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Information-Theoretic Analysis of Input
Strokes in Visual Object Cutout

Yadong Mu, Bingfeng Zhou, and Shuicheng Yan, Senior Member, IEEE

Abstract—Semantic object cutout serves as a basic unit in var-
ious image editing systems. In a typical scenario, users are required
to provide several strokes which indicate part of the pixels as image
background or objects. However, most existing approaches are pas-
sive in the sense of accepting input strokes without checking the
consistence with user’s intention. Here we argue that an active
strategy may potentially reduce the interaction burden. Before any
real calculation for segmentation, the program can roughly esti-
mate the uncertainty for each image element and actively provide
useful suggestions to users. Such a pre-processing is particularly
useful for beginners unaware of feeding the underlying cutout al-
gorithms with optimal strokes.

We develop such an active object cutout algorithm, named Ac-
tiveCut, which makes it possible to automatically detect ambiguity
given current user-supplied strokes, and synthesize ‘“suggestive
strokes” as feedbacks. Generally, suggestive strokes come from
the ambiguous image parts and have the maximal potentials to
reduce label uncertainty. Users can continuously refine their in-
puts following these suggestive strokes. In this way, the number of
user-program interaction iterations can thus be greatly reduced.
Specifically, the uncertainty is modeled by mutual information
between user strokes and unlabeled image regions.

To ensure that ActiveCut works at a user-interactive rate,
we adopt superpixel lattice based image representation, whose
computation depends on scene complexity rather than original
image resolution. Moreover, it retains the 2-D-lattice topology
and is thus more suitable for parallel computing. While for the
most time-consuming calculation of probabilistic entropy, varia-
tional approximation is utilized for acceleration. Finally, based on
submodular function theory, we provide a theoretic analysis for
the performance lower bound of the proposed greedy algorithm.
Various user studies are conducted on the MSRC image dataset to
validate the effectiveness of our proposed algorithm.

Index Terms—Image analysis, information entropy, object seg-
mentation.

I. INTRODUCTION

N recent years, visual object cutout from images [1], [2] or
video clips [3], [4] has attracted increasing attention in both
the computer graphics and computer vision communities. Un-
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like traditional image segmentation techniques such as Water-
shed [5] or Level Set [6] which mainly focus on structure infor-
mation (line, edges, corners, etc.), object cutout aims to extract
semantically consistent image (or video) regions, and are thus
more suitable for object-level digital content editing, composi-
tion and retrieval.

Object cutout in images is notoriously difficult, mainly due
to the gap between low-level image features (color, texture, in-
tensity gradient, etc.) and high-level semantic concepts, and the
diversity of user intentions. Fully automated object cutout [7]
is possible yet prone to errors. Usually this under-constrained
problem can be solved by incorporating user interaction [8], [1],
[2], multiple inter-related sources [9]-[12], or a priori knowl-
edge about object category. In the presence of blurred or mixed
pixels pertaining to smoke, animal furs, hairs, etc., real-valued
alpha values need be estimated for each pixel via soft segmenta-
tion or image matting [13]. Here we ignore this “soft” matting
problem, focusing on “hard” segmentation.

Our investigation starts from a novel taxonomy based on the
way to use the hint information. Roughly, existing approaches
can be categorized as one of the unsupervised, semi-supervised,
supervised or active learning case. Although having achieved
promising results on many challenging images, current ap-
proaches still have their limitations. Particularly, most of them
work in a passive style, without quality assessment about the
user strokes. At runtime there are typically several iterations of
the following loop: take user’s input, calculate and display the
cutout results, and then begin waiting for user’s feedback. In
these traditional interaction paradigms, users can only notice
the inconsistency between their inputs and original intension
until final results are shown, thus not efficient enough and
having space to be improved.

II. OUR PROPOSED METHOD: ACTIVECUT

An interactive cut-out procedure typically consists of several
rounds of “refine the strokes — perform cut—out” loop.
In many scenarios, it can be roughly divided into two stages.
The first several loops aim to roughly locate the boundaries of
target objects, and the following loops mainly focus on local
adjustment. The goal of our proposed method (hereafter called
ActiveCut) lies in reducing the efficacy of user interaction at
the first stage. Unlike the passive mode, once user’s strokes
are available, the proposed algorithm first quickly evaluates the
strokes’ quality and returns several suggestive strokes (at an
interactive rate even for large-size images) to indicate potential
flaws in the original strokes, which guide users to lay down new
strokes for refining. Here “flaws” are supposed to stem from the
informational inadequateness of the initial strokes when they
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Result B

Fig. 1. Tllustration of the flowchart of the proposed method. Red (or green) strokes indicate the seeds for objects (or background), respectively. Assume what the
user wants is something like Result B. Starting with initial user strokes which bring a segmentation in Result A, users progressively lay down additional strokes
following the guidance of suggestive strokes that correspond to the most ambiguous parts in each interaction round. Newly-introduced user strokes are highlighted
with dashed white circles. In this example, suggestive strokes are automatically generated using our proposed method ActiveCut, while the final cutout is obtained
from a “GMM + GraphCut” algorithm, whose object function is approximately optimized by ActiveCut to ensure reasonable suggestions.

are used for confidently cutting out the desired objects. Im-
portantly, an observation is that the major computing overhead
comes from calling the underlying cutting-out algorithm while
the burden of calculating suggestive strokes is comparably
small. Note that in ActiveCut, no real cutting-out computation
is actually triggered, whereby with a high probability, users
retain fewer interaction rounds in the first stage and thus save
the effort.

Such a technique is meaningful due to the following consider-
ations: firstly, the computing burden of the first cutting-out stage
is usually considerable for large-size images or long video clips.
An active early-detect strategy provides the flexibility to refine
user inputs without any real calculation for segmentation, thus
greatly saving interaction effort. Secondly, noting the diversity
of potential users, ActiveCut is especially helpful for start-up
users who lack expertise in image processing or unaware of
enough technique details of the underlying cutout algorithms.
Thirdly, when handling complicated images, even experienced
users can hardly accomplish the rough locating of desired ob-
jects in only several rounds. The initially given strokes usually
ignore to specify some necessary pixel seeds, which are hardly
detected by the users themselves in many cases. In this case, an
assisting utility like ActiveCut is helpful.

Algorithm 1: The Proposed ActiveCut Algorithm

Step 1 (Initialization): user strokes for image background
and desired objects are made available;

Step 2 (Evaluation-and-Feedback): based on
information-theoretic analysis, generate nj; most
informative strokes which are supposed to be best
candidates to reduce image uncertainties;

Step 3 (Refinement): Users have two choices:
1) simply ignore suggestive strokes if satisfied with
current user strokes, and perform segmentation using
color-based algorithms like GrabCut.

2) otherwise add new strokes to the system following the
guidance of suggestive strokes and go to Step 2.

The algorithm pipeline of ActiveCut is presented in Algo-
rithm 1 and an illustrative example is found in Fig. 1. Note
that the functionality of ActiveCut relies on approximately op-
timizing the criterion of the underlying cutout algorithm. We
would like to highlight that the aim here is not to provide an
alternative cutout algorithm besides existing ones. Instead, Ac-
tiveCut can be seamlessly used as a plug-in for most popular
systems (in this paper, we focus on color-based systems like
GrabCut or LazySnapping).

The rest of our presentation is organized as follows.
Section III surveys related works. In Section IV, we elaborate
the mathematical formulation of active object cutout, and
show that the proposed entropy criterion can be decomposed
into two data terms, i.e., stroke correlation term and neigh-
borhood correlation term. In Sections V and VI, we describe
the details to obtain approximate solutions for these two data
terms, respectively. Evaluations on public image datasets are
presented in Section VIII. Also, we discuss the lower bound
of the algorithm performance based on submodular function
theory, which is in Section VII.

III. RELATED WORKS

As stated above, we roughly cast the vast literature on visual
object cutout into four categories:

Unsupervised Case (or Self-Cutout): in this case, no ex-
ternal hint information is supplied. The algorithm tries to find
the segments by itself. A number of traditional segmenting tech-
niques, including K-means, mean shift, Gaussian mixture model
(GMM) + expectation maximization (EM), are able to group the
image pixels into homogeneous regions, each of which consists
of either a single connected component or several disjoint com-
ponents (like in K-means). Previous works [7], [14] adopt the
notation “superpixel” to name these extracted image patches.
Recent progress along this direction further demonstrates en-
hanced performance given more reference images, either in the
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TABLE 1
TAXONOMY FOR OBJECT CUTOUT TECHNIQUES

Single Image Multiple Images
Unsupervised K-means, GMM+EM, | [10], [11], [9], [22], [15]
learning Mean Shift, Normal-

ized Cut
Semi- [81, [11, [2], [17], [18] | [20], [23]
supervised
learning
Supervised [24], [25], [26]
learning
Active learing the proposed ActiveCut

algorithm in this paper

form of flash/no-flash images [9], or relevant image pair [10],
[15], [11].

Semi-Supervised Case (or Interactive Cutout): is a fruitful
research direction in the past few years. For the targeted image,
users manually label some pixels as “seeds”, which are later
propagated over the whole image. One seminal work in this
category may be the Graph Cuts framework [8] proposed by
Boykov et al. in 2001. In the typical settings, it requires two
kinds of strokes, one for the desired objects, the other for the
image background. Later, in GrabCut [1], the stroke types are
reduced to only one via introducing user-interaction primitives
such as lasso or bounding box. However, although polyno-
mial-time solvable, Graph Cuts is computationally expensive
for large-size images with pixels on the order of 106. For
acceleration, another variant, LazySnapping, adopts superpixel
as basic data structure. Other approaches outside the Graph
cuts framework exist. For example, the seminal work in [16] is
based on random walks for segmentation. In [17], the authors
solve this problem by utilizing the Laplace-Beltrami operator
defined on the image grid. While in both the work in [18] and
[19], the authors propose an evolutional updating process with
convergence guarantee.

The idea of semi-supervision can also be applied to multiple
images. Given a well-segmented image or any user-supplied
constraints, the cutout task on similar images can be easier and
more accurate, as demonstrated in [20].

Supervised Case: If we know the object category in advance,
or we target specific object kinds, cutting out an object from
an image will be of less ambiguity. In practice, we can encode
the prior knowledge about an object category via training on a
large number of user-labeled samples, such as the “C”-like mug
handles, the “€2” shape formed by the head and shoulder for
human.

Active-Learning Case: most approaches in Table I (certainly
the list is incomplete) are “passive” methods, while no prior
work on active object cutout has been developed (although we
note that the work in [21] proposed similar technique, however,
it is not for the active segmentation task), which motivates our
work described in this paper.

IV. PROBLEM FORMULATION

A. Image Model

Unsupervised over-segmentation of an image into super-
pixels is a crucial preprocessing step for many real-time image

(d) 20 x20

Fig. 2. Tllustration for “superpixel lattice”. In (b), salient boundaries are ren-
dered with lower intensity. (c) and (d) are filtered images under different lattice
resolution.

editing tasks. Superpixel-based image representation has sev-
eral merits compared with pixel-based one. Intrinsically pixels
are not natural entities to convey image meanings, since they
primarily depend on the CCD resolution of cameras. In contrast,
a superpixel is homogeneous, spatially-coherent, preserving
most of the structure configuration information, stable over
scales and image resolution, and has much smaller number (on
the order of 103~10%) compared with that of pixels (typically
10%).

Most superpixel algorithms are unable to keep the two-di-
mensional pixel-lattice structure of an image, outputting a gen-
eral graph, as in [7], [27], and [28]. In fact, a topology-keeping
superpixel algorithm benefits in several aspects, especially for
the consideration of efficacy. To generate a superpixel lattice,
we adopt the similar idea as in [14], which is able to reduce
a m X n image to m X n superpixel lattice (m < m and
n < n). The construction procedure is incremental: in each
step, one more horizontal or vertical splitting line is greedily
inserted along the low-density paths (i.e., the paths with high
probabilities to be nearby object contours) in a pre-defined
boundary cost map, until all m — 1 horizontal and n — 1
vertical lines are all added. To preserve the lattice topology,
always we ensure that 1) each pair of horizontal and vertical
path crosses only once, and 2) two vertical (or horizontal)
paths never cross. Unlike [14], we adopt a local contrast based
method to specify the boundary cost map, which can efficiently
handle colorful images. An example is shown in Fig. 2. At
last, each superpixel can be represented by a six-dimensional
vector, ie., spLattice(i) = (N;,mi,mi, mi mi mp)T,
where N; is the pixel number, while M = (m’,m})" and
M! = (m},m} m;)" denote the mean values of spatial
coordinates and RGB colors, respectively.

Our proposed object cutout approach utilizes above super-
pixel lattice as the basic data structure. Denote the valid index
set for a m x 7 lattice as V. Each lattice node is associated with
a random variable X;. Here we focus on the binary case, since
multi-class cutout problem can be reduced to a series of two-
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class sub-problems. Values of Xy, indicate the statuses for lat-
tice nodes, typically 1 means “foreground” or “object”, and —1
means “background” or “non-object”’. Most prior works such as
GrabCut and LazySnapping assume &, to be discrete, typically
subject to the Ising model [29]. Here we assume the random
variables to be continuous and encourage the adjacent nodes to
have similar values via utilizing a weighted quadratic loss func-
tion. Specifically, we presume that X, forms a Gaussian random
field (GRF), with its energy function defined as

1
E(Xy |W) = 5 Z Z wij (X — X;)? (1)
i JEN;

where N; denotes the neighborhood system of X;. Traditional
4-connected or 8-connected neighbor system only keeps inade-
quate Markov locality. Based on the lattice representation, we
can extend it to larger scale, i.e., Az x Ay (in practice, we set
Az = Ay = 13).

The weight coefficients in (1) are designed to be symmetric
and capture both the similarities in terms of both color and spa-
tial distance, i.e.,

| ME— M7 || My — M|

wi; = (N; + Nj) exp <_ 202 - 203 )

where 0. and o are parameters related to color and spatial vari-
ations, respectively, which can be estimated from the original
images. Note that although w;; is defined mainly utilizing color
information, the proposed method is actually general and sup-
ports information from other modality such as texture, shape
prior [30], [31] or symmetries [32], by modifying the definition
of Wij.

According to the Hammersley-Clifford Theorem [33], an
MREF can be equivalently characterized by a Gibbs distribution.
Thus, we have

Py |W,0) = o — exp(~fE(Xs | W) (@)
w.B

where [ is the so-called “inverse temperature” parameter orig-

inated from statistical physics and Zyy, g is a normalizing con-

stant named “partition function” in physics to ensure the proba-

bility distribution a valid one, whose exact value can be obtained

via integration over Xy, i.e.,

Z‘r’V.ﬂ = /exp[—ﬂE(Xv | W)]de (3)

B. Entropy Criterion

One of the major issues for active object cutout is to quantify
the informativeness contained in current user strokes, and reli-
ably estimate the information gain after adding one extra stroke.
The best “suggestive stroke” is the one that reduces image un-
certainty as much as possible in later pixel-classification phase.
Intuitively, such a good criterion should reflect the following
two considerations:

1) Stroke Correlation Term (SC-term), i.e., how correlated
the newly-added stroke is with existing strokes. Usually
we prefer new strokes which have small correlation values
with current strokes, since they potentially help estimate
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the labels of image regions which have very low confidence
values under current strokes.

2) Neighborhood Correlation Term (NC-term), i.e., the
goal of an informative stroke is mainly to help reduce
its neighbors’ uncertainty. The elements covered by the
informative stroke should have enough similar neighbors.
Otherwise, if they are almost isolated from adjacent ele-
ments in the feature space, only tiny improvement can be
expected.

In this paper, we formulate the active object cutout problem
based on the above observations. Before proceeding, let us first
clarify some notations in information theory (e.g., informational
entropy) used here. Firstly, the entropy for a random vector X,
with index set V can be expressed as follows:

H(Xy) = / p(y) log p(Xy)dXy 4

where p(z) > 0 and [ p(z)dz = 1. Suppose V is comprised
of two exclusive subsets, i.e., V = S U A. If the values of X4
have already been observed, we can calculate the entropy of X's
conditioned on X 4 as follows:

H(Xs | Xq) = - / P(Xs, Xa) log p(Xs | XA)dXy.  (5)

Some authors directly use this conditional entropy as their
criteria in similar tasks like set covering problem. However, in
these settings, the highest entropy set is usually characterized
by stroke locations as far as possible from each other, which
contradicts our expectation about reasonable solutions. A better
candidate is the “mutual information”. In [34], the authors uti-
lize it to perform intelligent annotation of face images. In [35],
the authors apply it to the problem of sensor placement. For-
mally, mutual information of two subsets can be expressed as
follows:

MI(A) = H(Xs) — H(Xs | Xa) (6)

where H(Xs) and H(Xs | X4) correspond to entropies before
or after knowing X 4, respectively. The mutual information ac-
tually describes how the observations in X 4 decrease uncer-
tainty (or entropy) in the rest random variables X's.

Let us formally state the problem. Suppose elements in A are
all covered by user strokes, and the status of each element in S
needs to be estimated from A. For clarity, we assume there are
totally k& interaction rounds between users and cutout system
before starting real computation for segmenting, and in each
round, users adopt the suggested strokes (in practice, this re-
striction can be relaxed). The goal is to pursue optimal k strokes
which are able to maximally reduce the amount of uncertainties
in S, i.e.,

MI(A). 7

A" =arg max

ACV; | Al=k

C. Decomposition of MI(A)

Optimizing (7) is difficult. It can be proved that, given ra-
tional M and the assumption that ) is a Gaussian process (we
will prove it later), deciding whether there exists a subset A C V
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of cardinality & such that MI(A) > M is NP-complete. Con-
sequently, approximate optimization is indispensable. Here we
adopt a greedy strategy. In each round, we greedily pursue a
single element y € V \ A to maximize AMI, = MI(AUy) —
MI(A).

Denote the random variable pertaining to y as X, and A =
V\ A. It is easily verified that

= H(XAUy) - H(XAUy |X2t\y)
— [H(X4) = H(X4 | X2)]
= H(Xauy) — H(Xy) + H(Xa\,)
— [H(X4) — H(Xy) + H(Xy)]
:H(Xy|XA) _H(Xy|XZl\y)~ (8)

Thus two terms H(X, | X4) and H (X, |X4,,) dominate
AMI,. The maximum of MI will be obtained at a large
H(X, | X4) together with a small H (X, | X', ). Furthermore,
we can notice that H (X, |X4) and H(X,|Xz,,) are ele-
gantly corresponding to SC-term and NC-term, respectively:
H(X, | X4) describes how it is correlated with existing strokes,
and the latter term reflects the similarity between the image
superpixel under consideration and its neighboring elements.
Intuitively, large H (X, | X 4) indicates a higher potential of y to
carry novel information missing in A, and small H (X, | X3,,)
indicates that the labels of X, and its neighbors are tightly
related, thus uncovering &), is able to reduce uncertainty.

V. STROKE CORRELATION TERM CALCULATION

A. Variational Approximation

Exact calculation for conditional entropy is generally
intractable. It is a common trick to approximate it either
stochastically (Monte Carlo Markov chain sampling) or de-
terministically (mean field, or expectation propagation [36]).
Here we adopt a variational view, approximating the original
problem by minimizing the value of a pre-specified functional.

In variational inference, typically we assume the targeted
functions have a specific parametric form (such as a Gaussian)
or the products of a series of factors. For binary object
cutout, with the observation that we are mostly interested
in only two discrete values 1 (object) or —1 (background),
we discretize each random variable in V to {—1,1}. In the
standard variational method, the original joint probabilistic
distribution can be factorized into the product of several
simple functions. Particularly, for the current problem, we have
P(Xs|Xa) = Q(Xs) = [[;es Qj(X;), where Q;( ) denotes
a discrete function ranging over {—1,1}. We further assume
that Q;(X;) = (1 +m;X;)/(2) the same as in the Mean Field
method [29], where m; = (X;)q ({-)g denotes the statistical
expectation over distribution Q).

One step further, we can prove that maximizing the lower
bound of the likelihood of log p(X4) can be obtained via min-

imizing the following functional in a form of Kullback-Leibler
divergence [37]:

KL(Q(Xs) || P(Xs | Xa))

= [ { 55 s

For brevity, we define the following two notations:
Vo = /QIOdeXs,Vp = /QlogPng.

Thus KL(Q || P) = Vo — Vp. Recall that here all random
variables in V are discretized for tractability consideration, thus
both Vi, and Vp can be expressed as function of {m;,i € S}
after integrating over X’s. It can be verified that

1+m; 14+m; 1—m; 1—m;
VQ:Z( 5 log 5 + 5 log 5 >
1€ES

Vp = (log P(Xs |XA)>Q

= ’BZ Z w”mlmj + const.

i€ES JEN;

The objective KL(Q || P) is difficult to optimize due
to its high nonlinearity. However, we can derive an up-
dating rule for m; by investigating its first-order gradient
(OKL(Q || P))/(0m;), whereby local optima are feasible.
Taking partial derivative with respect to m;, we get

IKLQ|P) _ (Vg - V)
ami 87712
1 1+m;
:§IOg1—mi —ﬁZwijmj. ©)]
JEN;
For any locally optimal my, there is

(OKL(Q||P))/(Om;) = 0. However, the nonlinear
term log(1 + m;)/(1 — m;) in (9) ruins the linear closed-form
solution of m;, which motivates further approximation. Note
that (8°Vg/Om?)m,—o = 1, and we can approximate the
complicated logarithm function in 0Vg/Om; with a linear
form, i.e.,

14+ m;
1—m1'

1
—log ~ m;. (10)
2

Set the partial derivative in (9) to be zero, and we can obtain
the updating equation at iteration ¢ :

m§t+1) = ZﬂwUmEt) = Z’J}Umgt)
J

J

(11)

In practice, the value of the inverse temperature parameter [3
is carefully adjusted so that

Wi

maxmey |, Wmn|

Wi =

12)

Obviously 0 < w;; < 1 for all valid indices 7,5 € V. Equa-
tion (11) provides an iterative method to obtain the optimal fac-
torized posterior ();(X;), which is presented in Algorithm 2.
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Algorithm 2: K£L£-minimizing factorized approximation
Input:
« Xy = L A
o Learning rate v = 0.05
« Error tolerance e,,,, = 1072
e max iteration 7},
Result: Q7 (X).j € s
(0

initialize m;’ = 0 if j € X's, or user-specified value (-1
or 1) if j € X4.
for t = 0 to T),q, do
for j € Xs do
compute m;-“ according to Equation(11);
m;“ =m} + (m'+1 mb);
end
if max; |m',].+l - m;:\ < €maz then
| Break; V '
end
end

The calculation of stroke correlation terms can be greatly sim-
plified once all Q;(X;) (j € S) are known. From (5), we have

H(X, | Xa)
= /ZP ,Xa)log P(X, | X4)dX 4

- / (X4) ZP | ) log P(X, | XA)dX 4.

Note that each variable in set A is associated with a fixed
label, i.e., P(X4) = 6(X4 = L), where L4 is the user-
specified labels (—1 or 1 in binary-classification case) and § is
the Dirac delta function; thus, H (X, | X.4) can be simplified as

H(X, | Xa)
== P(X,|Xa=La)log P(X, | Xa = L)
X,
= =) Qy(Xy)log Qy(Xy). (13)
X,

B. Convergence Analysis

In this section, we will show that the iterative updating
process in Algorithm 2 converges to a fixed point. Denote the
coefficient matrix as W, whose (i, j)th entry is w;; defined in
(12). It is easy to verify that

X5 =[(1 = )] + WX, (14)
where I is the identity matrix. Let P = (1 —~)I 4+ W . Recall
that V = SU.A. Without loss of generality, suppose elements in
Xy, are arranged in the form of [XZ' XZ]T, where the superscript
T denotes matrix transposition. Accordingly, matrix P can be
decomposed into four submatrices (similar to the trick used in
[38]), i.e.,

P= [PSS (15)

Psy }
Pys '

Paa
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From (14), there is

XL = Pss Xt + PsaXa. (16)

In each iteration, the values of X 4 are always clamped to be
L 4; thus, we can further simplify (16):

X = Pss Xt + Psala. (17)

Based on the above matrix splitting operation, we are able to
reach the main conclusion for convergence guarantee (proof is
omitted).

Theorem V.1: When t — oo, the sequence { X%} converges
to a unique fixed point X% = (I — Pss) ™' PsaL .4, where [ is
the identity matrix.

VI. NEIGHBORHOOD CORRELATION TERM CALCULATION

Unlike the calculation of the stroke correlation term, the
neighborhood correlation term can be estimated in a more
straightforward way. The main observation is that the joint
probability defined in (2) is intrinsically a Gaussian process
(GP), since (for clarity, we omit the constant /3)

P(Xy) o exp(=X% (D — W)Ay) (18)
where D is a diagonal matrix with D;; = > ;wij and D
D — W is actually the so-called combinatorial Laplacian. For
GPs, given the observation values L 4 for set A, the conditional
distribution of &), is also a Gaussian with mean i, | 4 and vari-
ance 05 | A which can be estimated as follows:

19)
(20)

Hy| 4 =ty + 2y aS73 0% (La — 1)
‘75 |A = Yy — ZyAE;litZAy
where ¥, 4 denotes the sub-matrix of X related to index sets y
and A, and ¥ 4, = ¥ ;. Another useful theoretic result is that
in (5), the differential entropy of a Gaussian random variable X,
conditioned on some set of variables X 4 is actually a monotonic
function of its variance:
1
H(X, | X4) = 3 log (27rea§|A) = log(oy| .4) + const.

1)

Fortunately, it can be directly computed in closed-form from
. and its sub-matrices. However, in practice, computing ¥ via
inverting ¥~! = D — W is numerically forbidden, since the
Laplacian matrix D — W is known to have at least one zero
eigenvalue; thus, it is deficient. A practical trick is to use the
regularized Laplacian, i.e., ¥ = (D — W + A )~%, where ) is
a small constant introduced for better numerical stability and
is the identity matrix.

VII. FURTHER ANALYSIS

In this section, we analyze the performance lower bound of
the proposed greedy algorithm based on the fact that MI(.A)
belongs to the submodular function family, whose definition is
given as follows.



MU et al.: INFORMATION-THEORETIC ANALYSIS OF INPUT STROKES IN VISUAL OBJECT CUTOUT 849

Definition: Set function F' on V is regarded as submodular
i:tVACBCVands € V\B, F(AU{s})— F(A) > F(BU
{s}) — F(B) or equivalently VA, B C V : F(A) + F(B) >
F(AUB)+ F(ANB).

Submodular functions are widely used for combinational op-
timization in economics, sensor placement, and feature selec-
tion [35]. Intuitively, they can be regarded as set functions ex-
hibiting the diminishing return property, i.e., the benefit to in-
clude one more element will decrease when the selection set be-
comes larger. Many real-world phenomena show such a prop-
erty, including the topic discussed in this paper. Based on the
submodular function theory, we are able to quantitatively dis-
cuss how far the solution is away from the global optima. The
following is our main observation.

Theorem VII.1: The set function induced from mutual infor-
mation A — MI(A) is submodular.

Proof: First note that for A C Vandy € S = V \ A,
according to (8), MI(A U y) — MI(A) = H(X,|X4) —
H(X,|X3z\,). For two sets A C B C V, it is trivial to
see that H(Xy |X4) > H(X,|Xp) and H(X, |Xy,) <
H(X, | Xg\,), where we use the abbreviation A, B to denote
V\ A and V \ B, respectively. The following fact holds by
piling above observations together:

MI(BUy) — MI(B) < MI(AUy) — MI(A)

which demonstrates the diminishing return property of submod-
ular functions; thus, the conclusion follows. [ |

Moreover, a submodular function is said to be monotonic if
F(yUA) > F(A) forall y ¢ A. Nemhauser proved an impor-
tant theorem for such functions.

Theorem VII.2 (Nemhauser et al., 1978): Let F' be a mono-
tone submodular set function over a finite ground set V = 0.
Let A be the set of the first k£ elements chosen by the greedy
algorithm, and let OPT = arg max 4y |4)=k F'(A); then

F(A) > <1 - <%>k> OPT > <1 - %) OPT.

Proof: See [39] for detailed proof. ]
Theorem VIL.2 is potentially useful to analyze the worst
performance, or lower bound of the proposed greedy al-
gorithm. However, the mutual information criterion we
adopted is not monotonic for all possible set .A. Note that
MI(0) = MI(V) = 0, and the function value will first in-
crease and then decrease. Fortunately, Theorem VIL.2 need
not monotonicity over all sets. In fact, our proposed algorithm
mainly works on the increasing phase. To see it, note that the
increment of the MI value after adding a new element y to the
existing labeled set A is the difference between the SC-term
and the NC-term; see (8). The posteriors of random variables
covered by potential suggestive strokes have nearly uniform
distributions (i.e., mean value m; = 0), which indicates high
uncertainty (or large entropy) and thus results in a relatively
larger SC-term value compared with NC-term value, thus
making the MI value continually increasing. In practice, we
can terminate the algorithm if the MI value begins to decrease.
In a word, MI is approximately monotonic for our task, which

Fig. 3. Bezier curve generation. Yellow arrows point to the middle-points of
straight lines connecting two geometrical centers. Blue arrow points to the fitted
Bezier.

indicates the lower bound of the greedy algorithm is roughly
1 —1/e = 67% of the global optimal solutions.

VIII. EXPERIMENT

We have implemented the proposed active cutout algorithm
using Matlab, with optimized core functions written in C++
language. All experiments are conducted on a common PC
equipped with Intel Xeon X5472 3-GHz CPU and 32 GB of
memory.

After users draw the indicating strokes, we calculate the en-
tropy gain for each unlabeled superpixel and select ny (n = 4
in most of our settings) optima in current round to construct sug-
gestive strokes according to a local suppression strategy: after a
superpixel is selected, all elements falling into its neighborhood
will have their entropy gains lowered (typically by multiplying
an attenuation rate smaller than 1, e.g., 0.95 in our implemen-
tation). By this means, we reduce the possibility of overlapping
suggestive strokes and yield a better spatial distribution.

To make the suggestive strokes visually natural, a piece of
Bezier curve is fitted from four points as the skeleton of each
suggestive stroke. Suppose point O is the geometrical center
for a selected superpixel, and A, B are centers for its two most-
similar neighbors. A third-order Bezier curve that acts as stroke
skeleton can be calculated, as Fig. 3 illustrates.

With regard to computing speed, when utilizing a 1200-node
superpixel lattice (note that it primarily depends on scene com-
plexity, rather than original image resolution), the calculation
of SC-term takes 0.1-0.4 s, primarily proportional to the con-
vergence speed of Algorithm 1—see Fig. 4(c)—while the cal-
culation of NC-term typically takes less than 0.1 s. In mul-
tiple-round cutout procedure, later rounds always consume less
time on SC-term calculation (typically less than 0.1 s) since they
can use results of previous rounds for the initialization purpose.
Although already able to work at user-interactive rate, how-
ever, the implementation of ActiveCut can be further optimized,
since Algorithm 1 is highly parallel and thus can be acceler-
ated on current general-purpose graphics hardware (GPGPU)
or multi-core CPU.

In Fig. 5, we present more results on several images taken
from the publicly available Berkeley image database [40]. In our
implementation, the resolution for superpixel lattice is chosen to
be either 30 x 40 [for (Image Height)/(Image Width) < 1]
or 40 x 30 [for (Image Height)/(Image Width) > 1]. Neigh-
borhood parameters (Az,Ay) for SC-term adopt the value
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Fig. 4. ActiveCut results for images (top left) GIRL and (top right) PERSON.
User strokes are either in red or green, while the four most suggestive strokes
are drawn in cyan, which capture many ambiguous image regions. In (c), we
plot the evolution curves of mean absolute residual (MAR) with respect to it-
eration counts in SC-term calculation, which consistently drop to zero and thus
empirically validate the convergence analysis in Section VIIL.

Fig. 5. More examples about suggestive strokes. The left column are images
with user strokes, and the right column are corresponding suggestive strokes.

(13,13), while for similar neighborhood parameters in NC-term
calculation, we use (7,7).

As stated above, ActiveCut is designated to be a plug-in
(rather than an alternative) of existing cutout systems. Users
are expected to make their next stroke following the guidance
of suggestive strokes, or directly select one of the suggestive
strokes. For final segmentation, one has to resort to other cutout
algorithms with objective functionals similar to ActiveCut’s.
Note that in our formulation, ActiveCut works based on
color-vector similarity and spatial smoothness, consistent with
cutout algorithms like GrabCut or LazySnapping. In practice,
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Fig. 6. Sample images used for user study.

we adopt a GrabCut-style method, i.e., GMM assumption for
underlying color distributions and Ising smoothness prior.

To quantitatively investigate the benefits of ActiveCut, we
build a data set consisting of 26 images, most of which are se-
lected from the Microsoft Cambridge image segmentation data-
base. Ground truth is obtained via manual labeling. Parts of the
image set are displayed in Fig. 6.

As stated in Section II, the effectiveness of ActiveCut is
mainly obvious in the stage of roughly locating the target ob-
jects. In the later local retouching stage, users can conveniently
refer to intermediate cutout results, which makes the suggestive
strokes less useful (thus we turn off its functionality in this
stage). According to the above analysis, the experiments mainly
focus on the improvement in terms of accuracy from the initial
user strokes.

Eight volunteers are selected. During the experiment, subjects
are given instructions to extract specific object from each test
image. It is convenient for them to change the effect radius of
the brush tool (from 3-pixel to 40-pixel) to flexibly handle object
with varying widths. Moreover, subjects are told to add new
strokes into the system according to the following two criteria:
1) User strokes should be adequate to cut out desired objects.
2) The set of user strokes should contain as little redundancy as
possible.

Finally, both user-stroke information and corresponding 7
most salient suggestive strokes are stored for further analysis.
The GrabCut-style cutout routine is called multiple times to tes-
tify the performance with the following three kinds of strokes:

1) Type-I: only user strokes.

2) Type-II: user strokes + suggestive stroke.

3) Type-III: user strokes + random stroke.

In object cutout, errors are comprised of two parts: under-seg-
mentation (i.e., classify object pixels as background) error and
over-segmentation (i.e., classify background pixels as object)
error. Formally, the overall error rate e = ¢, + ¢,, where e,
e, are error rates caused by under-segmentation (misclassifying
object pixels as background) and over-segmentation (misclassi-
fying background pixels as object), respectively.

Denote the error rate with Type-I strokes as e;. Since there
are ny, distinct suggestive strokes, we run for ny, times indepen-
dently for Type-II stokes and set the error rate es as the min-
imum value. For Type-III stokes, we generate five groups of
random stokes, each of which consists of n; randomly-gener-
ated strokes. For each group, the error rate is calculated in the
same manner as Type-II. The final error rate e is computed by
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Fig. 7. User study for ActiveCut. (Left) Overall distribution of error rate ratio r2, r3 over all subjects and images. (Middle) Statistics of r2, r3 (mean and standard
variation) over five subjects for each image (26 images in all). (Right) Statistics of r», r3 for each subject.
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Fig. 8. Selected cutout results during the user study. For each set of user strokes (top row), four most salient suggestive strokes are displayed (2nd row). Cutout
results with only user strokes and with user strokes + the best suggestive stroke are presented in the 3rd and 4th rows, respectively. Note that the selected suggestive

strokes are highlighted in magenta in the 2nd row.

averaging the error rate of each group. Since our major concern
lies in the relative performance of the other two strokes with re-
spect to Type-I, we further define two ratios:
T = 6—2, and 73 = e,
€1 €1
In Fig. 7, we present the overall distributions, the statistics
(including mean values and standard variations) of 79, r3 over
image or subject. Some concrete examples can be found in
Fig. 8. Note that smaller error rate ratios indicate larger im-
provement. The following can be observed:

1) Both the averaged values of ro and rs over all images
and subjects are below 1.0, while the results obtained by
Type-1II are better than that of Type-III (0.80 &= 0.24 versus
0.88 £+ 0.17). Moreover, 7o < 0.8 in 38% cases—see
Fig. 7(a)—while only 20.7% of r3 are below 0.8. It seems
that both suggestive strokes and random strokes (with cor-
rect labels provided) improve the performance in terms of
accuracy, and Type-II is statistically superior to Type-III.

2) The statistics of error rate ratios are highly image-de-
pendent. For extreme difficult images (e.g., LLAMA and
PUMA in Fig. 6) or easy images (e.g., FLOWER), r» ~ 1.
While for moderately complicated some images [e.g.,
images #13 and #18 in Fig. 7(b)], 2 have low mean values
and small variations.

IX. CONCLUSION

In this paper, we propose a novel interaction paradigm for
image object cutout that actively generates suggestive strokes
to guide users’ further interaction. It can be easily incorporated
into most of state-of-the-art image cutout systems as a pre-pro-
cessing plug-in. The algorithm can perform in interactive rate.
Moreover, theoretic analysis based on submodular function
theory is presented and evaluation on various images demon-
strates its effectiveness. For future work, we will work toward
two directions: 1) In this paper, we focus on two-dimensional
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image. However, it also applies for spatio-temporal three-di-
mensional data. We will conduct experiments for video data in
the future work. 2) The proposed method is general and thus
can also be applied to the active learning problem in machine
learning. Validating its general performance is also meaningful.
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