.

To overcome above drawbacks and build MKL algorithms which
make better tradeoff between flexibility and tractability, here we
propose a novel, practical MKL method on the cluster level. Our
main observation lies in that data from the same cluster tend to
manifest similar properties, thus the intra-cluster weights can be
approximately uniform while kernel weights are allowed to vary
over clusters. The example of 4-XmasStar is quantitatively re-
visited in the experimental section.
3. Cluster-based non-uniform MKL

3.1. Notations

Before proceeding, let us first clarify some frequently used
notations in this paper. Denote data space as X (usually a subspace
of Rd) and data matrix as X¼[x1,y,xN], where each column vector
xiAX . Suppose we expect to fuse information extracted from M

heterogeneous channels. The standard MKL algorithms firstly map
the original data into high-dimensional feature spaces via M

mapping functions fp : X/Hp, where p¼1,y,M is the index of
sub-space and Hp is the p-th RKHS (maybe of infinite dimension),
and then concatenate them to obtain the global Hilbert space H.
Denote the Gram matrix in the p-th Hilbert space as Gp, which is
positive semi-definite and the (i,j)-th element can be calculated via
a kernel function Kp : X � X/R. Other notations can be found in
Table 1.

As mentioned in Section 2, the proposed method relies on
cluster structures in data space. As the initial step, a soft clustering
procedure is undertaken in Rd to form C clusters (also possible to
perform clustering in kernel-induced spaces, however, note that it
is another challenging problem). Denote the probability that xi

belongs to the c-th cluster as gic . Piling all gic together, we can obtain
the partition matrix G¼ ðgicÞARN�C with 0rgic r1,8i,c, andP

cgic ¼ 1,8i.
Rather than associating a unique yp to the whole Hp as in

traditional MKL settings, we instead assign ycp to the c-th cluster in
 Level 

er clusters, 
roposed 
this paper)
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Fig. 2. Experimental results on 4-XmasStar data set. (a) Groundtruth. (b) Cluster structures (cluster number¼4). (c) Results from LocalizedMKL. See text for more explanation.

Table 1
Look-up table for notations.

N,M,C The numbers of data points, heterogeneous kernels and clusters

d The dimension of original data space

X Data matrix in Rd�N

G Partition matrix obtained via clustering in original data space

Y Kernel weight matrix in RC�M

A Projection matrix in graph embedding

W,L,B Similarity, Laplacian and constraint matrices in graph embedding

SaL ,SaB Data matrices calculated from L, B, respectively, by treating kernel weight matrix Y as known

SyL ,SyB Similar to SaL ,SaB
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Hp. In this way it is possible to spatially vary kernel weights. Finally
we get a weight matrix YARC�M as follows:

Y¼
y11 � � � y1M

^ & ^

yC1 � � � yCM

2
64

3
75: ð3Þ

To guarantee a valid composite kernel, let 8c,p, 0rycpr1 and
8c,

PM
p ¼ 1 ycp ¼ 1. Throughout this paper we will use the abbrevia-

tion Y�p to denote the p-th column vector of Y while let Yc�

correspond to the c-th row vector. Our proposed cluster-based
gating scheme can be then described as follows: let ZpðxiÞ denote
the data-dependent gating value for xi in the p-th RKHS. For
simplicity, we adopt the linear form ZpðxiÞ ¼Gi�Y�p, and calculate
the composite kernel according to

Gði,jÞ ¼
XM
p ¼ 1

ZpðxiÞZpðxjÞGpði,jÞ: ð4Þ

It can be easily verified that 8i,
P

pZpðxiÞ ¼ 1. For clarity,
we introduce another notation Lp for the p-th RKHS,
Lpði,jÞ ¼ ZpðxiÞZpðxjÞ, and then G¼

P
pLp � Gp, where � denotes

the element-to-element matrix multiplication. However,
Lpði,jÞ ¼ ZpðxiÞZpðxjÞ will result in an optimization problem with
4th-order terms related to yij. Although it can be relaxed into
2nd-order using the RLT (reformulation linearization technique)
trick, however, the large number of parameters (C2 �M in all)
tends to overfit. Hence in practice we adopt the approximation
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Lpði,jÞ ¼ ZpðxiÞþZpðxjÞ, which comprises only C �M parameters.
Although not strictly positive semi-definite, it proves to work well
in our evaluations.

3.2. Graph embedding (GE)

Targeting a general (rather than specific) learning algorithm, we
formulate the non-uniform MKL problem under the graph embed-
ding framework [11]. It is already known that many classical
dimensionality algorithms, including principle component analysis
(PCA), linear discriminant analysis (LDA), ISOMAP, LLE, locality
preserving projections (LPP), can be regarded as special cases of
graph embedding. For clear introduction, we will first formulate the
1D case, and then extend it to multi-dimensional.

Treating data as nodes in a graph G. The relationship between
any data pairs can be described by a similarity matrix WARN�N . For
the 1D case, GE seeks aARN�1 maximally sustaining the relation-
ship defined in W, i.e.,

a� ¼ arg min
aT XBXTa ¼ 1

XN

i,j ¼ 1

JaT xi�aT xjJ
2wij

¼ arg min
aT XBXTa ¼ 1

aT XLXTa, ð5Þ

where the superscript T denotes matrix transposition, L¼D�W is
the Laplacian matrix and the diagonal matrix D is calculated via
8i,Dii ¼

P
ja iwij. B is the constraint matrix which may be also a

Laplacian matrix from a so-called penalty graph. Different dimen-
sion reduction (DR) methods correspond to different choices of L

and B. Refer to [11] for more instances of L and B.
Extension to multi-dimensional case is straightforward. The aim

here is A¼ ½a1, . . . ,aK � rather than a single projection vector a,
where K is the targeted low dimensionality. We adopt a criterion in
the trace-ratio form, which is in spirit the same to Problem (5):

argmax
A� ,Y�

TraceðAT GBGAÞ

TraceðAT
ðGLGþgGÞAÞþgyEðYÞ

s:t: ATA¼ IK , ð6Þ

where IK is the identity matrix inRK�K and g is a positive parameter
of the Tikhonov regularization term AT GA to tradeoff between
empirical accuracy and model complexity. EðYÞ is the prior term on
Y whose strength is controlled by gy and it is easy to verify
that the denominator is equivalent to TraceðAT

ðGLGþgGþ

ð1=KÞgyEðYÞIK ÞAÞ.

3.3. Regularizing Y

One merit of the proposed criterion is the possibility to
incorporate regularization term about kernel matrix Y, which is
difficult, even computationally forbidden for the max-margin
based methods such as in [4].

Here is an example: sometimes inter-cluster smoothness in the
same RKHS is preferred, i.e., for p-the RKHS, 8m,n,man, the
discrepancy between Ymp and Ynp will trigger an extra penalty
value. Formally speaking, denote averaged weight of p-th RKHS as
mp, the penalty term for Y can be expressed as EðYÞ ¼

PM
p ¼ 1PC

c ¼ 1ðYcp�mpÞ
2.

3.4. Algorithm pipeline

To solve the problem in (6) is a non-trivial task due to the tight
coupling of A and Y and non-negative constraints of Y. One
possible solution is to decouple A and Y via alternating optimiza-
tion. Following this idea, here we propose a two-stage optimization
procedure, where initial guesses gradually converge to their
optimal values by alternating between two stages:
1.
 Updating A with Y fixed (see Section 4).

2.
 Updating Y with A fixed (see Section 5).
4. Stage one: update A with Y fixed

With Y known, updating the projection matrix A becomes
rather straightforward. Note that in this case both GLGþgGþ

ð1=KÞgyEðYÞIK and GBG (denote as SaL ,SaB respectively for the purpose
of brevity) in Eq. (6) can be estimated, e.g., for SaB , we have

AT GBGA¼AT
XM
p ¼ 1

XM
q ¼ 1

ðLp � GpÞBðLq � GqÞ

 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

9Sa
B

A ð7Þ

We can get the optimal A� under current situation by solving
the following trace-ratio optimization problem with orthogonal
constraints:

A� ¼ arg max
ATA ¼ Ik

TraceðAT SaBAÞ

TraceðAT SaLAÞ
ð8Þ

This type of optimization problem has been well studied in
several prior works. Here we simply adopt the approach proposed
in [12] due to its simplicity and empirical success.
5. Stage two: update H with A fixed

5.1. Reformulation

Optimizing Y with A fixed, however, proves far more compli-
cated than the problem discussed in Section 4. It can be verified that
given A, both TraceðAT GLGAÞþgyEðYÞ and TraceðAT GBGAÞ can be
expressed as the summations of M2 quadratic terms, e.g.

TraceðAT GBGAÞ ¼
XM
p ¼ 1

XM
q ¼ 1

YT
�pSyBðp,qÞY�q, ð9Þ

TraceðAT GLGAÞÞþgyEðYÞ ¼
XM

p,q ¼ 1

YT
�pSyL ðp,qÞY�q, ð10Þ

where we use SyBðp,qÞ,SyL ðp,qÞARC�C to denote the data matrices
related to column vectors Y�p and Y�q, which can be computed if
given B (or L),A,Lp,Lq and Gram matrices Gp, Gq. For the derivation
convenience, we further introduce a new variable ~Y ¼ ðYT

�1

YT
�2 � � � Y

T
�MÞ

T ARMC�1, which can be regarded as the results after
performing the ‘‘matrix-to-vector’’ concatenation operation to
originalY. The regularization term, i.e., gAT GA, can be transformed
into a linear term f T ~Y. In this way we obtain an equivalent form of
the original problem, i.e.,

argmax
~Y

~Y
T
SyB
~Y

~Y
T
SyL
~Yþ f T ~Y

s:t: 8i, 0r ~Y ir1,

8c,
X

p

Ycp ¼ 1, ð11Þ

where SyL (or SyB) is the matrix obtained by piling all sub-matrices
8p,q, SyL ðp,qÞ (or SyBðp,qÞ) according to (p,q)-indexed 2D grid, i.e.,

SyL ¼

SyL ð1,1Þ � � � SyL ð1,MÞ

^ & ^

SyL ðM,1Þ � � � SyL ðM,MÞ

2
64

3
75ARCM�CM:



1 The generation scheme for k1 and k2 is a totally random one, however,

functional gradient based heuristic can be incorporated for acceleration purpose.
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Problem (11) can be regarded a special case of graph embedding,
i.e., with non-negative constraint and embedded to 1D space (since
~Y is a vector). It is challenging to solve owing to the intrinsic non-

convex property. However, we argue that a local optimum can be
iteratively approached via solving a series of relatively simple
trace-difference sub-problems (rather than non-negative trace-
ratio itself), as described below.

Algorithm 1. Optimize Y with A fixed

Initialize ~Y
ð0Þ

and lð0Þ.
for t ¼ 1 to Tmax do

(1) Solve the following trace-difference sub-problem

argmax
~Y

~Y
T
ðSyB�l

ðt�1ÞSyL Þ
~Y�lðt�1Þf T ~Y

s:t: 8i, 0r ~Y ir1,

8c,
XM
p ¼ 1

Ycp ¼ 1,

(2) Update lðtÞ ¼ ~Y
T
SyB
~Y=ð ~Y

T
SyL
~Yþ f T ~YÞ.

(3) Calculate the residual Dl¼ lðtÞ�lðt�1Þ. Break if Dl is small
enough.
end for

Output ~Y
�
¼ ~Y

ðtÞ
.

5.2. Pairwise element updating (PEU)

The initial values for ~Y is rather rough and need further
refinement. In this subsection we describe a simple yet effective
method for the trace-difference sub-problem defined in Algorithm
1, named pairwise element updating (PEU).

The basic idea is as follows: in each iteration, we randomly
select two indices k1 and k2 from ~Y (k1ak2) so that there exists a
cluster index c with ~Yk1

AYc� and ~Yk2
AYc� (in this way, the major

constraint on ~Y, i.e., 8c,
PM

p ¼ 1 Ycp ¼ 1, still holds after updating).
Based on k1 and k2, a search direction ek is computed as follows:

ek ¼ 0, . . . ,0,1
zfflfflfflfflfflffl}|fflfflfflfflfflffl{k1 elements

,0, . . . ,0,�1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
k2 elements

,0, . . . ,0

0
B@

1
CA

T

ð12Þ

The role that ek plays is similar to the candidate gradient
direction in Newton method. Specifically, we simply adopt the
following linear updating rule:

~Y
ðtÞ
¼ ~Y

ðt�1Þ
þxek, ð13Þ

where x is an unknown coefficient to estimate. It can be verified
that the original problem can be transformed to a relatively simpler
quadratic program (QP), as follows:

argmax
x

xðxeT
kþ2 ~YÞðSyB�lSyL Þek�lxf T ~Y

s:t: 0r ~Yk1
þxr1,

0r ~Yk2
�xr1: ð14Þ

Further investigation on Problem (14) will discover that there
exists removable redundancy in its objective function. Using the

abbreviations al ¼ eT
k ðS

y
B�lSyL Þek,bl ¼ ~Y

T
ðSyB�lSyL Þek�

1
2 lf T ek, we

have an equivalent bounded quadratic optimizing problem:

argmax
x

alx2
þ2blx

zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{9F y
lðxÞ

s:t: maxð� ~Yk1
, ~Yk2
�1Þrxrminð1� ~Yk1

, ~Yk2
Þ: ð15Þ
Note that actually closed-form solution exists for this problem,
i.e.,

x�A �
bl

al
,maxð� ~Yk1

, ~Yk2
�1Þ,minð1� ~Yk1

, ~Yk2
Þ

� �
:

The whole procedure is summarized as in Algorithm 2.1

Algorithm 2. Solve the trace-difference sub-problem
while TRUE do

1.
 Randomly sampling index k1, and sampling index k2 from a

valid index set determined by k1.

2.
 Perform pairwise element updating (PEU) for k1 and k2.

3.
 Update l, and break if the residual value Dl is small

enough.

end while

6. Complexity and convergence

Regarding the time complexity, the computational complexity
of the first stage in Section 4 consists of two parts, i.e., the
calculation of SaB , SaL and the trace-ratio optimization problem.
For the former, each data matrix will require O(M2 N3) multi-
plication operations and O(M2 N3) addition operations. While for
the latter, solving the trace-ratio problem relies on routines that
compute largest n eigenpairs. Efficient Krylov subspace based
methods such as implicitly restarted Arnoldi iteration (IRAI) are
applicable. In implementation, we adopt the built-in EIGS function
in Matlab for it.

While for the PEU algorithm, the computational overhead
mainly comes from the calculation of SyB and SyL , both of which
are matrices in RCM�CM and share similar complexity to SaB and SaL .
Also note that the calculations of al and bl in each iteration are on
the order of O(CM) rather than O(C2 M2) due to the fact that ek only
contains two non-zero elements.

About the convergence of the proposed two-stage algorithm, we
first introduce two lemmas about the convergence property during
each stage.

Lemma 6.1. For Problem defined in (8), there exists numerical

approach to find its global optimum. Refer to [12] for detailed proof.

Lemma 6.2. The element-wise updating procedure for Problem (15)
either monotonically increases the trace-ratio l or reaches its local

optimum ð ~Y
�
,l�Þ. Denote bmin ¼maxð� ~Yk1

, ~Yk2
�1Þ and bmax ¼

minð1� ~Yk1
, ~Yk2
Þ. Note that F y

ljx ¼ 0 ¼ 0 and the objective function

is in quadratic form, thus there is maxðF y
ljx ¼ bmin

,F y
ljx ¼ bmax

,

F y
ljx ¼ �b=aÞZ0 if �b=aA ½bmin,bmax� or otherwise F y

ljx ¼ bmin
�

F y
ljx ¼ bmax

r0. In either case before convergence, (ZA ½bmin,bmax� such

that F y
ljx ¼ ZZ0, and thus the conclusion holds.

Based on the above lemmas, we can reach the conclusion that
the iterative two-stage non-uniform MKL method proposed in this
paper generally converges to a locally optimal solution after
infinitely many steps.
7. Experiment

To validate the effectiveness of the proposed algorithm, we
implement the proposed cluster oriented MKL in Matlab and
conduct various experiments both on toy data set and UCI machine
learning repository. In all experiments we adopt one of the most
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Fig. 3. Visualization of each cluster’s relative weights in different RKHS. The three figures from left to right correspond to kernel-induced Hilbert spaces of K0.01, K0.1 and K1

respectively. We do not display K10 and K100’s since they are never chosen by any of the clusters (thus zero weights).

Table 2
Description for selected UCI data sets, including their names, feature numbers and

total instance numbers.

Data set Feature Instance

GERMAN 24 1000

HEART 13 303

IONOSPHERE 33 351

LIVER 6 345

SONAR 60 208

SPAMBASE 57 4601

MADELON 500 2600

AUS-CREDIT 14 690
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widely used graph embedding algorithm—linear discriminant
analysis (LDA) for classification task. For each data set, 10 random
splits into training (typically 30% of all instances) and test data (the
rest instances) are generated. Regularization parameter in LDA is
fixed as 10�3 without optimal selection by cross-validation.

7.1. Toy data set

We illustrate the effect of adaptive kernel selection for the
proposed method on the 4-XmasStar toy data set. The original data
set and its cluster structure can be seen in Fig. 2. Our aim is to
distinguish the different intrinsic sub-structures of clusters (con-
sequently different kernel combinations), which are previously
ignored in uniform MKL methods and cannot be well captured in
LocalizedMKL. As aforementioned, the kernels we adopt are five
Gaussian kernels Ksðxi,xjÞ ¼ expð�Jxi�xjJ

2=s2Þwiths equal to 0.01,
0.1, 1, 10, and 100 respectively. The kernel weight matrix Y
obtained by our proposed algorithm is as follows:

Y¼

0:84 0:16 0 0 0

0:28 0:33 0:39 0 0

0 0:31 0:69 0 0

0 0:17 0:83 0 0

0
BBB@

1
CCCA, ð16Þ

where Ycp denotes the c-th cluster’ weight in the p-th kernel-
induced Hilbert space. It can be seen that the results are consistent
with the intuition. For example, K0.01 dominates cluster-1, and for
other three clusters, kernels with larger widths gradually increase
their relative weights. For better understanding, the results are
visualized in Fig. 3.

7.2. Benchmark data set

We also select eight two-class classification problems (see
Table 2) from UCI machine learning repository [13].2 For each data
set, we split it into training/test data with a ratio of 3:7 and iterate
10 times to reduce the randomness. In all we use four kernels, all
belong to the Gaussian kernel family yet differ in the kernel widths,
i.e. 0:01s,0:1s,s, and 10s respectively, where s is estimated as the
squared root of the averaged L2 distances between all k-nearest
neighbor pairs.

The averaged accuracies of each individual kernel and their
combination are given in Table 3. We compare three MKL algo-
rithms: QCQP based uniform MKL method [6], LocalizedMKL, and
2 http://www.ics.uci.edu/�mlearn/MLRepository.html
our proposed non-uniform algorithm (with cluster number C¼4
for all data sets). We use the original implementation of Locali-

zedMKL from the authors in [9]. There are two distinct types of
gating strategies in LocalizedMKL: softmax or sigmoid. We run with
both strategies and report the best.

The results can be understood in two aspects: firstly, it can be
seen that MKL methods outperform single kernel based ones in
almost all cases (6 out of 8), except for data sets on which MKL
methods overfit. And secondly, in the eight experiments, ours has
slightly better performance compared with uniform MKL and
LocalizedMKL. In Table 4 we present the performance under
different cluster numbers on three UCI data sets. It is shown that
in most cases the performance with C41 clusters are better than
that of C¼1 (equivalent to uniform MKL).
8. Conclusion

In this paper we propose a non-uniform method for multiple
kernel integration, which is supposed to overcome the limitations
of traditional uniform MKL approaches. While regarding computa-
tional issues, we design a two-stage alternating optimization
algorithm to separate the highly coupled unknown variables and
also give its convergence guarantee.

Note that similar to existing non-uniform methods such as
LocalizedMKL, the proposed method performs well based on some
special properties of the data distributions, i.e. the data present
spatial locality property and can be accurately described with
mixture of clusters. In the future we will relax this assumption and
design more general non-uniform MKL algorithms.

http://www.ics.uci.edu/&sim;mlearn/MLRepository.html
http://www.ics.uci.edu/&sim;mlearn/MLRepository.html


Table 3
Performances on eight two-class UCI data sets in terms of classification accuracies for both single kernel and integrated kernel cases.

LDA-K0:01s LDA-K0:1s LDA-Ks LDA-K10s

GERMAN 70.571.2 70.071.2 71.471.7 74.771.5

HEART 53.871.2 50.074.1 77.873.3 82.571.7

IONOSPHERE 64.671.5 65.371.9 93.371.2 87.171.9

LIVER 58.671.7 58.572.9 64.373.6 62.372.8

SONAR 50.874.1 50.573.6 78.570.3 73.074.8

SPAMBASE 65.870.5 71.970.9 91.170.5 88.770.8

MADELON 50.670.4 50.370.2 55.670.7 57.971.1
AUS-CREDIT 55.271.5 54.873.0 85.171.0 86.470.6

MKL LocalizedMKL Our method

GERMAN 72.572.6 71.5 71.6 75.171.8
HEART 83.372.0 82.171.6 82.871.5

IONOSPHERE 93.870.9 86.073.1 92.571.3

LIVER 57.872.1 58.673.9 65.772.1
SONAR 73.272.8 75.472.4 75.673.9

SPAMBASE 91.270.4 90.571.3 91.870.4
MADELON 50.270.5 55.272.4 56.470.8

AUS-CREDIT 86.671.2 85.071.8 86.771.0

Table 4
Performance under different parameter C on three UCI datasets.

C¼1 C¼2 C¼3 C¼4

GERMAN 74.471.2 75.071.4 75.171.8 74.371.2

HEART 81.871.6 82.571.5 82.871.5 83.172.6

IONOSPHERE 92.570.6 92.772.2 92.571.3 93.971.5
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